organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbon­yl)hydrazinyl­­idene]butano­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de chimie bioorganique, Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 22 July 2015; accepted 12 August 2015; online 22 August 2015)

The reaction of 5-methyl-7-nitro-1H-indole-2-carbohydrazide with ethyl aceto­acetate yielded the title mol­ecule, C16H18N4O5, in which the indole ring is almost planar, with the greatest deviation from the mean plane being 0.006 (2) Å. The nine atoms of the indole ring are almost perpendicular to the mean plane through the ethyl acetate group, as indicated by the dihedral angle of 87.02 (4)° between them. In the crystal, centrosymmetric supra­molecular dimers are formed via N—H⋯O hydrogen bonds and eight-membered amide {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H⋯O contacts, and by ππ inter­actions between six-membered rings [inter-centroid distance = 3.499 (2) Å].

1. Related literature

For biochemical properties of indoles, see: Kuethe et al. (2005[Kuethe, J. T., Wong, A., Qu, C., Smitrovich, J., Davies, I. W. & Hughes, D. L. (2005). J. Org. Chem. 70, 2555-2567.]); Smith et al. (1998[Smith, A. L., Stevenson, G. L., Swain, C. J. & Castro, J. L. (1998). Tetrahedron Lett. 39, 8317-8320.]). For medicinal activity, see: El Kihel et al. (2007[El Kihel, A., Ahbala, M., Harjane, T., Essassi, E. M. & Bauchat, P. (2007). Phys. Chem. News, 34, 85-88.], 2013[El Kihel, A., Lagnaoui, A., Harjane, T., Kattir, Y., Guesmi, S. & Bauchat, P. (2013). Arabian J. Chem. 6, 173-176.]); Penning et al. (1997[Penning, T., Talley, J., Bertenshaw, S., Carter, J., Collins, P., Docter, S., Graneto, M., Lee, L., Malecha, J., Miyashiro, J., Rogers, R., Rogier, D., Yu, S., Anderson, G., Burton, E., Cogburn, N., Gregory, S., Koboldt, C., Perkins, S., Seibert, K., Veenhuizen, A., Zhang, Y. & Isakson, P. (1997). J. Med. Chem. 40, 1347-1365.]); Dumas et al. (2000[Dumas, J., Hatoum-Mokdad, H., Sibley, R., Riedl, B., Scott, W., Monahan, M., Lowinger, T., Brennan, C., Natero, R., Turner, T., Johnson, J., Schoenleber, R., Bhargava, A., Wilhelm, S., Housley, T., Ranges, G. & Shrikhande, A. (2000). Bioorg. Med. Chem. Lett. 10, 2051-2054.]). For starting materials, see: El Ouar et al. (1995[El Ouar, M., Knouzi, N., El Kihel, A., Essassi, E. M., Benchidmi, M., Hamelin, J., Carrié, R. & Danion-Bougot, R. (1995). Synth. Commun. 25, 1601-1604.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H18N4O5

  • Mr = 346.34

  • Triclinic, [P \overline 1]

  • a = 8.4716 (9) Å

  • b = 8.4722 (7) Å

  • c = 13.0971 (9) Å

  • α = 108.695 (4)°

  • β = 91.865 (4)°

  • γ = 106.886 (4)°

  • V = 843.80 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.27 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.746

  • 18286 measured reflections

  • 3676 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.07

  • 3676 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3i 0.86 2.04 2.8815 (15) 167
C12—H12C⋯O3i 0.96 2.39 3.1723 (18) 139
C4—H4⋯O4ii 0.93 2.51 3.4019 (19) 161
C13—H13A⋯O4iii 0.97 2.56 3.407 (2) 146
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y+1, z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The indole nucleus is probably the most widely distributed heterocyclic ring system found in nature (Kuethe et al., 2005). Due to the existence of a vast array of structurally diverse and biologically active indoles, it is not surprising that the indole nucleus is an important feature in many medicinal agents and the most important of all structural classes in drug discovery (Smith et al., 1998). For example, the identification of new and selective cox-2 inhibitors (Penning et al., 1997), for the relief of pain, and the treatment of the symptoms of arthritis and related diseases has been an important advance in modern anti-inflammatory therapy. In a related area, heterocycle-appended pyrazoles have been reported (Dumas et al., 2000) to be potent and selective as inhibitors of the mitogen-activated protein kinase p38 and consequently provide a novel approach for the treatment of rheumatoid arthritis and related inflammatory diseases. The synthesis and reactivity of indole derivatives have been a topic of research interest for well over a century. Due to the potent biological activity exhibited by various indoles derivatives, there is a continuous demand for novel synthetic procedures in this area. In previous papers (El Kihel et al., 2007; 2013; El Ouar et al., 1995), we have reported some reactions of 7-aminoindoles and the condensation of the 7-nitroindole-2-carbohydrazide with acetylacetone. Herein, we report the synthesis of an open intermediate, 5-methyl-7-nitroindole-2-carbohydrazide, by condensation with ethyl acetoacetate.

The fused five- and six-membered rings, part of the title compound, are essentially planar with the largest deviation from the mean plane being 0.006 (2) Å at C1 atom as shown in Fig. 1. The mean plane through the ethyl acetate group is virtually perpendicular to the indasol ring as indicated by the dihedral angle of 87.02 (4) ° between them. The cohesion of the crystal is ensured by C—H···O and N—H···O hydrogen bonds, and by ππ interactions between phenyl rings [intercentroid distance = 3.499 (2) Å], as shown in Fig. 2 and Table 2.

Related literature top

For biochemical properties of indoles, see: Kuethe et al. (2005); Smith et al. (1998). For medicinal activity, see: El Kihel et al. (2007); El Kihel et al. (2013_; Penning et al. (1997); Dumas et al. (2000). For starting materials, see: El Ouar et al. (1995).

Experimental top

The ethyl 3-(2-(5-methyl-7-nitro-1H-indole-2-cabonyl)hydrazono)butanoate was synthesized from a mixture of 5-methyl-7-nitroindole-2-carbohydrazide (4.6 mmol) and ethyl acetoacetate (35 mmol) in ethanol which was heated on a steam bath at 353 K until dissolution. The mixture was kept at this temperature for 4 h. The crude product was filtered and crystallized from ethanol. Yellow crystals appeared after two weeks. The crystals were washed with cold ethanol and dried in air at room temperature.

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (aromatic and methylene) and Uiso(H) = 1.5 Ueq (methyl).

Structure description top

The indole nucleus is probably the most widely distributed heterocyclic ring system found in nature (Kuethe et al., 2005). Due to the existence of a vast array of structurally diverse and biologically active indoles, it is not surprising that the indole nucleus is an important feature in many medicinal agents and the most important of all structural classes in drug discovery (Smith et al., 1998). For example, the identification of new and selective cox-2 inhibitors (Penning et al., 1997), for the relief of pain, and the treatment of the symptoms of arthritis and related diseases has been an important advance in modern anti-inflammatory therapy. In a related area, heterocycle-appended pyrazoles have been reported (Dumas et al., 2000) to be potent and selective as inhibitors of the mitogen-activated protein kinase p38 and consequently provide a novel approach for the treatment of rheumatoid arthritis and related inflammatory diseases. The synthesis and reactivity of indole derivatives have been a topic of research interest for well over a century. Due to the potent biological activity exhibited by various indoles derivatives, there is a continuous demand for novel synthetic procedures in this area. In previous papers (El Kihel et al., 2007; 2013; El Ouar et al., 1995), we have reported some reactions of 7-aminoindoles and the condensation of the 7-nitroindole-2-carbohydrazide with acetylacetone. Herein, we report the synthesis of an open intermediate, 5-methyl-7-nitroindole-2-carbohydrazide, by condensation with ethyl acetoacetate.

The fused five- and six-membered rings, part of the title compound, are essentially planar with the largest deviation from the mean plane being 0.006 (2) Å at C1 atom as shown in Fig. 1. The mean plane through the ethyl acetate group is virtually perpendicular to the indasol ring as indicated by the dihedral angle of 87.02 (4) ° between them. The cohesion of the crystal is ensured by C—H···O and N—H···O hydrogen bonds, and by ππ interactions between phenyl rings [intercentroid distance = 3.499 (2) Å], as shown in Fig. 2 and Table 2.

For biochemical properties of indoles, see: Kuethe et al. (2005); Smith et al. (1998). For medicinal activity, see: El Kihel et al. (2007); El Kihel et al. (2013_; Penning et al. (1997); Dumas et al. (2000). For starting materials, see: El Ouar et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing intermolecular ππ interactions between six-membered rings (dashed green lines) and intermolecular hydrogen bonds (dashed blue lines).
(Z)-Ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbonyl)hydrazinylidene]butanoate top
Crystal data top
C16H18N4O5Z = 2
Mr = 346.34F(000) = 364
Triclinic, P1Dx = 1.363 Mg m3
a = 8.4716 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4722 (7) ÅCell parameters from 3676 reflections
c = 13.0971 (9) Åθ = 2.5–27.1°
α = 108.695 (4)°µ = 0.10 mm1
β = 91.865 (4)°T = 296 K
γ = 106.886 (4)°Block, yellow
V = 843.80 (13) Å30.35 × 0.30 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
3676 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.589, Tmax = 0.746k = 1010
18286 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.059P)2 + 0.3197P]
where P = (Fo2 + 2Fc2)/3
3676 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H18N4O5γ = 106.886 (4)°
Mr = 346.34V = 843.80 (13) Å3
Triclinic, P1Z = 2
a = 8.4716 (9) ÅMo Kα radiation
b = 8.4722 (7) ŵ = 0.10 mm1
c = 13.0971 (9) ÅT = 296 K
α = 108.695 (4)°0.35 × 0.30 × 0.27 mm
β = 91.865 (4)°
Data collection top
Bruker X8 APEX
diffractometer
3676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3120 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.746Rint = 0.033
18286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3676 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17198 (16)0.64599 (17)0.94250 (11)0.0241 (3)
C20.12573 (17)0.78350 (18)1.00943 (12)0.0266 (3)
H20.08840.85400.97930.032*
C30.13423 (17)0.81836 (18)1.12214 (12)0.0272 (3)
C40.18973 (17)0.71346 (18)1.16710 (11)0.0265 (3)
H40.19480.73561.24160.032*
C50.23851 (16)0.57373 (17)1.10067 (10)0.0233 (3)
C60.22965 (16)0.54061 (16)0.98701 (10)0.0215 (3)
C70.0821 (2)0.9697 (2)1.19212 (14)0.0366 (4)
H7A0.16001.07861.19350.055*
H7B0.08030.96701.26480.055*
H7C0.02700.95961.16250.055*
C80.30024 (17)0.44531 (18)1.12041 (11)0.0250 (3)
H80.31930.43341.18750.030*
C90.32627 (16)0.34231 (17)1.02184 (11)0.0228 (3)
C100.39564 (16)0.19582 (17)1.00510 (10)0.0227 (3)
C110.39038 (17)0.03684 (19)0.72021 (11)0.0264 (3)
C120.4537 (2)0.1170 (2)0.69488 (12)0.0343 (3)
H12A0.50040.13200.62800.052*
H12B0.36340.22110.68770.052*
H12C0.53780.09670.75270.052*
C130.3494 (2)0.0920 (2)0.62686 (12)0.0360 (4)
H13A0.45170.13980.60040.043*
H13B0.29900.18420.65270.043*
C140.2322 (2)0.0586 (2)0.53418 (12)0.0394 (4)
C150.0299 (2)0.2793 (3)0.48056 (15)0.0516 (5)
H15A0.01770.37340.45290.062*
H15B0.05860.24450.42060.062*
C160.1808 (3)0.3393 (3)0.5309 (2)0.0656 (6)
H16A0.26180.43810.47730.098*
H16B0.22710.24530.55750.098*
H16C0.15080.37310.59010.098*
N10.15863 (16)0.61115 (16)0.82643 (10)0.0296 (3)
N20.28297 (14)0.40043 (14)0.94143 (9)0.0223 (2)
H2N0.28880.35520.87330.027*
N30.41081 (15)0.09582 (15)0.90428 (9)0.0247 (3)
H3N0.44660.00820.89680.030*
N40.36975 (14)0.13223 (15)0.81339 (9)0.0251 (3)
O10.10064 (17)0.70060 (17)0.78835 (10)0.0465 (3)
O20.20654 (16)0.49110 (15)0.76987 (8)0.0386 (3)
O30.43926 (13)0.16440 (13)1.08520 (8)0.0298 (2)
O40.2639 (2)0.1084 (3)0.44345 (11)0.0763 (5)
O50.08886 (16)0.13058 (17)0.56453 (9)0.0447 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (6)0.0229 (6)0.0240 (6)0.0050 (5)0.0025 (5)0.0060 (5)
C20.0232 (7)0.0218 (6)0.0336 (7)0.0075 (5)0.0029 (5)0.0079 (5)
C30.0228 (7)0.0218 (6)0.0312 (7)0.0062 (5)0.0048 (5)0.0023 (5)
C40.0260 (7)0.0256 (7)0.0225 (6)0.0069 (5)0.0047 (5)0.0023 (5)
C50.0216 (6)0.0228 (6)0.0216 (6)0.0055 (5)0.0030 (5)0.0039 (5)
C60.0195 (6)0.0201 (6)0.0215 (6)0.0053 (5)0.0033 (5)0.0037 (5)
C70.0363 (8)0.0299 (8)0.0398 (8)0.0162 (6)0.0074 (7)0.0017 (6)
C80.0258 (7)0.0269 (7)0.0211 (6)0.0082 (5)0.0035 (5)0.0067 (5)
C90.0213 (6)0.0224 (6)0.0229 (6)0.0066 (5)0.0026 (5)0.0057 (5)
C100.0217 (6)0.0227 (6)0.0223 (6)0.0067 (5)0.0035 (5)0.0061 (5)
C110.0244 (7)0.0314 (7)0.0218 (6)0.0104 (6)0.0030 (5)0.0060 (5)
C120.0435 (9)0.0382 (8)0.0241 (7)0.0221 (7)0.0063 (6)0.0061 (6)
C130.0445 (9)0.0442 (9)0.0261 (7)0.0230 (7)0.0069 (6)0.0126 (6)
C140.0464 (10)0.0562 (10)0.0224 (7)0.0294 (8)0.0039 (6)0.0107 (7)
C150.0524 (11)0.0524 (11)0.0374 (9)0.0216 (9)0.0083 (8)0.0040 (8)
C160.0566 (13)0.0561 (12)0.0642 (14)0.0105 (10)0.0010 (10)0.0021 (11)
N10.0331 (7)0.0295 (6)0.0266 (6)0.0106 (5)0.0026 (5)0.0098 (5)
N20.0246 (6)0.0223 (5)0.0190 (5)0.0090 (4)0.0039 (4)0.0042 (4)
N30.0292 (6)0.0250 (6)0.0219 (6)0.0137 (5)0.0035 (5)0.0063 (5)
N40.0253 (6)0.0290 (6)0.0208 (5)0.0110 (5)0.0022 (4)0.0064 (5)
O10.0654 (8)0.0529 (7)0.0374 (6)0.0334 (7)0.0064 (6)0.0237 (6)
O20.0557 (7)0.0387 (6)0.0236 (5)0.0232 (5)0.0058 (5)0.0062 (5)
O30.0398 (6)0.0314 (5)0.0231 (5)0.0184 (5)0.0058 (4)0.0094 (4)
O40.0659 (10)0.1143 (14)0.0251 (6)0.0216 (9)0.0100 (6)0.0011 (7)
O50.0476 (7)0.0525 (7)0.0261 (5)0.0178 (6)0.0013 (5)0.0019 (5)
Geometric parameters (Å, º) top
C1—C21.3827 (19)C11—C121.496 (2)
C1—C61.3943 (19)C11—C131.505 (2)
C1—N11.4465 (18)C12—H12A0.9600
C2—C31.404 (2)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.385 (2)C13—C141.510 (2)
C3—C71.5100 (19)C13—H13A0.9700
C4—C51.4059 (18)C13—H13B0.9700
C4—H40.9300C14—O41.195 (2)
C5—C61.4188 (18)C14—O51.327 (2)
C5—C81.4234 (19)C15—O51.453 (2)
C6—N21.3585 (16)C15—C161.490 (3)
C7—H7A0.9600C15—H15A0.9700
C7—H7B0.9600C15—H15B0.9700
C7—H7C0.9600C16—H16A0.9600
C8—C91.3729 (18)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
C9—N21.3778 (17)N1—O11.2276 (17)
C9—C101.4803 (19)N1—O21.2347 (16)
C10—O31.2325 (16)N2—H2N0.8600
C10—N31.3547 (17)N3—N41.3798 (16)
C11—N41.2793 (17)N3—H3N0.8600
C2—C1—C6119.89 (13)C11—C12—H12B109.5
C2—C1—N1119.77 (13)H12A—C12—H12B109.5
C6—C1—N1120.34 (12)C11—C12—H12C109.5
C1—C2—C3121.06 (13)H12A—C12—H12C109.5
C1—C2—H2119.5H12B—C12—H12C109.5
C3—C2—H2119.5C11—C13—C14112.44 (13)
C4—C3—C2119.56 (12)C11—C13—H13A109.1
C4—C3—C7121.18 (13)C14—C13—H13A109.1
C2—C3—C7119.26 (14)C11—C13—H13B109.1
C3—C4—C5120.34 (13)C14—C13—H13B109.1
C3—C4—H4119.8H13A—C13—H13B107.8
C5—C4—H4119.8O4—C14—O5123.36 (17)
C4—C5—C6119.39 (13)O4—C14—C13124.16 (18)
C4—C5—C8134.22 (13)O5—C14—C13112.47 (13)
C6—C5—C8106.39 (11)O5—C15—C16107.43 (15)
N2—C6—C1132.14 (12)O5—C15—H15A110.2
N2—C6—C5108.10 (12)C16—C15—H15A110.2
C1—C6—C5119.76 (12)O5—C15—H15B110.2
C3—C7—H7A109.5C16—C15—H15B110.2
C3—C7—H7B109.5H15A—C15—H15B108.5
H7A—C7—H7B109.5C15—C16—H16A109.5
C3—C7—H7C109.5C15—C16—H16B109.5
H7A—C7—H7C109.5H16A—C16—H16B109.5
H7B—C7—H7C109.5C15—C16—H16C109.5
C9—C8—C5107.13 (12)H16A—C16—H16C109.5
C9—C8—H8126.4H16B—C16—H16C109.5
C5—C8—H8126.4O1—N1—O2122.89 (13)
C8—C9—N2109.32 (12)O1—N1—C1119.29 (12)
C8—C9—C10125.34 (12)O2—N1—C1117.82 (12)
N2—C9—C10125.31 (12)C6—N2—C9109.07 (11)
O3—C10—N3119.72 (12)C6—N2—H2N125.5
O3—C10—C9118.74 (12)C9—N2—H2N125.5
N3—C10—C9121.53 (12)C10—N3—N4121.12 (11)
N4—C11—C12127.75 (13)C10—N3—H3N119.4
N4—C11—C13114.81 (13)N4—N3—H3N119.4
C12—C11—C13117.42 (12)C11—N4—N3118.81 (12)
C11—C12—H12A109.5C14—O5—C15115.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.862.042.8815 (15)167
C12—H12C···O3i0.962.393.1723 (18)139
C4—H4···O4ii0.932.513.4019 (19)161
C13—H13A···O4iii0.972.563.407 (2)146
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.862.042.8815 (15)167
C12—H12C···O3i0.962.393.1723 (18)139
C4—H4···O4ii0.932.513.4019 (19)161
C13—H13A···O4iii0.972.563.407 (2)146
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and Chouaib Doukkali University, El Jadida, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDumas, J., Hatoum-Mokdad, H., Sibley, R., Riedl, B., Scott, W., Monahan, M., Lowinger, T., Brennan, C., Natero, R., Turner, T., Johnson, J., Schoenleber, R., Bhargava, A., Wilhelm, S., Housley, T., Ranges, G. & Shrikhande, A. (2000). Bioorg. Med. Chem. Lett. 10, 2051–2054.  CrossRef PubMed CAS Google Scholar
First citationEl Kihel, A., Ahbala, M., Harjane, T., Essassi, E. M. & Bauchat, P. (2007). Phys. Chem. News, 34, 85–88.  CAS Google Scholar
First citationEl Kihel, A., Lagnaoui, A., Harjane, T., Kattir, Y., Guesmi, S. & Bauchat, P. (2013). Arabian J. Chem. 6, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationEl Ouar, M., Knouzi, N., El Kihel, A., Essassi, E. M., Benchidmi, M., Hamelin, J., Carrié, R. & Danion-Bougot, R. (1995). Synth. Commun. 25, 1601–1604.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKuethe, J. T., Wong, A., Qu, C., Smitrovich, J., Davies, I. W. & Hughes, D. L. (2005). J. Org. Chem. 70, 2555–2567.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPenning, T., Talley, J., Bertenshaw, S., Carter, J., Collins, P., Docter, S., Graneto, M., Lee, L., Malecha, J., Miyashiro, J., Rogers, R., Rogier, D., Yu, S., Anderson, G., Burton, E., Cogburn, N., Gregory, S., Koboldt, C., Perkins, S., Seibert, K., Veenhuizen, A., Zhang, Y. & Isakson, P. (1997). J. Med. Chem. 40, 1347–1365.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, A. L., Stevenson, G. L., Swain, C. J. & Castro, J. L. (1998). Tetrahedron Lett. 39, 8317–8320.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds