metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (piperidine-1-carbo­di­thio­ato-κ2S,S)[2-(pyridin-2-yl)phenyl-κ2C1,N]palladium(II)

CROSSMARK_Color_square_no_text.svg

aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 5 August 2015; accepted 11 August 2015; online 15 August 2015)

The title compound, [Pd(C11H8N)(C6H10NS2)], crystallizes with three similar and discrete mol­ecules in the asymmetric unit. The CNS2 donor set defines a distorted square-planar geometry around the PdII atom, with very small deviations from planarity. The bidentate nature of the ligands gives fairly large deviations from the ideal 90° angles; the C—Pd—N angles are all around 81° and the S—Pd—S angles are around 75°. Mol­ecules pack via dispersion inter­actions.

1. Related literature

For structures of phenyl­pyridine with palladium, see: Nasielski et al. (2010[Nasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844-10853.]). For a hexa­thia­adamantane structure with an S—Pd—S moiety, see: Pickardt & Rautenberg (1986[Pickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409-412.]). For examples of dinuclear palladium(II) complexes relevant to possible C—H activation, see: Powers et al. (2009[Powers, D. C., Geibel, M. A. L., Klein, J. E. M. N. & Ritter, T. (2009). J. Am. Chem. Soc. 131, 17050-17051.], 2010[Powers, D. C., Xiao, D. Y., Geibel, M. A. L. & Ritter, T. (2010). J. Am. Chem. Soc. 132, 14530-14536.]). For the preparation of the di­thio­carbamic acid, see: Kiss (2007[Kiss, Z. (2007). CanCure Laboratories, LLC Patent: US2007/10427 A1, 11.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Pd(C11H8N)(C6H10NS2)]

  • Mr = 420.85

  • Monoclinic, P 21 /c

  • a = 24.0780 (9) Å

  • b = 8.5585 (2) Å

  • c = 26.6841 (10) Å

  • β = 113.514 (4)°

  • V = 5042.2 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.25 × 0.15 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.604, Tmax = 1.000

  • 58403 measured reflections

  • 12332 independent reflections

  • 8246 reflections with I > 2σ(I)

  • Rint = 0.057

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.096

  • S = 1.08

  • 12332 reflections

  • 595 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2011[CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. (https://www.crystalmaker.com)]); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Structural commentary top

We were inter­ested in synthesizing dinuclear PdII complexes because of their possible involvement in C—H activation (Powers et al., 2009; Powers et al., 2010). The title compound was synthesized by a ligand exchange from a corresponding acetate-bridged dimer (Powers et al. (2009) and N-piperidine­dithio­carbamic acid (Kiss, 2007). However, despite the isoelectronic structure and similar geometry of acetate and di­thio­carbamate, the product formed was found to have a monomeric structure. The likely explanation for this difference is that the larger atomic radius and longer bonds of sulfur decrease the strain in the four-membered ring that is formed in a monomeric structure. The asymmetric unit contains three discrete molecules and there is no indication of any strong inter­molecular forces; packing is by dispersion.The natural bite angle of the ligands make the angles smaller than 90° and there is good agreement with other phenyl­pyridine palladium(II) complexes (Nasielski et al. 2010), and also with an example of a hexa­thia­adamantane structure displaying the same S–Pd–S moiety as seen here (Pickardt and Rautenberg, 1986). Bond distances are unremarkable and the higher trans influence of the σ-C compared to the nitro­gen is clearly seen in the Pd–S bond which is approximately 0.1 Å longer trans to carbon.

Synthesis and crystallization top

In air, [(phpy)PdOAc]2 (20 mg, 0.034 mmol, 1 equiv) was added to a solution of N-piperidine­dithio­carbamic acid (11 mg, 0.068 mmol, 2 equiv) in MeCN (10 mL). The resulting solution was stirred overnight at 40°C, and then it was cooled to RT. The reaction mixture was concentrated to ~1mL and a mixture of Et2O/pentane (3:1, 5 mL) was added. The bright-yellow precipitate formed was filtered off and washed with mixture of Et2O/pentane (3:1, 3x2 mL) and dried. 23 mg (80%) of the title compound was obtained. X-ray quality crystals were obtained by recrystallization from a CH2Cl2/MeCN solution.

1H NMR (500 MHz, CD2Cl2): d 8.38 (d, J = 5 Hz, 1H, H1), 7.86 (m, 1H, H3), 7.80 (d, J = 8 Hz, 1H, H4), 7.59 (dd, J = 7, 1 Hz, 1H, H7), 7.20 – 7.00 (m, 4H, H2,8-10), 4.01 (dd, J = 11, 5 Hz, 4H, H13+17), 1.80 – 1.64 (m, 6H, H14-16)

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq.

Related literature top

For structures of phenylpyridine with palladium, see: Nasielski et al. (2010). For a hexathioadamantane structure with an S—Pd—S moiety, see: Pickardt & Rautenberg (1986). For examples of dinuclear palladium(II) complexes relevant to possible C—H activation, see: Powers et al. (2009, 2010). For the preparation of the dithiocarbamic acid, see: Kiss (2007).

Structure description top

We were inter­ested in synthesizing dinuclear PdII complexes because of their possible involvement in C—H activation (Powers et al., 2009; Powers et al., 2010). The title compound was synthesized by a ligand exchange from a corresponding acetate-bridged dimer (Powers et al. (2009) and N-piperidine­dithio­carbamic acid (Kiss, 2007). However, despite the isoelectronic structure and similar geometry of acetate and di­thio­carbamate, the product formed was found to have a monomeric structure. The likely explanation for this difference is that the larger atomic radius and longer bonds of sulfur decrease the strain in the four-membered ring that is formed in a monomeric structure. The asymmetric unit contains three discrete molecules and there is no indication of any strong inter­molecular forces; packing is by dispersion.The natural bite angle of the ligands make the angles smaller than 90° and there is good agreement with other phenyl­pyridine palladium(II) complexes (Nasielski et al. 2010), and also with an example of a hexa­thia­adamantane structure displaying the same S–Pd–S moiety as seen here (Pickardt and Rautenberg, 1986). Bond distances are unremarkable and the higher trans influence of the σ-C compared to the nitro­gen is clearly seen in the Pd–S bond which is approximately 0.1 Å longer trans to carbon.

For structures of phenylpyridine with palladium, see: Nasielski et al. (2010). For a hexathioadamantane structure with an S—Pd—S moiety, see: Pickardt & Rautenberg (1986). For examples of dinuclear palladium(II) complexes relevant to possible C—H activation, see: Powers et al. (2009, 2010). For the preparation of the dithiocarbamic acid, see: Kiss (2007).

Synthesis and crystallization top

In air, [(phpy)PdOAc]2 (20 mg, 0.034 mmol, 1 equiv) was added to a solution of N-piperidine­dithio­carbamic acid (11 mg, 0.068 mmol, 2 equiv) in MeCN (10 mL). The resulting solution was stirred overnight at 40°C, and then it was cooled to RT. The reaction mixture was concentrated to ~1mL and a mixture of Et2O/pentane (3:1, 5 mL) was added. The bright-yellow precipitate formed was filtered off and washed with mixture of Et2O/pentane (3:1, 3x2 mL) and dried. 23 mg (80%) of the title compound was obtained. X-ray quality crystals were obtained by recrystallization from a CH2Cl2/MeCN solution.

1H NMR (500 MHz, CD2Cl2): d 8.38 (d, J = 5 Hz, 1H, H1), 7.86 (m, 1H, H3), 7.80 (d, J = 8 Hz, 1H, H4), 7.59 (dd, J = 7, 1 Hz, 1H, H7), 7.20 – 7.00 (m, 4H, H2,8-10), 4.01 (dd, J = 11, 5 Hz, 4H, H13+17), 1.80 – 1.64 (m, 6H, H14-16)

Refinement details top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of one of the molecules in the asymmetric unit with atom labels and 50% probability displacement ellipsoids. H-atoms are omitted for clarity.
(Piperidine-1-carbodithioato-κ2S,S)[2-(pyridin-2-yl)phenyl-κ2C1,N]palladium(II) top
Crystal data top
[Pd(C11H8N)(C6H10NS2)]F(000) = 2544
Mr = 420.85Dx = 1.663 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.0780 (9) ÅCell parameters from 8955 reflections
b = 8.5585 (2) Åθ = 2.5–29.0°
c = 26.6841 (10) ŵ = 1.35 mm1
β = 113.514 (4)°T = 293 K
V = 5042.2 (3) Å3Plate, yellow
Z = 120.25 × 0.15 × 0.03 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
12332 independent reflections
Radiation source: Enhance (Mo) X-ray Source8246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 16.1829 pixels mm-1θmax = 29.1°, θmin = 2.5°
ω scansh = 3231
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.604, Tmax = 1.000l = 3435
58403 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0258P)2 + 4.0221P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
12332 reflectionsΔρmax = 0.78 e Å3
595 parametersΔρmin = 0.69 e Å3
Crystal data top
[Pd(C11H8N)(C6H10NS2)]V = 5042.2 (3) Å3
Mr = 420.85Z = 12
Monoclinic, P21/cMo Kα radiation
a = 24.0780 (9) ŵ = 1.35 mm1
b = 8.5585 (2) ÅT = 293 K
c = 26.6841 (10) Å0.25 × 0.15 × 0.03 mm
β = 113.514 (4)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
12332 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
8246 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 1.000Rint = 0.057
58403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.08Δρmax = 0.78 e Å3
12332 reflectionsΔρmin = 0.69 e Å3
595 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47872 (19)0.9806 (5)0.59090 (18)0.0540 (11)
H10.47290.88380.60390.065*
C20.5189 (2)1.0838 (6)0.6266 (2)0.0637 (13)
H20.53981.05770.66320.076*
C30.5275 (2)1.2265 (6)0.6070 (2)0.0676 (14)
H30.55501.29740.63030.081*
C40.4954 (2)1.2637 (5)0.5531 (2)0.0590 (13)
H40.50081.36100.54010.071*
C50.45500 (17)1.1572 (4)0.51770 (18)0.0429 (10)
C60.41895 (17)1.1804 (4)0.45974 (18)0.0425 (10)
C110.38240 (17)1.0550 (4)0.43218 (16)0.0400 (9)
C120.33523 (17)0.5711 (5)0.47067 (16)0.0421 (9)
C130.25652 (19)0.3891 (5)0.41511 (17)0.0503 (11)
H13A0.26550.28700.40440.060*
H13B0.25270.46260.38630.060*
C140.19769 (18)0.3824 (5)0.42284 (18)0.0536 (11)
H14A0.16580.34300.38980.064*
H14B0.18650.48670.42960.064*
C150.2039 (2)0.2771 (6)0.47048 (19)0.0656 (14)
H15A0.16700.28140.47680.079*
H15B0.20970.17010.46160.079*
C160.25689 (19)0.3259 (5)0.52196 (18)0.0550 (12)
H16A0.24860.42750.53360.066*
H16B0.26180.25150.55090.066*
C170.31480 (18)0.3338 (5)0.51270 (18)0.0515 (11)
H17A0.34740.37300.54530.062*
H17B0.32580.23010.50510.062*
N10.44742 (14)1.0153 (4)0.53759 (14)0.0460 (8)
N20.30608 (14)0.4380 (4)0.46629 (13)0.0445 (8)
S10.39245 (5)0.63462 (13)0.53043 (5)0.0510 (3)
S20.31981 (5)0.70232 (13)0.41777 (4)0.0500 (3)
Pd10.38867 (2)0.86906 (3)0.48024 (2)0.04174 (9)
C420.1449 (3)0.3674 (7)0.1333 (2)0.0747 (15)
H420.18630.38040.11380.090*
C430.1223 (3)0.2369 (7)0.1647 (2)0.0768 (16)
H430.14870.16100.16740.092*
C440.0605 (3)0.2182 (6)0.1925 (2)0.0716 (15)
H440.04530.12890.21340.086*
C450.0210 (2)0.3326 (5)0.18941 (18)0.0532 (12)
C460.0450 (2)0.3269 (5)0.21499 (18)0.0535 (11)
C470.0774 (3)0.2004 (6)0.2458 (2)0.0753 (16)
H470.05710.11360.25100.090*
C480.1401 (3)0.2049 (7)0.2685 (2)0.0793 (17)
H480.16180.12080.28910.095*
C490.1703 (3)0.3323 (6)0.2609 (2)0.0709 (14)
H490.21240.33490.27660.085*
C500.1381 (2)0.4575 (5)0.22969 (18)0.0571 (12)
H500.15890.54290.22440.068*
C510.0755 (2)0.4574 (5)0.20639 (17)0.0473 (10)
C520.03404 (18)0.9253 (5)0.12234 (16)0.0453 (10)
C530.10411 (19)1.1262 (5)0.11693 (18)0.0578 (12)
H53A0.13421.04560.13350.069*
H53B0.11191.21150.14280.069*
C540.1088 (2)1.1846 (6)0.06519 (19)0.0626 (13)
H54A0.14831.23170.07430.075*
H54B0.10521.09700.04100.075*
C550.0602 (2)1.3033 (6)0.0360 (2)0.0693 (14)
H55A0.06571.39510.05880.083*
H55B0.06331.33520.00230.083*
C560.0014 (2)1.2336 (5)0.02334 (19)0.0635 (13)
H56A0.00861.14980.00300.076*
H56B0.03221.31290.00700.076*
C570.0066 (2)1.1706 (5)0.07404 (19)0.0575 (12)
H57A0.00611.25700.09780.069*
H57B0.04501.11670.06380.069*
N50.04432 (17)0.4636 (4)0.15885 (15)0.0528 (9)
N60.04299 (15)1.0624 (4)0.10399 (14)0.0467 (8)
S50.09201 (5)0.80207 (14)0.16127 (5)0.0576 (3)
S60.03610 (5)0.84672 (14)0.10983 (5)0.0585 (3)
Pd30.02011 (2)0.62500 (4)0.16033 (2)0.04749 (10)
C70.4200 (2)1.3170 (5)0.4314 (2)0.0562 (12)
H70.44421.40060.44970.067*
C80.3848 (2)1.3272 (5)0.3759 (2)0.0625 (13)
H80.38491.41860.35710.075*
C90.3500 (2)1.2038 (6)0.3487 (2)0.0606 (13)
H90.32721.21020.31120.073*
C100.3488 (2)1.0690 (5)0.37684 (18)0.0545 (11)
H100.32480.98570.35790.065*
C210.4498 (2)0.0167 (6)0.1723 (2)0.0633 (13)
H210.45040.11090.15510.076*
C220.4939 (2)0.0922 (7)0.1785 (2)0.0749 (15)
H220.52350.07310.16520.090*
C230.4934 (3)0.2304 (7)0.2049 (2)0.0777 (16)
H230.52390.30390.21090.093*
C240.4481 (2)0.2592 (6)0.22206 (19)0.0699 (15)
H240.44700.35410.23860.084*
C250.4037 (2)0.1475 (5)0.21495 (17)0.0544 (12)
C260.3526 (2)0.1629 (5)0.23108 (17)0.0529 (12)
C270.3415 (2)0.2961 (6)0.25529 (19)0.0652 (14)
H270.36700.38220.26200.078*
C280.2925 (3)0.2998 (6)0.26931 (19)0.0723 (16)
H280.28560.38820.28630.087*
C290.2534 (2)0.1751 (6)0.25874 (19)0.0689 (14)
H290.22000.17910.26800.083*
C300.2648 (2)0.0418 (5)0.23374 (17)0.0584 (12)
H300.23850.04280.22640.070*
C310.3136 (2)0.0332 (5)0.21989 (16)0.0488 (11)
C320.29763 (19)0.4484 (5)0.14680 (16)0.0474 (10)
C330.2954 (2)0.6764 (5)0.09022 (18)0.0541 (11)
H33A0.33300.63220.09120.065*
H33B0.30370.78120.10520.065*
C340.2494 (2)0.6829 (6)0.03194 (18)0.0614 (13)
H34A0.24500.57970.01580.074*
H34B0.26370.75300.01110.074*
C350.1882 (2)0.7388 (6)0.0286 (2)0.0720 (15)
H35A0.19100.84770.03950.086*
H35B0.15870.73080.00880.086*
C360.1675 (2)0.6421 (6)0.06549 (18)0.0614 (13)
H36A0.13060.68680.06580.074*
H36B0.15840.53680.05110.074*
C370.2145 (2)0.6357 (5)0.12260 (18)0.0584 (12)
H37A0.21990.73900.13880.070*
H37B0.20110.56620.14430.070*
C410.1044 (2)0.4787 (6)0.1314 (2)0.0636 (13)
H410.11930.56770.11020.076*
N30.40623 (16)0.0083 (4)0.19014 (14)0.0527 (9)
N40.27226 (16)0.5801 (4)0.12316 (14)0.0499 (9)
S30.36489 (5)0.37714 (14)0.14774 (5)0.0570 (3)
S40.26594 (6)0.32525 (13)0.17964 (5)0.0571 (3)
Pd20.34020 (2)0.14795 (4)0.18645 (2)0.04822 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.058 (3)0.044 (3)0.006 (2)0.018 (2)0.005 (2)
C20.059 (3)0.078 (3)0.049 (3)0.005 (3)0.016 (2)0.020 (3)
C30.051 (3)0.074 (4)0.069 (4)0.015 (3)0.016 (3)0.030 (3)
C40.053 (3)0.047 (3)0.078 (4)0.011 (2)0.027 (3)0.015 (3)
C50.037 (2)0.040 (2)0.056 (3)0.0019 (19)0.023 (2)0.008 (2)
C60.038 (2)0.038 (2)0.057 (3)0.0010 (18)0.026 (2)0.003 (2)
C110.037 (2)0.040 (2)0.045 (3)0.0036 (18)0.0189 (19)0.0031 (19)
C120.040 (2)0.044 (2)0.046 (2)0.0016 (19)0.0220 (19)0.0047 (19)
C130.056 (3)0.049 (2)0.045 (3)0.016 (2)0.020 (2)0.010 (2)
C140.039 (2)0.067 (3)0.052 (3)0.007 (2)0.015 (2)0.005 (2)
C150.046 (3)0.082 (3)0.069 (3)0.009 (3)0.022 (2)0.014 (3)
C160.056 (3)0.056 (3)0.055 (3)0.008 (2)0.025 (2)0.016 (2)
C170.047 (3)0.049 (2)0.056 (3)0.002 (2)0.017 (2)0.010 (2)
N10.0406 (19)0.050 (2)0.049 (2)0.0007 (16)0.0192 (17)0.0078 (17)
N20.044 (2)0.0458 (19)0.045 (2)0.0068 (17)0.0192 (16)0.0000 (17)
S10.0469 (6)0.0522 (6)0.0465 (6)0.0083 (5)0.0108 (5)0.0018 (5)
S20.0547 (7)0.0481 (6)0.0446 (6)0.0095 (5)0.0170 (5)0.0023 (5)
Pd10.04080 (18)0.03782 (16)0.04519 (19)0.00455 (14)0.01567 (14)0.00407 (15)
C420.073 (4)0.083 (4)0.074 (4)0.025 (3)0.036 (3)0.020 (3)
C430.095 (5)0.073 (4)0.077 (4)0.036 (3)0.050 (4)0.017 (3)
C440.101 (5)0.063 (3)0.060 (3)0.019 (3)0.042 (3)0.002 (3)
C450.083 (4)0.048 (3)0.042 (3)0.007 (2)0.039 (3)0.005 (2)
C460.075 (3)0.053 (3)0.041 (3)0.007 (2)0.032 (2)0.003 (2)
C470.106 (5)0.068 (3)0.066 (4)0.008 (3)0.049 (3)0.020 (3)
C480.102 (5)0.083 (4)0.057 (3)0.030 (4)0.036 (3)0.026 (3)
C490.079 (4)0.081 (4)0.056 (3)0.014 (3)0.031 (3)0.004 (3)
C500.067 (3)0.056 (3)0.052 (3)0.004 (3)0.028 (2)0.001 (2)
C510.062 (3)0.043 (2)0.044 (3)0.002 (2)0.029 (2)0.006 (2)
C520.047 (2)0.052 (2)0.042 (2)0.001 (2)0.024 (2)0.000 (2)
C530.049 (3)0.061 (3)0.059 (3)0.011 (2)0.016 (2)0.002 (2)
C540.058 (3)0.072 (3)0.062 (3)0.022 (3)0.029 (3)0.003 (3)
C550.084 (4)0.066 (3)0.058 (3)0.018 (3)0.028 (3)0.013 (3)
C560.071 (3)0.055 (3)0.057 (3)0.001 (3)0.018 (3)0.012 (2)
C570.051 (3)0.054 (3)0.066 (3)0.004 (2)0.022 (2)0.008 (2)
N50.066 (3)0.050 (2)0.052 (2)0.006 (2)0.033 (2)0.0086 (19)
N60.040 (2)0.050 (2)0.050 (2)0.0003 (17)0.0174 (16)0.0075 (18)
S50.0478 (7)0.0572 (7)0.0656 (8)0.0043 (6)0.0202 (6)0.0132 (6)
S60.0443 (6)0.0604 (7)0.0729 (8)0.0049 (6)0.0255 (6)0.0081 (6)
Pd30.0554 (2)0.04311 (18)0.0490 (2)0.00138 (16)0.02612 (16)0.00015 (16)
C70.053 (3)0.045 (2)0.073 (4)0.004 (2)0.028 (3)0.001 (2)
C80.071 (3)0.052 (3)0.073 (4)0.010 (3)0.039 (3)0.017 (3)
C90.068 (3)0.063 (3)0.054 (3)0.014 (3)0.027 (3)0.009 (3)
C100.060 (3)0.048 (2)0.052 (3)0.005 (2)0.019 (2)0.002 (2)
C210.052 (3)0.065 (3)0.065 (3)0.006 (3)0.015 (3)0.009 (3)
C220.056 (3)0.091 (4)0.068 (4)0.003 (3)0.015 (3)0.020 (3)
C230.069 (4)0.080 (4)0.066 (4)0.024 (3)0.007 (3)0.013 (3)
C240.077 (4)0.057 (3)0.051 (3)0.013 (3)0.000 (3)0.001 (2)
C250.059 (3)0.047 (2)0.037 (2)0.001 (2)0.003 (2)0.003 (2)
C260.058 (3)0.052 (3)0.032 (2)0.007 (2)0.000 (2)0.003 (2)
C270.073 (4)0.055 (3)0.047 (3)0.005 (3)0.002 (3)0.002 (2)
C280.094 (4)0.061 (3)0.042 (3)0.020 (3)0.006 (3)0.004 (2)
C290.075 (4)0.079 (4)0.047 (3)0.026 (3)0.017 (3)0.008 (3)
C300.063 (3)0.059 (3)0.043 (3)0.011 (2)0.010 (2)0.008 (2)
C310.049 (3)0.051 (3)0.032 (2)0.006 (2)0.002 (2)0.004 (2)
C320.052 (3)0.049 (2)0.035 (2)0.003 (2)0.011 (2)0.004 (2)
C330.054 (3)0.051 (3)0.056 (3)0.008 (2)0.021 (2)0.004 (2)
C340.072 (3)0.065 (3)0.047 (3)0.014 (3)0.024 (2)0.008 (2)
C350.062 (3)0.083 (4)0.057 (3)0.007 (3)0.009 (3)0.022 (3)
C360.053 (3)0.070 (3)0.058 (3)0.004 (3)0.019 (2)0.001 (3)
C370.065 (3)0.059 (3)0.058 (3)0.013 (2)0.031 (2)0.010 (2)
C410.061 (3)0.065 (3)0.065 (3)0.004 (3)0.026 (3)0.006 (3)
N30.049 (2)0.054 (2)0.042 (2)0.0057 (18)0.0042 (18)0.0072 (18)
N40.051 (2)0.055 (2)0.044 (2)0.0026 (18)0.0195 (18)0.0077 (18)
S30.0483 (7)0.0545 (7)0.0648 (8)0.0017 (6)0.0189 (6)0.0004 (6)
S40.0644 (8)0.0543 (7)0.0540 (7)0.0005 (6)0.0251 (6)0.0104 (6)
Pd20.0496 (2)0.04335 (18)0.0424 (2)0.00218 (16)0.00854 (15)0.00136 (15)
Geometric parameters (Å, º) top
C1—N11.351 (5)C54—H54B0.9700
C1—C21.374 (6)C55—C561.506 (6)
C1—H10.9300C55—H55A0.9700
C2—C31.377 (7)C55—H55B0.9700
C2—H20.9300C56—C571.508 (6)
C3—C41.371 (6)C56—H56A0.9700
C3—H30.9300C56—H56B0.9700
C4—C51.392 (5)C57—N61.470 (5)
C4—H40.9300C57—H57A0.9700
C5—N11.366 (5)C57—H57B0.9700
C5—C61.454 (6)N5—C411.342 (5)
C6—C111.397 (5)N5—Pd32.065 (4)
C6—C71.398 (6)S5—Pd32.2935 (12)
C11—C101.377 (5)S6—Pd32.4069 (12)
C11—Pd12.011 (4)C7—C81.384 (6)
C12—N21.319 (5)C7—H70.9300
C12—S21.725 (4)C8—C91.363 (6)
C12—S11.727 (4)C8—H80.9300
C13—N21.471 (5)C9—C101.383 (6)
C13—C141.512 (5)C9—H90.9300
C13—H13A0.9700C10—H100.9300
C13—H13B0.9700C21—N31.331 (6)
C14—C151.516 (6)C21—C221.372 (6)
C14—H14A0.9700C21—H210.9300
C14—H14B0.9700C22—C231.378 (7)
C15—C161.513 (6)C22—H220.9300
C15—H15A0.9700C23—C241.364 (7)
C15—H15B0.9700C23—H230.9300
C16—C171.512 (6)C24—C251.390 (6)
C16—H16A0.9700C24—H240.9300
C16—H16B0.9700C25—N31.376 (5)
C17—N21.471 (5)C25—C261.461 (6)
C17—H17A0.9700C26—C271.388 (6)
C17—H17B0.9700C26—C311.408 (6)
N1—Pd12.045 (3)C27—C281.374 (7)
S1—Pd12.3939 (11)C27—H270.9300
S2—Pd12.3149 (11)C28—C291.376 (7)
C42—C431.373 (7)C28—H280.9300
C42—C411.378 (6)C29—C301.403 (6)
C42—H420.9300C29—H290.9300
C43—C441.382 (7)C30—C311.368 (6)
C43—H430.9300C30—H300.9300
C44—C451.390 (6)C31—Pd22.016 (4)
C44—H440.9300C32—N41.317 (5)
C45—N51.368 (5)C32—S31.721 (4)
C45—C461.459 (6)C32—S41.730 (4)
C46—C471.395 (6)C33—N41.467 (5)
C46—C511.405 (6)C33—C341.508 (6)
C47—C481.384 (7)C33—H33A0.9700
C47—H470.9300C33—H33B0.9700
C48—C491.371 (7)C34—C351.517 (6)
C48—H480.9300C34—H34A0.9700
C49—C501.388 (6)C34—H34B0.9700
C49—H490.9300C35—C361.514 (6)
C50—C511.382 (6)C35—H35A0.9700
C50—H500.9300C35—H35B0.9700
C51—Pd32.009 (4)C36—C371.494 (6)
C52—N61.322 (5)C36—H36A0.9700
C52—S61.722 (4)C36—H36B0.9700
C52—S51.727 (4)C37—N41.464 (5)
C53—N61.476 (5)C37—H37A0.9700
C53—C541.515 (6)C37—H37B0.9700
C53—H53A0.9700C41—H410.9300
C53—H53B0.9700N3—Pd22.050 (4)
C54—C551.511 (6)S3—Pd22.3996 (12)
C54—H54A0.9700S4—Pd22.2963 (13)
N1—C1—C2122.1 (4)C55—C56—H56A109.3
N1—C1—H1118.9C57—C56—H56A109.3
C2—C1—H1118.9C55—C56—H56B109.3
C1—C2—C3118.6 (5)C57—C56—H56B109.3
C1—C2—H2120.7H56A—C56—H56B108.0
C3—C2—H2120.7N6—C57—C56111.9 (4)
C4—C3—C2119.8 (5)N6—C57—H57A109.2
C4—C3—H3120.1C56—C57—H57A109.2
C2—C3—H3120.1N6—C57—H57B109.2
C3—C4—C5120.5 (4)C56—C57—H57B109.2
C3—C4—H4119.7H57A—C57—H57B107.9
C5—C4—H4119.7C41—N5—C45120.1 (4)
N1—C5—C4119.0 (4)C41—N5—Pd3125.7 (3)
N1—C5—C6114.8 (3)C45—N5—Pd3114.2 (3)
C4—C5—C6126.2 (4)C52—N6—C57122.9 (3)
C11—C6—C7120.1 (4)C52—N6—C53122.4 (4)
C11—C6—C5116.0 (4)C57—N6—C53114.4 (3)
C7—C6—C5123.9 (4)C52—S5—Pd388.37 (15)
C10—C11—C6118.4 (4)C52—S6—Pd384.87 (14)
C10—C11—Pd1128.0 (3)C51—Pd3—N581.04 (16)
C6—C11—Pd1113.6 (3)C51—Pd3—S598.70 (13)
N2—C12—S2123.9 (3)N5—Pd3—S5179.26 (10)
N2—C12—S1123.7 (3)C51—Pd3—S6173.14 (13)
S2—C12—S1112.5 (2)N5—Pd3—S6105.44 (11)
N2—C13—C14110.0 (3)S5—Pd3—S674.84 (4)
N2—C13—H13A109.7C8—C7—C6119.7 (4)
C14—C13—H13A109.7C8—C7—H7120.1
N2—C13—H13B109.7C6—C7—H7120.1
C14—C13—H13B109.7C9—C8—C7120.3 (4)
H13A—C13—H13B108.2C9—C8—H8119.8
C13—C14—C15110.6 (4)C7—C8—H8119.8
C13—C14—H14A109.5C8—C9—C10119.9 (5)
C15—C14—H14A109.5C8—C9—H9120.1
C13—C14—H14B109.5C10—C9—H9120.1
C15—C14—H14B109.5C11—C10—C9121.6 (4)
H14A—C14—H14B108.1C11—C10—H10119.2
C16—C15—C14111.3 (4)C9—C10—H10119.2
C16—C15—H15A109.4N3—C21—C22122.0 (5)
C14—C15—H15A109.4N3—C21—H21119.0
C16—C15—H15B109.4C22—C21—H21119.0
C14—C15—H15B109.4C21—C22—C23118.8 (5)
H15A—C15—H15B108.0C21—C22—H22120.6
C17—C16—C15111.2 (4)C23—C22—H22120.6
C17—C16—H16A109.4C24—C23—C22119.8 (5)
C15—C16—H16A109.4C24—C23—H23120.1
C17—C16—H16B109.4C22—C23—H23120.1
C15—C16—H16B109.4C23—C24—C25120.3 (5)
H16A—C16—H16B108.0C23—C24—H24119.8
N2—C17—C16109.5 (3)C25—C24—H24119.8
N2—C17—H17A109.8N3—C25—C24118.8 (5)
C16—C17—H17A109.8N3—C25—C26115.1 (4)
N2—C17—H17B109.8C24—C25—C26126.1 (5)
C16—C17—H17B109.8C27—C26—C31120.7 (5)
H17A—C17—H17B108.2C27—C26—C25123.6 (5)
C1—N1—C5120.0 (4)C31—C26—C25115.8 (4)
C1—N1—Pd1125.6 (3)C28—C27—C26119.5 (5)
C5—N1—Pd1114.4 (3)C28—C27—H27120.2
C12—N2—C13122.3 (3)C26—C27—H27120.2
C12—N2—C17123.8 (3)C27—C28—C29121.2 (5)
C13—N2—C17113.6 (3)C27—C28—H28119.4
C12—S1—Pd184.79 (14)C29—C28—H28119.4
C12—S2—Pd187.34 (14)C28—C29—C30118.7 (5)
C11—Pd1—N181.17 (15)C28—C29—H29120.6
C11—Pd1—S2100.29 (12)C30—C29—H29120.6
N1—Pd1—S2177.45 (10)C31—C30—C29121.7 (5)
C11—Pd1—S1175.08 (12)C31—C30—H30119.2
N1—Pd1—S1103.52 (10)C29—C30—H30119.2
S2—Pd1—S175.09 (4)C30—C31—C26118.2 (4)
C43—C42—C41118.2 (5)C30—C31—Pd2128.3 (4)
C43—C42—H42120.9C26—C31—Pd2113.4 (3)
C41—C42—H42120.9N4—C32—S3124.3 (3)
C42—C43—C44120.0 (5)N4—C32—S4123.4 (3)
C42—C43—H43120.0S3—C32—S4112.3 (2)
C44—C43—H43120.0N4—C33—C34109.9 (3)
C43—C44—C45120.1 (5)N4—C33—H33A109.7
C43—C44—H44119.9C34—C33—H33A109.7
C45—C44—H44119.9N4—C33—H33B109.7
N5—C45—C44119.0 (5)C34—C33—H33B109.7
N5—C45—C46114.7 (4)H33A—C33—H33B108.2
C44—C45—C46126.3 (5)C33—C34—C35111.7 (4)
C47—C46—C51120.4 (5)C33—C34—H34A109.3
C47—C46—C45123.5 (5)C35—C34—H34A109.3
C51—C46—C45116.1 (4)C33—C34—H34B109.3
C48—C47—C46119.5 (5)C35—C34—H34B109.3
C48—C47—H47120.2H34A—C34—H34B107.9
C46—C47—H47120.2C36—C35—C34110.7 (4)
C49—C48—C47120.6 (5)C36—C35—H35A109.5
C49—C48—H48119.7C34—C35—H35A109.5
C47—C48—H48119.7C36—C35—H35B109.5
C48—C49—C50119.9 (5)C34—C35—H35B109.5
C48—C49—H49120.0H35A—C35—H35B108.1
C50—C49—H49120.0C37—C36—C35111.8 (4)
C51—C50—C49121.2 (5)C37—C36—H36A109.3
C51—C50—H50119.4C35—C36—H36A109.3
C49—C50—H50119.4C37—C36—H36B109.3
C50—C51—C46118.3 (4)C35—C36—H36B109.3
C50—C51—Pd3127.8 (3)H36A—C36—H36B107.9
C46—C51—Pd3113.9 (3)N4—C37—C36110.6 (4)
N6—C52—S6124.5 (3)N4—C37—H37A109.5
N6—C52—S5123.6 (3)C36—C37—H37A109.5
S6—C52—S5111.9 (2)N4—C37—H37B109.5
N6—C53—C54109.8 (4)C36—C37—H37B109.5
N6—C53—H53A109.7H37A—C37—H37B108.1
C54—C53—H53A109.7N5—C41—C42122.5 (5)
N6—C53—H53B109.7N5—C41—H41118.8
C54—C53—H53B109.7C42—C41—H41118.8
H53A—C53—H53B108.2C21—N3—C25120.3 (4)
C55—C54—C53111.6 (4)C21—N3—Pd2125.8 (3)
C55—C54—H54A109.3C25—N3—Pd2113.9 (3)
C53—C54—H54A109.3C32—N4—C37122.7 (4)
C55—C54—H54B109.3C32—N4—C33123.6 (4)
C53—C54—H54B109.3C37—N4—C33113.4 (3)
H54A—C54—H54B108.0C32—S3—Pd284.42 (15)
C56—C55—C54109.9 (4)C32—S4—Pd287.47 (15)
C56—C55—H55A109.7C31—Pd2—N381.62 (17)
C54—C55—H55A109.7C31—Pd2—S499.70 (14)
C56—C55—H55B109.7N3—Pd2—S4178.20 (11)
C54—C55—H55B109.7C31—Pd2—S3174.86 (14)
H55A—C55—H55B108.2N3—Pd2—S3103.49 (11)
C55—C56—C57111.6 (4)S4—Pd2—S375.20 (4)

Experimental details

Crystal data
Chemical formula[Pd(C11H8N)(C6H10NS2)]
Mr420.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)24.0780 (9), 8.5585 (2), 26.6841 (10)
β (°) 113.514 (4)
V3)5042.2 (3)
Z12
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.25 × 0.15 × 0.03
Data collection
DiffractometerAgilent Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.604, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
58403, 12332, 8246
Rint0.057
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.096, 1.08
No. of reflections12332
No. of parameters595
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.69

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2011).

 

Acknowledgements

Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. (https://www.crystalmaker.comGoogle Scholar
First citationKiss, Z. (2007). CanCure Laboratories, LLC Patent: US2007/10427 A1, 11.  Google Scholar
First citationNasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844–10853.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409–412.  Google Scholar
First citationPowers, D. C., Geibel, M. A. L., Klein, J. E. M. N. & Ritter, T. (2009). J. Am. Chem. Soc. 131, 17050–17051.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPowers, D. C., Xiao, D. Y., Geibel, M. A. L. & Ritter, T. (2010). J. Am. Chem. Soc. 132, 14530–14536.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds