metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-1,2-bis­­(di­phenyl­phosphan­yl)ethane-κ2P:P′]bis­[(N,N′-di­ethyl­thio­urea-κS)iodidocopper(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, 44555 Youngstown, OH, USA
*Correspondence e-mail: sumpun.w@psu.ac.th

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 26 June 2015; accepted 27 July 2015; online 6 August 2015)

The binuclear title complex, [Cu2I2(C26H24P2)2(C5H12N2S)2], lies about an inversion centre. The CuI atom displays a distorted tetra­hedral coordination geometry defined by one S atom of an N,N′-di­ethyl­thio­urea ligand, two P atoms derived from two bridging 1,2-bis­(di­phenyl­phosphan­yl)ethane (dppe) ligands and one iodide ion. The dppe ligand bridges two symmetry-related CuI ions, forming a 10-membered Cu2P4C4 ring. An intra­molecular N—H⋯I hydrogen bond is noted. In the crystal, N—H⋯I hydrogen bonds link complex mol­ecules into layers parallel to (-101).

1. Related literature

For background to the coordination chemistry of copper(I) halides and pseudohalides, see: Dennehy et al. (2011[Dennehy, M., Quinzani, O. V., Mandolesi, S. D. & Burrow, R. A. (2011). J. Mol. Struct. 998, 119-125.]); Oshio et al. (1996[Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.]); Seward et al. (2003[Seward, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112-1120.]). For their potential applications, see: Corey et al. (1987[Corey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc. 109, 4717-4718.]); Dias et al. (2006[Dias, H. V. R., Batdorf, K. H., Fianchini, M., Diyabalanage, H. V. K., Carnahan, S., Mulcahy, R., Rabiee, A., Nelson, K. & van Waasbergen, L. G. (2006). J. Inorg. Biochem. 100, 158-160.]). For relevant examples of discrete complexes, see: Dennehy et al. (2009[Dennehy, M., Tellería, G. P., Quinzani, O. V., Echeverría, G. A., Piro, O. E. & Castellano, E. E. (2009). Inorg. Chim. Acta, 362, 2900-2908.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2I2(C26H24P2)2(C5H12N2S)2]

  • Mr = 1442.11

  • Monoclinic, P 21 /n

  • a = 12.2150 (8) Å

  • b = 15.1836 (9) Å

  • c = 17.1801 (10) Å

  • β = 96.414 (2)°

  • V = 3166.4 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 10.37 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.08 mm

2.2. Data collection

  • Bruker Prospector CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.433, Tmax = 0.753

  • 23236 measured reflections

  • 5564 independent reflections

  • 5556 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.13

  • 5564 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1i 0.88 2.80 3.622 (2) 156
N2—H2⋯I1 0.88 2.70 3.5517 (19) 162
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

N,N'-Di­ethyl­thio­urea (0.07 g, 0.5 mmol) was dissolved in 30 cm3 of aceto­nitrile in a round flask equipped with reflux condenser and magnetic stirrer at 333 K and then CuI (0.1 g, 0.5 mmol) was added. The mixture was stirred for 2 h. 1,2-bis­(di­phenyl­phosphanyl)ethane (0.2 g, 0.5 mmol) was added and the reaction mixture was heated under reflux for 5 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The colorless crystals, which deposited after standing for several days were filtered off and washed with acetone and dried in vacuo (M. pt = 557 K). Elemental analysis, calculated for [Cu2I2(C26H24P2)2(C5H12N2S)2]: C, 51.59; H, 4.97; N, 3.88; S, 4.44%, found: C, 55.69; H, 5.22; N, 3.62; S, 4.61%.

Refinement top

The (-1 8 3) reflection was affected by the beam-stop and was omitted from the final cycles of refinement. H atoms bonded to C and N atoms were included in their calculated positions and were refined using a riding model using bond lengths of 0.95–0.99 Å and Uiso(H) = 1.2–1.5Ueq(C), and N—H = 0.88 Å (NH) and Uiso(H) = 1.2Ueq(N). The (-1 8 3) reflection was omitted owing to poor agreement.

Comment top

Coordination complexes of copper(I) halides or pseudo-halides with mixed P and S donor ligands have been of inter­est in coordination chemistry (Dennehy et al., 2011; Oshio et al., 1996; Sewead et al., 2003) due to their applications such as magnetism (Oshio et al., 1996) and biological or medicinal activities (Corey et al., 1987; Dias et al., 2006). In this work, a mixed ligand complex of copper(I) iodide with 1,2-bis­(di­phenyl­phosphanyl)ethane (dppe) and N,N'-di­ethyl­thio­urea (detu) is reported. The binuclear copper(I) complex lies across an inversion center. The µ2-dppe bridges between CuI centers leads to a 10-membered Cu2P4C4 rhomboid, see Fig. 1. The Cu1—P1 and Cu1—P2 bond lengths are 2.2681 (6) and 2.2813 (6)Å, respectively. These values are slightly shorter than the equivalent distances found in [Cu(tsac)(PPh3)2], [Cu4(tsac)4(PPh3)3], [Cu2(tsac)2(dppm)2] and [Cu4(tsac)4(dppm)2], which are in the range 2.2799 (5) and 2.3119 (5) Å (Dennehy et al., 2009). There is an intra­molecular N2—H2···I1 hydrogen bond. In the crystal, inter­molecular N1—H1···I1 hydrogen bonds link complex molecules into a two-dimensional supra­molecular network parallel to (-101) (Fig. 2. and Table 1)

Related literature top

For background to the coordination chemistry of copper(I) halides and pseudohalides, see: Dennehy et al. (2011); Oshio et al. (1996); Sewead et al. (2003). For their potential applications, see: Corey et al. (1987); Dias et al. (2006). For relevant examples of discrete complexes, see: Dennehy et al. (2009).

Structure description top

Coordination complexes of copper(I) halides or pseudo-halides with mixed P and S donor ligands have been of inter­est in coordination chemistry (Dennehy et al., 2011; Oshio et al., 1996; Sewead et al., 2003) due to their applications such as magnetism (Oshio et al., 1996) and biological or medicinal activities (Corey et al., 1987; Dias et al., 2006). In this work, a mixed ligand complex of copper(I) iodide with 1,2-bis­(di­phenyl­phosphanyl)ethane (dppe) and N,N'-di­ethyl­thio­urea (detu) is reported. The binuclear copper(I) complex lies across an inversion center. The µ2-dppe bridges between CuI centers leads to a 10-membered Cu2P4C4 rhomboid, see Fig. 1. The Cu1—P1 and Cu1—P2 bond lengths are 2.2681 (6) and 2.2813 (6)Å, respectively. These values are slightly shorter than the equivalent distances found in [Cu(tsac)(PPh3)2], [Cu4(tsac)4(PPh3)3], [Cu2(tsac)2(dppm)2] and [Cu4(tsac)4(dppm)2], which are in the range 2.2799 (5) and 2.3119 (5) Å (Dennehy et al., 2009). There is an intra­molecular N2—H2···I1 hydrogen bond. In the crystal, inter­molecular N1—H1···I1 hydrogen bonds link complex molecules into a two-dimensional supra­molecular network parallel to (-101) (Fig. 2. and Table 1)

For background to the coordination chemistry of copper(I) halides and pseudohalides, see: Dennehy et al. (2011); Oshio et al. (1996); Sewead et al. (2003). For their potential applications, see: Corey et al. (1987); Dias et al. (2006). For relevant examples of discrete complexes, see: Dennehy et al. (2009).

Synthesis and crystallization top

N,N'-Di­ethyl­thio­urea (0.07 g, 0.5 mmol) was dissolved in 30 cm3 of aceto­nitrile in a round flask equipped with reflux condenser and magnetic stirrer at 333 K and then CuI (0.1 g, 0.5 mmol) was added. The mixture was stirred for 2 h. 1,2-bis­(di­phenyl­phosphanyl)ethane (0.2 g, 0.5 mmol) was added and the reaction mixture was heated under reflux for 5 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The colorless crystals, which deposited after standing for several days were filtered off and washed with acetone and dried in vacuo (M. pt = 557 K). Elemental analysis, calculated for [Cu2I2(C26H24P2)2(C5H12N2S)2]: C, 51.59; H, 4.97; N, 3.88; S, 4.44%, found: C, 55.69; H, 5.22; N, 3.62; S, 4.61%.

Refinement details top

The (-1 8 3) reflection was affected by the beam-stop and was omitted from the final cycles of refinement. H atoms bonded to C and N atoms were included in their calculated positions and were refined using a riding model using bond lengths of 0.95–0.99 Å and Uiso(H) = 1.2–1.5Ueq(C), and N—H = 0.88 Å (NH) and Uiso(H) = 1.2Ueq(N). The (-1 8 3) reflection was omitted owing to poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of title complex with displacement ellipsoids drawn at the 50% propbability level. All H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure showing intra/inter-molecular N—H···I hydrogen bonds forming a layers as dashed lines.
Bis[µ-1,2-bis(diphenylphosphanyl)ethane-κ2P:P']bis[(N,N'-diethylthiourea-κS)iodidocopper(I)] top
Crystal data top
[Cu2I2(C26H24P2)2(C5H12N2S)2]F(000) = 1456
Mr = 1442.11Dx = 1.513 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.2150 (8) ÅCell parameters from 9846 reflections
b = 15.1836 (9) Åθ = 3.9–66.7°
c = 17.1801 (10) ŵ = 10.37 mm1
β = 96.414 (2)°T = 100 K
V = 3166.4 (3) Å3Block, colourless
Z = 20.16 × 0.15 × 0.08 mm
Data collection top
Bruker Prospector CCD
diffractometer
5564 independent reflections
Radiation source: I-mu-S microsource X-ray tube5556 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.028
ω and phi scansθmax = 67.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1412
Tmin = 0.433, Tmax = 0.753k = 1817
23236 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0315P)2 + 3.4263P]
where P = (Fo2 + 2Fc2)/3
5564 reflections(Δ/σ)max = 0.003
345 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Cu2I2(C26H24P2)2(C5H12N2S)2]V = 3166.4 (3) Å3
Mr = 1442.11Z = 2
Monoclinic, P21/nCu Kα radiation
a = 12.2150 (8) ŵ = 10.37 mm1
b = 15.1836 (9) ÅT = 100 K
c = 17.1801 (10) Å0.16 × 0.15 × 0.08 mm
β = 96.414 (2)°
Data collection top
Bruker Prospector CCD
diffractometer
5564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5556 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.753Rint = 0.028
23236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.13Δρmax = 0.98 e Å3
5564 reflectionsΔρmin = 0.92 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71658 (2)0.56133 (2)0.16309 (2)0.01039 (6)
Cu10.51704 (2)0.64264 (2)0.12681 (2)0.00798 (8)
S10.48147 (4)0.74104 (3)0.22620 (3)0.01238 (12)
P10.39142 (4)0.53264 (3)0.12684 (3)0.00711 (11)
P20.52134 (4)0.70642 (3)0.00696 (3)0.00768 (11)
N10.58767 (16)0.88958 (13)0.27366 (12)0.0163 (4)
H10.64930.91710.29020.020*
N20.69626 (15)0.77334 (13)0.24764 (11)0.0122 (4)
H20.70190.71670.23800.015*
C10.59546 (18)0.80593 (15)0.25058 (12)0.0109 (4)
C20.4851 (2)0.93892 (15)0.27369 (17)0.0198 (5)
H2A0.49290.98170.31740.024*
H2B0.42500.89770.28270.024*
C30.4547 (3)0.9875 (2)0.19789 (19)0.0348 (7)
H3A0.51351.02890.18910.052*
H3B0.38591.01990.20070.052*
H3C0.44480.94520.15460.052*
C40.79787 (18)0.82441 (16)0.25912 (14)0.0149 (5)
H4A0.80760.84870.31290.018*
H4B0.79360.87430.22180.018*
C50.89514 (18)0.76646 (16)0.24646 (14)0.0162 (5)
H5A0.88130.73700.19560.024*
H5B0.90550.72220.28810.024*
H5C0.96170.80270.24750.024*
C110.38548 (18)0.47611 (14)0.22045 (13)0.0103 (4)
C120.45710 (18)0.50116 (14)0.28549 (13)0.0124 (4)
H120.51060.54560.28070.015*
C130.4500 (2)0.46061 (16)0.35789 (13)0.0161 (5)
H130.49890.47770.40220.019*
C140.3723 (2)0.39590 (16)0.36541 (14)0.0196 (5)
H140.36730.36920.41490.024*
C150.3015 (2)0.36998 (17)0.30053 (15)0.0201 (5)
H150.24860.32500.30550.024*
C160.30793 (19)0.40978 (16)0.22830 (14)0.0149 (5)
H160.25940.39180.18400.018*
C210.24971 (18)0.57205 (14)0.10553 (14)0.0109 (4)
C220.1845 (2)0.55542 (16)0.03495 (15)0.0188 (5)
H220.21170.51900.00350.023*
C230.0792 (2)0.59235 (18)0.02086 (16)0.0240 (5)
H230.03590.58190.02770.029*
C240.0375 (2)0.64380 (17)0.07685 (17)0.0246 (6)
H240.03460.66780.06740.029*
C250.1021 (2)0.66008 (18)0.14715 (17)0.0245 (6)
H250.07390.69530.18600.029*
C260.2072 (2)0.62539 (17)0.16094 (14)0.0177 (5)
H260.25100.63810.20880.021*
C270.39162 (19)0.44094 (13)0.05650 (13)0.0098 (4)
H27A0.32280.40680.05780.012*
H27B0.39100.46580.00320.012*
C280.51050 (17)0.62207 (14)0.07137 (12)0.0090 (4)
H28A0.44060.58910.07130.011*
H28B0.51100.65070.12310.011*
C310.40910 (19)0.78228 (15)0.02656 (12)0.0126 (4)
C320.4258 (2)0.87216 (18)0.03567 (19)0.0302 (6)
H320.49770.89630.02520.036*
C330.3369 (3)0.9266 (2)0.0601 (2)0.0432 (8)
H330.34880.98800.06580.052*
C340.2325 (3)0.8932 (2)0.07599 (18)0.0343 (7)
H340.17280.93100.09330.041*
C350.2148 (2)0.8042 (2)0.06672 (16)0.0279 (6)
H350.14270.78050.07790.033*
C360.3023 (2)0.74917 (18)0.04106 (15)0.0205 (5)
H360.28930.68830.03330.025*
C410.64463 (18)0.76671 (14)0.01297 (13)0.0114 (4)
C420.7191 (2)0.79247 (18)0.04993 (15)0.0239 (6)
H420.70290.78090.10180.029*
C430.8164 (3)0.8347 (2)0.03845 (17)0.0333 (7)
H430.86580.85240.08230.040*
C440.8419 (2)0.8513 (2)0.03605 (18)0.0315 (7)
H440.90920.87940.04400.038*
C450.7686 (3)0.8267 (3)0.09912 (18)0.0423 (9)
H450.78560.83830.15080.051*
C460.6708 (3)0.7853 (2)0.08813 (15)0.0316 (7)
H460.62090.76940.13230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01029 (9)0.00674 (9)0.01363 (9)0.00312 (4)0.00089 (6)0.00191 (4)
Cu10.00902 (16)0.00693 (16)0.00820 (15)0.00076 (11)0.00197 (12)0.00022 (11)
S10.0096 (2)0.0109 (3)0.0175 (3)0.00149 (19)0.0049 (2)0.0069 (2)
P10.0074 (2)0.0068 (3)0.0076 (2)0.00001 (19)0.00262 (19)0.00070 (19)
P20.0097 (3)0.0057 (2)0.0078 (2)0.00084 (19)0.00168 (19)0.00046 (19)
N10.0105 (9)0.0122 (10)0.0262 (11)0.0006 (8)0.0025 (8)0.0094 (8)
N20.0100 (9)0.0092 (9)0.0174 (9)0.0010 (7)0.0012 (7)0.0073 (7)
C10.0121 (10)0.0117 (11)0.0096 (10)0.0003 (8)0.0036 (8)0.0022 (8)
C20.0172 (12)0.0122 (12)0.0315 (14)0.0030 (9)0.0091 (11)0.0075 (9)
C30.0314 (15)0.0299 (16)0.0441 (17)0.0096 (13)0.0083 (13)0.0068 (13)
C40.0112 (11)0.0149 (11)0.0185 (11)0.0007 (9)0.0012 (9)0.0063 (9)
C50.0105 (10)0.0172 (12)0.0208 (12)0.0002 (9)0.0011 (9)0.0089 (9)
C110.0117 (10)0.0088 (10)0.0112 (10)0.0041 (8)0.0052 (8)0.0014 (8)
C120.0144 (10)0.0090 (10)0.0146 (11)0.0020 (8)0.0051 (9)0.0004 (8)
C130.0214 (12)0.0149 (11)0.0124 (11)0.0049 (10)0.0030 (9)0.0003 (9)
C140.0248 (12)0.0197 (13)0.0164 (11)0.0054 (10)0.0115 (10)0.0085 (9)
C150.0170 (11)0.0186 (12)0.0260 (13)0.0024 (10)0.0088 (10)0.0076 (10)
C160.0106 (10)0.0166 (12)0.0181 (11)0.0015 (9)0.0036 (9)0.0029 (9)
C210.0088 (10)0.0093 (10)0.0151 (11)0.0017 (8)0.0033 (9)0.0016 (8)
C220.0156 (12)0.0219 (13)0.0185 (12)0.0035 (9)0.0002 (10)0.0044 (9)
C230.0166 (12)0.0239 (14)0.0297 (14)0.0046 (11)0.0059 (10)0.0002 (11)
C240.0120 (11)0.0191 (13)0.0425 (16)0.0048 (10)0.0023 (11)0.0007 (11)
C250.0191 (12)0.0202 (13)0.0358 (15)0.0057 (10)0.0105 (11)0.0064 (11)
C260.0175 (12)0.0161 (12)0.0200 (12)0.0017 (9)0.0042 (10)0.0048 (9)
C270.0112 (11)0.0082 (11)0.0101 (10)0.0002 (8)0.0017 (8)0.0020 (7)
C280.0111 (10)0.0075 (10)0.0085 (10)0.0002 (8)0.0016 (8)0.0017 (8)
C310.0175 (11)0.0123 (11)0.0088 (10)0.0062 (9)0.0039 (8)0.0011 (8)
C320.0274 (14)0.0171 (13)0.0456 (17)0.0059 (11)0.0025 (12)0.0054 (12)
C330.045 (2)0.0210 (15)0.064 (2)0.0149 (14)0.0092 (17)0.0142 (15)
C340.0319 (15)0.0399 (18)0.0315 (15)0.0273 (14)0.0049 (12)0.0107 (13)
C350.0188 (13)0.0409 (17)0.0238 (13)0.0122 (12)0.0018 (10)0.0045 (12)
C360.0179 (12)0.0221 (13)0.0218 (12)0.0057 (10)0.0042 (10)0.0024 (10)
C410.0149 (11)0.0054 (10)0.0140 (11)0.0001 (8)0.0027 (9)0.0020 (8)
C420.0278 (14)0.0278 (14)0.0154 (12)0.0125 (11)0.0003 (10)0.0057 (10)
C430.0305 (15)0.0388 (17)0.0285 (15)0.0211 (13)0.0067 (12)0.0108 (13)
C440.0245 (14)0.0330 (16)0.0371 (16)0.0154 (12)0.0042 (12)0.0131 (13)
C450.0434 (18)0.063 (2)0.0220 (14)0.0303 (17)0.0116 (13)0.0075 (14)
C460.0358 (16)0.0455 (18)0.0128 (12)0.0229 (14)0.0002 (11)0.0039 (12)
Geometric parameters (Å, º) top
I1—Cu12.7412 (4)C21—C261.394 (3)
Cu1—P12.2681 (6)C21—C221.398 (4)
Cu1—P22.2813 (6)C22—C231.399 (4)
Cu1—S12.3457 (6)C22—H220.9500
S1—C11.719 (2)C23—C241.380 (4)
P1—C211.829 (2)C23—H230.9500
P1—C111.832 (2)C24—C251.389 (4)
P1—C271.844 (2)C24—H240.9500
P2—C411.827 (2)C25—C261.384 (4)
P2—C311.834 (2)C25—H250.9500
P2—C281.852 (2)C26—H260.9500
N1—C11.337 (3)C27—C28i1.530 (3)
N1—C21.459 (3)C27—H27A0.9900
N1—H10.8800C27—H27B0.9900
N2—C11.333 (3)C28—C27i1.530 (3)
N2—C41.458 (3)C28—H28A0.9900
N2—H20.8800C28—H28B0.9900
C2—C31.507 (4)C31—C321.391 (4)
C2—H2A0.9900C31—C361.394 (4)
C2—H2B0.9900C32—C331.391 (4)
C3—H3A0.9800C32—H320.9500
C3—H3B0.9800C33—C341.371 (5)
C3—H3C0.9800C33—H330.9500
C4—C51.514 (3)C34—C351.381 (5)
C4—H4A0.9900C34—H340.9500
C4—H4B0.9900C35—C361.389 (4)
C5—H5A0.9800C35—H350.9500
C5—H5B0.9800C36—H360.9500
C5—H5C0.9800C41—C421.389 (3)
C11—C121.393 (3)C41—C461.393 (3)
C11—C161.399 (3)C42—C431.384 (4)
C12—C131.399 (3)C42—H420.9500
C12—H120.9500C43—C441.374 (4)
C13—C141.382 (4)C43—H430.9500
C13—H130.9500C44—C451.378 (5)
C14—C151.389 (4)C44—H440.9500
C14—H140.9500C45—C461.381 (4)
C15—C161.390 (3)C45—H450.9500
C15—H150.9500C46—H460.9500
C16—H160.9500
P1—Cu1—P2113.37 (2)C15—C16—H16119.8
P1—Cu1—S1106.77 (2)C11—C16—H16119.8
P2—Cu1—S1114.30 (2)C26—C21—C22118.6 (2)
P1—Cu1—I1104.637 (18)C26—C21—P1118.01 (18)
P2—Cu1—I1106.669 (17)C22—C21—P1123.33 (18)
S1—Cu1—I1110.709 (17)C21—C22—C23120.1 (2)
C1—S1—Cu1109.37 (7)C21—C22—H22119.9
C21—P1—C11101.52 (10)C23—C22—H22119.9
C21—P1—C27100.74 (10)C24—C23—C22120.6 (2)
C11—P1—C27102.98 (10)C24—C23—H23119.7
C21—P1—Cu1112.59 (7)C22—C23—H23119.7
C11—P1—Cu1116.01 (8)C23—C24—C25119.3 (2)
C27—P1—Cu1120.36 (7)C23—C24—H24120.4
C41—P2—C31103.26 (10)C25—C24—H24120.4
C41—P2—C28101.76 (10)C26—C25—C24120.5 (2)
C31—P2—C28102.47 (10)C26—C25—H25119.8
C41—P2—Cu1118.97 (7)C24—C25—H25119.8
C31—P2—Cu1117.28 (7)C25—C26—C21120.9 (2)
C28—P2—Cu1110.82 (7)C25—C26—H26119.5
C1—N1—C2125.3 (2)C21—C26—H26119.5
C1—N1—H1117.4C28i—C27—P1114.89 (15)
C2—N1—H1117.4C28i—C27—H27A108.5
C1—N2—C4124.98 (19)P1—C27—H27A108.5
C1—N2—H2117.5C28i—C27—H27B108.5
C4—N2—H2117.5P1—C27—H27B108.5
N2—C1—N1117.4 (2)H27A—C27—H27B107.5
N2—C1—S1120.29 (17)C27i—C28—P2108.66 (14)
N1—C1—S1122.29 (17)C27i—C28—H28A110.0
N1—C2—C3112.4 (2)P2—C28—H28A110.0
N1—C2—H2A109.1C27i—C28—H28B110.0
C3—C2—H2A109.1P2—C28—H28B110.0
N1—C2—H2B109.1H28A—C28—H28B108.3
C3—C2—H2B109.1C32—C31—C36118.7 (2)
H2A—C2—H2B107.9C32—C31—P2122.5 (2)
C2—C3—H3A109.5C36—C31—P2118.77 (18)
C2—C3—H3B109.5C33—C32—C31119.8 (3)
H3A—C3—H3B109.5C33—C32—H32120.1
C2—C3—H3C109.5C31—C32—H32120.1
H3A—C3—H3C109.5C34—C33—C32121.2 (3)
H3B—C3—H3C109.5C34—C33—H33119.4
N2—C4—C5109.97 (19)C32—C33—H33119.4
N2—C4—H4A109.7C33—C34—C35119.6 (3)
C5—C4—H4A109.7C33—C34—H34120.2
N2—C4—H4B109.7C35—C34—H34120.2
C5—C4—H4B109.7C34—C35—C36120.0 (3)
H4A—C4—H4B108.2C34—C35—H35120.0
C4—C5—H5A109.5C36—C35—H35120.0
C4—C5—H5B109.5C35—C36—C31120.8 (3)
H5A—C5—H5B109.5C35—C36—H36119.6
C4—C5—H5C109.5C31—C36—H36119.6
H5A—C5—H5C109.5C42—C41—C46117.8 (2)
H5B—C5—H5C109.5C42—C41—P2118.50 (18)
C12—C11—C16119.4 (2)C46—C41—P2123.68 (18)
C12—C11—P1119.57 (17)C43—C42—C41121.2 (2)
C16—C11—P1121.03 (17)C43—C42—H42119.4
C11—C12—C13119.8 (2)C41—C42—H42119.4
C11—C12—H12120.1C44—C43—C42120.3 (3)
C13—C12—H12120.1C44—C43—H43119.8
C14—C13—C12120.5 (2)C42—C43—H43119.8
C14—C13—H13119.7C43—C44—C45119.2 (3)
C12—C13—H13119.7C43—C44—H44120.4
C13—C14—C15119.9 (2)C45—C44—H44120.4
C13—C14—H14120.0C44—C45—C46120.8 (3)
C15—C14—H14120.0C44—C45—H45119.6
C14—C15—C16120.0 (2)C46—C45—H45119.6
C14—C15—H15120.0C45—C46—C41120.7 (3)
C16—C15—H15120.0C45—C46—H46119.6
C15—C16—C11120.3 (2)C41—C46—H46119.6
C4—N2—C1—N17.2 (3)P1—C21—C26—C25177.6 (2)
C4—N2—C1—S1173.37 (18)C21—P1—C27—C28i165.70 (16)
C2—N1—C1—N2174.1 (2)C11—P1—C27—C28i61.09 (18)
C2—N1—C1—S16.5 (3)Cu1—P1—C27—C28i69.95 (17)
Cu1—S1—C1—N233.6 (2)C41—P2—C28—C27i66.78 (16)
Cu1—S1—C1—N1146.99 (17)C31—P2—C28—C27i173.40 (15)
C1—N1—C2—C390.6 (3)Cu1—P2—C28—C27i60.70 (15)
C1—N2—C4—C5176.4 (2)C41—P2—C31—C3220.2 (2)
C21—P1—C11—C12123.32 (18)C28—P2—C31—C32125.7 (2)
C27—P1—C11—C12132.67 (18)Cu1—P2—C31—C32112.8 (2)
Cu1—P1—C11—C120.9 (2)C41—P2—C31—C36161.93 (18)
C21—P1—C11—C1654.8 (2)C28—P2—C31—C3656.5 (2)
C27—P1—C11—C1649.2 (2)Cu1—P2—C31—C3665.11 (19)
Cu1—P1—C11—C16177.20 (16)C36—C31—C32—C331.1 (4)
C16—C11—C12—C130.7 (3)P2—C31—C32—C33178.9 (3)
P1—C11—C12—C13177.45 (17)C31—C32—C33—C340.4 (5)
C11—C12—C13—C140.1 (3)C32—C33—C34—C350.8 (5)
C12—C13—C14—C150.8 (4)C33—C34—C35—C360.3 (4)
C13—C14—C15—C160.7 (4)C34—C35—C36—C311.9 (4)
C14—C15—C16—C110.1 (4)C32—C31—C36—C352.2 (4)
C12—C11—C16—C150.8 (3)P2—C31—C36—C35179.84 (19)
P1—C11—C16—C15177.35 (18)C31—P2—C41—C42114.9 (2)
C11—P1—C21—C2656.7 (2)C28—P2—C41—C42139.1 (2)
C27—P1—C21—C26162.44 (19)Cu1—P2—C41—C4217.1 (2)
Cu1—P1—C21—C2668.06 (19)C31—P2—C41—C4667.9 (2)
C11—P1—C21—C22127.0 (2)C28—P2—C41—C4638.1 (3)
C27—P1—C21—C2221.2 (2)Cu1—P2—C41—C46160.1 (2)
Cu1—P1—C21—C22108.27 (19)C46—C41—C42—C430.4 (4)
C26—C21—C22—C230.3 (4)P2—C41—C42—C43177.0 (2)
P1—C21—C22—C23176.0 (2)C41—C42—C43—C440.7 (5)
C21—C22—C23—C241.5 (4)C42—C43—C44—C451.1 (5)
C22—C23—C24—C251.2 (4)C43—C44—C45—C460.4 (6)
C23—C24—C25—C260.2 (4)C44—C45—C46—C410.7 (6)
C24—C25—C26—C211.3 (4)C42—C41—C46—C451.1 (5)
C22—C21—C26—C251.1 (4)P2—C41—C46—C45176.2 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1ii0.882.803.622 (2)156
N2—H2···I10.882.703.5517 (19)162
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I1i0.882.803.622 (2)156
N2—H2···I10.882.703.5517 (19)162
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Strategic Scholarships Fellowships Frontier Research Networks (Specific for Southern Region), the Commission on Higher Education, Ministry of Education, and the Department of Chemistry and Graduate School, Prince of Songkla University. LK would like to thank Dr Matthias Zeller of Youngstown State University, Ohio, USA, for suggestions and assistance with the X-ray structure refinement.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc. 109, 4717–4718.  CrossRef CAS Web of Science Google Scholar
First citationDennehy, M., Quinzani, O. V., Mandolesi, S. D. & Burrow, R. A. (2011). J. Mol. Struct. 998, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationDennehy, M., Tellería, G. P., Quinzani, O. V., Echeverría, G. A., Piro, O. E. & Castellano, E. E. (2009). Inorg. Chim. Acta, 362, 2900–2908.  Web of Science CSD CrossRef CAS Google Scholar
First citationDias, H. V. R., Batdorf, K. H., Fianchini, M., Diyabalanage, H. V. K., Carnahan, S., Mulcahy, R., Rabiee, A., Nelson, K. & van Waasbergen, L. G. (2006). J. Inorg. Biochem. 100, 158–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSeward, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds