research communications
of hexaaquanickel(II) bis{2-[(5,6-dihydroxy-3-sulfonatoquinolin-1-ium-7-yl)oxy]acetate} dihydrate
aChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy - Cau Giay, Hanoi, Vietnam, and bChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeeervelt@chem.kuleuven.be
The 2O)6](C11H8NO8S)2·2H2O, features a half-hexaaquanickel(II) complex cation with the NiII ion on an inversion center, one deprotonated 5,6-dihydroxy-3-sulfoquinolin-7-yloxyacetic acid (QOH) molecule appearing in its zwitterionic form and one lattice water molecule. The sulfonate group is disordered over two positions with occupancy factors of 0.655 (5) and 0.345 (5). The hexaaquanickel(II) cation interacts through hydrogen bonding with eight QOH molecules and two water molecules. The six-membered rings of quinoline show π–π stacking [centroid-to-centroid distances of 3.679 (2) Å and 3.714 (2) Å].
of the title compound, [Ni(HKeywords: crystal structure; quinoline; hydrogen bonding; π–π stacking; zwitterion.
CCDC reference: 1419884
1. Chemical context
Quinoline and its derivatives have been of great interest due to their interesting biochemical activities. Quinine, cinchonine, chloroquine, plasmoquine and acriquine, for instance, are known to be able to cure malaria (Foley & Tilley, 1998; Długosz & Duś, 1996; Nayyar et al., 2006). Complexes of quinoline-containing organic compounds with transition metals are also known for their wide variety of structures and profound biochemical activities which allow them to act as antibacterial and anti-Alzheimer agents (Deraeve et al., 2008) and as cures for many types of cancers such as cervical cancer, lung cancer and breast cancer (Yan et al., 2012; Daniel et al., 2004). These complexes, therefore, have been synthesized and investigated intensively (Kitanovic et al., 2014).
Recently, the new quinoline derivative 6-hydroxy-3-sulfoquinolin-7-yloxyacetic (Q) has been synthesized from eugenol and its antibacterial activities have been reported (Dinh et al., 2012). Here, we report the synthesis of 5,6-dihydroxy-3-sulfoquinolin-7-yloxyacetic acid (QOH). As quinoline rings are known to complex with metal ions, the formation of a complex between QOH and NiII was studied. The reaction product, however, could not be characterized unambiguously by IR or 1H NMR spectroscopic methods. The spectroscopic data are different from those obtained for free QOH and in favour of a deprotonated carboxylic acid group, but give no indication about a possible complex formation. X-ray diffraction now shows that QOH is not complexing directly with NiII.
2. Structural commentary
The QOH is deprotonated and the anion is present in its zwitterionic form (Fig. 1), which was also observed for Q (Dinh et al., 2012). The best plane through the quinoline ring (r.m.s. deviation = 0.009 Å) makes an angle of 15.29 (19)° with the carboxylate plane. The sulfonate group at the 3-position occurs in two orientations with occupancy factors of 0.655 (5) and 0.345 (5). QOH, however, is not acting as a ligand for NiII, which occurs as a hexaaqua complex. This [Ni(H2O)6]2+ is located about an inversion center and has an octahedral volume of 11.629 Å3 with Ni—O bond lengths between 2.034 (3) and 2.106 (2) Å.
shows that the carboxyl group of3. Supramolecular features
The hexaaquanickel(II) cation plays the role of glue in the crystal packing. In total, it interacts with eight QOH moieties and two water molecules through O—H⋯O and N—H⋯O hydrogen bonding (Table 1, Fig. 2).
Furthermore, π–π stacking between the quinoline rings results in the formation of inversion dimers [Cg1⋯Cg1ix = 3.679 (2) Å, Cg1⋯Cg2ix = 3.714 (2) Å; Cg1 and Cg2 are the centroids of the rings C12/C13/N14/C15–C17 and C15/C16/C18–C21, respectively; symmetry code: (ix) −x + 1, −y + 2, −z + 1; Fig. 3].
Lattice water molecule O29 interacts with the carboxylate (O27) and hydroxyl (O23) groups of a neighboring QOH molecule and furthermore with the sulfonate group (O7) of a second QOH molecule and the hexaaqua complex (O2). Whereas hydroxyl group O23—H23 only interacts with water molecule O29, the second hydroxyl group O22—H22 is involved in the formation of another type of inversion dimers through C—H⋯O hydrogen bonding and interacts with a sulfonate group (O8) (Table 1, Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; last update May 2015; Groom & Allen, 2014) for quinoline derivatives gives 3040 hits of which 529 are protonated at the nitrogen atom. Searching for quinoline derivatives bearing a sulfonate group results in 30 hits for substitution at the 5-position, 3 hits at the 8-position, 2 hits at the 7-position and two structures have a sulfonate group at the 3-position [CSD refcodes BAPBOK (Skrzypek & Suwinska, 2002) and HIVHUQ (Skrzypek & Suwinska, 2007)]. As for the title compound, these two structures occur in the zwitterionic form, but do not show disorder in the sulfonate group.
5. Synthesis and crystallization
Starting from eugenol, a main constituent of Ocimum sanctum L. oil, the quinoline derivative 6-hydroxy-3-sulfoquinolin-7-yloxyacetic acid (Q) was synthesized and further transformed to 5,6-dihydroxy-3-sulfoquinolin-7-yloxyacetic acid (QOH) according to a procedure described by Dinh et al. (2012).
A solution containing NiCl2·6H2O (0.262 g, 1.1 mmol) in ethanol–water (10 mL; 1:1 v/v) was added dropwise to a solution of QOH (0.630 g, 2 mmol) in ethanol–water (15 mL, 1:1 v/v). The obtained solution was stirred for three hours, at 313–323 K, during reflux. A few days later, the green–yellow precipitate was collected by filtration, washed consecutively with ethanol and diethyl ether and dried in vacuo. The obtained crystals are soluble in water and DMSO, but only slightly soluble in ethanol, acetone and chloroform. The yield was 65%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:1 v/v) solution at room temperature. IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3420 (νOH); 3080, 2918 (νC-H); 1620 (νCOOas); 1426(νCOOs); 1528 (νC=Cring or νC=N); 466 (νNi-O). 1H NMR (Bruker Avance 500 MHz, d6-DMSO): δ 8.74 (1H, s, Ar), 8.17 (1H, s, Ar), 7.2 (1H, s, Ar), 4.64 (2H, s, CH2); (Bruker Avance 500 MHz, D2O): δ 9.26 (1H, s, Ar), 9.01 (1H, s, Ar), 7.01 (1H, s, Ar), 4.80 (2H, s, CH2).
6. Refinement
Crystal data, data collection and structure . H atoms H2B, H3B, H4B, H14, H29A and H29B were located in difference Fourier maps. All other H atoms were placed at idealized positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.99 Å (methylene), and O—H distances of 0.84 Å. The H atoms of water molecule O29 were refined with an O—H distance restraint of 0.85 Å and H⋯H distance restraint of 1.39 Å. For all H atoms, Uiso(H) values were assigned as 1.2Ueq of the parent atoms (1.5Ueq for H22 and H23). The SO3 group is disordered over two positions, the occupancy ratio refines to 0.655 (5):0.345 (5) for part 1 (O6, O7, 08) and part 2 (O9, O10, O11), respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1419884
https://doi.org/10.1107/S2056989015015662/vn2096sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015662/vn2096Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: XS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Ni(H2O)6](C11H8NO8S)2·2H2O | Z = 1 |
Mr = 831.31 | F(000) = 430 |
Triclinic, P1 | Dx = 1.814 Mg m−3 |
a = 8.1632 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.2829 (6) Å | Cell parameters from 2769 reflections |
c = 11.8492 (8) Å | θ = 3.4–28.9° |
α = 102.316 (6)° | µ = 0.88 mm−1 |
β = 102.250 (6)° | T = 100 K |
γ = 93.003 (6)° | Block, yellow |
V = 760.91 (9) Å3 | 0.3 × 0.2 × 0.15 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 3071 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2513 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2012) | k = −10→10 |
Tmin = 0.781, Tmax = 1.000 | l = −14→14 |
8135 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0452P)2 + 1.8778P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3071 reflections | Δρmax = 0.48 e Å−3 |
283 parameters | Δρmin = −0.84 e Å−3 |
213 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 1.0000 | 0.5000 | 1.0000 | 0.02176 (19) | |
O2 | 1.0198 (3) | 0.7442 (3) | 0.9941 (2) | 0.0260 (6) | |
H2A | 0.9996 | 0.7520 | 0.9230 | 0.031* | |
H2B | 0.952 (5) | 0.803 (5) | 1.031 (4) | 0.031* | |
O3 | 1.1954 (4) | 0.4632 (3) | 0.9188 (2) | 0.0313 (6) | |
H3A | 1.1967 | 0.5296 | 0.8744 | 0.038* | |
H3B | 1.265 (6) | 0.413 (6) | 0.943 (4) | 0.038* | |
O4 | 0.8307 (3) | 0.4307 (3) | 0.8328 (2) | 0.0249 (5) | |
H4A | 0.8770 | 0.4558 | 0.7811 | 0.030* | |
H4B | 0.748 (5) | 0.478 (5) | 0.840 (4) | 0.030* | |
S5 | 0.48964 (11) | 0.73394 (10) | 0.85461 (7) | 0.0223 (2) | |
O6 | 0.6221 (5) | 0.6546 (6) | 0.9048 (4) | 0.0389 (13) | 0.655 (5) |
O7 | 0.4212 (6) | 0.8513 (5) | 0.9337 (4) | 0.0368 (12) | 0.655 (5) |
O8 | 0.3539 (5) | 0.6107 (5) | 0.7699 (3) | 0.0321 (11) | 0.655 (5) |
O9 | 0.6135 (9) | 0.7895 (10) | 0.9785 (6) | 0.029 (2) | 0.345 (5) |
O10 | 0.3282 (9) | 0.7681 (11) | 0.8587 (7) | 0.031 (2) | 0.345 (5) |
O11 | 0.5153 (9) | 0.5620 (9) | 0.8093 (6) | 0.0245 (18) | 0.345 (5) |
C12 | 0.5705 (4) | 0.8478 (4) | 0.7634 (3) | 0.0213 (7) | |
C13 | 0.6412 (4) | 1.0124 (4) | 0.8098 (3) | 0.0213 (7) | |
H13 | 0.6409 | 1.0658 | 0.8891 | 0.026* | |
N14 | 0.7090 (4) | 1.0941 (4) | 0.7428 (2) | 0.0212 (6) | |
H14 | 0.744 (5) | 1.190 (5) | 0.774 (3) | 0.025* | |
C15 | 0.7152 (4) | 1.0268 (4) | 0.6280 (3) | 0.0196 (7) | |
C16 | 0.6429 (4) | 0.8599 (4) | 0.5784 (3) | 0.0201 (7) | |
C17 | 0.5717 (4) | 0.7727 (4) | 0.6481 (3) | 0.0208 (7) | |
H17 | 0.5240 | 0.6610 | 0.6158 | 0.025* | |
C18 | 0.7910 (4) | 1.1199 (4) | 0.5627 (3) | 0.0210 (7) | |
H18 | 0.8376 | 1.2317 | 0.5962 | 0.025* | |
C19 | 0.7951 (4) | 1.0426 (4) | 0.4485 (3) | 0.0209 (7) | |
C20 | 0.7240 (5) | 0.8766 (4) | 0.3960 (3) | 0.0240 (7) | |
C21 | 0.6498 (4) | 0.7865 (4) | 0.4600 (3) | 0.0231 (7) | |
O22 | 0.5812 (4) | 0.6280 (3) | 0.4145 (2) | 0.0337 (6) | |
H22 | 0.6086 | 0.5913 | 0.3501 | 0.051* | |
O23 | 0.7252 (4) | 0.7973 (3) | 0.2843 (2) | 0.0374 (7) | |
H23 | 0.7859 | 0.8556 | 0.2560 | 0.056* | |
O24 | 0.8641 (3) | 1.1125 (3) | 0.3741 (2) | 0.0254 (5) | |
C25 | 0.9285 (4) | 1.2848 (4) | 0.4117 (3) | 0.0242 (7) | |
H25A | 1.0146 | 1.3044 | 0.4872 | 0.029* | |
H25B | 0.8362 | 1.3544 | 0.4246 | 0.029* | |
C26 | 1.0064 (4) | 1.3300 (5) | 0.3152 (3) | 0.0271 (8) | |
O27 | 1.0256 (3) | 1.2204 (3) | 0.2309 (2) | 0.0341 (6) | |
O28 | 1.0496 (4) | 1.4828 (4) | 0.3317 (2) | 0.0424 (8) | |
O29 | 1.1564 (6) | 1.0664 (4) | 0.8667 (3) | 0.0543 (10) | |
H29A | 1.088 (5) | 0.986 (5) | 0.829 (4) | 0.065* | |
H29B | 1.242 (4) | 1.041 (6) | 0.908 (4) | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0296 (4) | 0.0192 (3) | 0.0192 (3) | −0.0028 (2) | 0.0124 (3) | 0.0049 (2) |
O2 | 0.0364 (15) | 0.0224 (12) | 0.0229 (13) | 0.0015 (11) | 0.0139 (11) | 0.0064 (10) |
O3 | 0.0401 (16) | 0.0279 (14) | 0.0321 (15) | −0.0007 (11) | 0.0206 (13) | 0.0089 (11) |
O4 | 0.0304 (14) | 0.0262 (13) | 0.0218 (12) | −0.0041 (10) | 0.0120 (11) | 0.0091 (10) |
S5 | 0.0271 (5) | 0.0246 (4) | 0.0205 (4) | −0.0015 (3) | 0.0129 (3) | 0.0105 (3) |
O6 | 0.030 (2) | 0.059 (3) | 0.043 (3) | 0.008 (2) | 0.0156 (19) | 0.036 (2) |
O7 | 0.061 (3) | 0.030 (2) | 0.031 (2) | 0.004 (2) | 0.034 (2) | 0.0087 (18) |
O8 | 0.037 (2) | 0.039 (2) | 0.0203 (19) | −0.0153 (18) | 0.0114 (16) | 0.0079 (16) |
O9 | 0.030 (4) | 0.039 (4) | 0.020 (3) | −0.011 (3) | 0.004 (3) | 0.018 (3) |
O10 | 0.021 (3) | 0.048 (5) | 0.036 (5) | 0.004 (3) | 0.012 (3) | 0.027 (4) |
O11 | 0.029 (4) | 0.026 (3) | 0.021 (4) | −0.007 (3) | 0.007 (3) | 0.011 (3) |
C12 | 0.0217 (16) | 0.0264 (16) | 0.0218 (16) | 0.0010 (13) | 0.0103 (13) | 0.0134 (13) |
C13 | 0.0234 (17) | 0.0279 (17) | 0.0168 (15) | 0.0005 (13) | 0.0095 (13) | 0.0100 (13) |
N14 | 0.0248 (15) | 0.0224 (14) | 0.0181 (14) | −0.0035 (12) | 0.0079 (11) | 0.0065 (11) |
C15 | 0.0195 (16) | 0.0250 (16) | 0.0176 (15) | 0.0006 (13) | 0.0072 (12) | 0.0096 (12) |
C16 | 0.0199 (16) | 0.0255 (16) | 0.0177 (15) | 0.0013 (13) | 0.0066 (12) | 0.0090 (13) |
C17 | 0.0203 (16) | 0.0243 (16) | 0.0206 (16) | −0.0007 (13) | 0.0066 (13) | 0.0100 (13) |
C18 | 0.0208 (16) | 0.0268 (17) | 0.0193 (15) | −0.0012 (13) | 0.0067 (13) | 0.0125 (13) |
C19 | 0.0218 (16) | 0.0251 (16) | 0.0227 (16) | 0.0039 (13) | 0.0110 (13) | 0.0144 (13) |
C20 | 0.0330 (19) | 0.0274 (17) | 0.0165 (15) | 0.0046 (14) | 0.0114 (14) | 0.0093 (13) |
C21 | 0.0301 (18) | 0.0247 (16) | 0.0173 (15) | −0.0015 (14) | 0.0085 (13) | 0.0086 (13) |
O22 | 0.0572 (18) | 0.0255 (13) | 0.0210 (13) | −0.0090 (12) | 0.0187 (12) | 0.0044 (10) |
O23 | 0.072 (2) | 0.0257 (13) | 0.0224 (13) | −0.0002 (13) | 0.0269 (13) | 0.0076 (11) |
O24 | 0.0367 (14) | 0.0249 (12) | 0.0214 (12) | 0.0000 (10) | 0.0168 (10) | 0.0108 (10) |
C25 | 0.0257 (18) | 0.0297 (18) | 0.0201 (16) | −0.0045 (14) | 0.0080 (14) | 0.0110 (14) |
C26 | 0.0219 (17) | 0.041 (2) | 0.0224 (17) | −0.0031 (15) | 0.0059 (14) | 0.0172 (15) |
O27 | 0.0420 (16) | 0.0423 (15) | 0.0316 (14) | 0.0108 (12) | 0.0238 (12) | 0.0211 (12) |
O28 | 0.0592 (19) | 0.0433 (16) | 0.0254 (14) | −0.0226 (14) | 0.0169 (13) | 0.0088 (12) |
O29 | 0.113 (3) | 0.0303 (16) | 0.0419 (19) | 0.0166 (17) | 0.057 (2) | 0.0147 (14) |
Ni1—O2 | 2.038 (2) | N14—C15 | 1.368 (4) |
Ni1—O2i | 2.038 (2) | C15—C16 | 1.423 (5) |
Ni1—O3i | 2.034 (3) | C15—C18 | 1.409 (4) |
Ni1—O3 | 2.034 (3) | C16—C17 | 1.399 (4) |
Ni1—O4i | 2.106 (2) | C16—C21 | 1.419 (5) |
Ni1—O4 | 2.106 (2) | C17—H17 | 0.9500 |
O2—H2A | 0.8400 | C18—H18 | 0.9500 |
O2—H2B | 0.88 (4) | C18—C19 | 1.375 (5) |
O3—H3A | 0.8400 | C19—C20 | 1.419 (5) |
O3—H3B | 0.76 (5) | C19—O24 | 1.351 (4) |
O4—H4A | 0.8400 | C20—C21 | 1.374 (4) |
O4—H4B | 0.81 (4) | C20—O23 | 1.348 (4) |
S5—O6 | 1.387 (4) | C21—O22 | 1.350 (4) |
S5—O7 | 1.423 (4) | O22—H22 | 0.8400 |
S5—O8 | 1.500 (4) | O23—H23 | 0.8400 |
S5—O9 | 1.556 (7) | O24—C25 | 1.436 (4) |
S5—O10 | 1.371 (7) | C25—H25A | 0.9900 |
S5—O11 | 1.454 (7) | C25—H25B | 0.9900 |
S5—C12 | 1.779 (3) | C25—C26 | 1.522 (4) |
C12—C13 | 1.399 (5) | C26—O27 | 1.242 (5) |
C12—C17 | 1.377 (5) | C26—O28 | 1.258 (5) |
C13—H13 | 0.9500 | O29—H29A | 0.827 (19) |
C13—N14 | 1.331 (4) | O29—H29B | 0.826 (19) |
N14—H14 | 0.81 (4) | ||
O2i—Ni1—O2 | 180.0 | N14—C13—C12 | 119.9 (3) |
O2—Ni1—O4 | 92.67 (10) | N14—C13—H13 | 120.0 |
O2i—Ni1—O4i | 92.67 (10) | C13—N14—H14 | 115 (3) |
O2i—Ni1—O4 | 87.33 (10) | C13—N14—C15 | 123.9 (3) |
O2—Ni1—O4i | 87.33 (10) | C15—N14—H14 | 121 (3) |
O3i—Ni1—O2 | 90.14 (11) | N14—C15—C16 | 117.3 (3) |
O3—Ni1—O2 | 89.86 (11) | N14—C15—C18 | 120.9 (3) |
O3i—Ni1—O2i | 89.86 (11) | C18—C15—C16 | 121.9 (3) |
O3—Ni1—O2i | 90.14 (11) | C17—C16—C15 | 119.3 (3) |
O3i—Ni1—O3 | 180.0 | C17—C16—C21 | 122.3 (3) |
O3—Ni1—O4i | 90.58 (11) | C21—C16—C15 | 118.3 (3) |
O3i—Ni1—O4i | 89.43 (11) | C12—C17—C16 | 120.4 (3) |
O3—Ni1—O4 | 89.42 (11) | C12—C17—H17 | 119.8 |
O3i—Ni1—O4 | 90.57 (11) | C16—C17—H17 | 119.8 |
O4i—Ni1—O4 | 180.0 | C15—C18—H18 | 121.3 |
Ni1—O2—H2A | 109.5 | C19—C18—C15 | 117.5 (3) |
Ni1—O2—H2B | 113 (3) | C19—C18—H18 | 121.3 |
H2A—O2—H2B | 109.2 | C18—C19—C20 | 122.2 (3) |
Ni1—O3—H3A | 109.5 | O24—C19—C18 | 125.3 (3) |
Ni1—O3—H3B | 119 (4) | O24—C19—C20 | 112.4 (3) |
H3A—O3—H3B | 129.1 | C21—C20—C19 | 120.0 (3) |
Ni1—O4—H4A | 109.5 | O23—C20—C19 | 123.8 (3) |
Ni1—O4—H4B | 106 (3) | O23—C20—C21 | 116.2 (3) |
H4A—O4—H4B | 113.9 | C20—C21—C16 | 120.1 (3) |
O6—S5—O7 | 117.0 (3) | O22—C21—C16 | 117.5 (3) |
O6—S5—O8 | 111.0 (3) | O22—C21—C20 | 122.4 (3) |
O6—S5—C12 | 106.2 (2) | C21—O22—H22 | 109.5 |
O7—S5—O8 | 111.2 (3) | C20—O23—H23 | 109.5 |
O7—S5—C12 | 105.9 (2) | C19—O24—C25 | 118.6 (3) |
O8—S5—C12 | 104.47 (18) | O24—C25—H25A | 110.1 |
O9—S5—C12 | 104.9 (3) | O24—C25—H25B | 110.1 |
O10—S5—O9 | 112.3 (5) | O24—C25—C26 | 108.1 (3) |
O10—S5—O11 | 117.2 (5) | H25A—C25—H25B | 108.4 |
O10—S5—C12 | 110.5 (3) | C26—C25—H25A | 110.1 |
O11—S5—O9 | 105.7 (4) | C26—C25—H25B | 110.1 |
O11—S5—C12 | 105.3 (3) | O27—C26—C25 | 120.6 (3) |
C13—C12—S5 | 120.3 (2) | O27—C26—O28 | 125.5 (3) |
C17—C12—S5 | 120.4 (3) | O28—C26—C25 | 113.9 (3) |
C17—C12—C13 | 119.2 (3) | H29A—O29—H29B | 114 (3) |
C12—C13—H13 | 120.0 | ||
S5—C12—C13—N14 | 176.7 (3) | C15—C16—C21—O22 | 179.8 (3) |
S5—C12—C17—C16 | −176.8 (3) | C15—C18—C19—C20 | 1.0 (5) |
O6—S5—C12—C13 | −90.9 (4) | C15—C18—C19—O24 | −179.3 (3) |
O6—S5—C12—C17 | 85.9 (4) | C16—C15—C18—C19 | −0.9 (5) |
O7—S5—C12—C13 | 34.2 (4) | C17—C12—C13—N14 | −0.2 (5) |
O7—S5—C12—C17 | −149.0 (3) | C17—C16—C21—C20 | −178.7 (3) |
O8—S5—C12—C13 | 151.7 (3) | C17—C16—C21—O22 | 1.5 (5) |
O8—S5—C12—C17 | −31.5 (4) | C18—C15—C16—C17 | 179.0 (3) |
O9—S5—C12—C13 | −37.7 (4) | C18—C15—C16—C21 | 0.6 (5) |
O9—S5—C12—C17 | 139.1 (4) | C18—C19—C20—C21 | −0.9 (5) |
O10—S5—C12—C13 | 83.5 (5) | C18—C19—C20—O23 | 179.7 (3) |
O10—S5—C12—C17 | −99.7 (5) | C18—C19—O24—C25 | −4.8 (5) |
O11—S5—C12—C13 | −149.1 (4) | C19—C20—C21—C16 | 0.6 (5) |
O11—S5—C12—C17 | 27.7 (4) | C19—C20—C21—O22 | −179.6 (3) |
C12—C13—N14—C15 | −0.2 (5) | C19—O24—C25—C26 | 177.2 (3) |
C13—C12—C17—C16 | 0.0 (5) | C20—C19—O24—C25 | 174.9 (3) |
C13—N14—C15—C16 | 0.6 (5) | C21—C16—C17—C12 | 178.8 (3) |
C13—N14—C15—C18 | −179.1 (3) | O23—C20—C21—C16 | 180.0 (3) |
N14—C15—C16—C17 | −0.8 (5) | O23—C20—C21—O22 | −0.2 (5) |
N14—C15—C16—C21 | −179.2 (3) | O24—C19—C20—C21 | 179.4 (3) |
N14—C15—C18—C19 | 178.9 (3) | O24—C19—C20—O23 | 0.0 (5) |
C15—C16—C17—C12 | 0.5 (5) | O24—C25—C26—O27 | −9.2 (5) |
C15—C16—C21—C20 | −0.4 (5) | O24—C25—C26—O28 | 172.1 (3) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O27ii | 0.84 | 1.86 | 2.694 (3) | 175 |
O2—H2B···O29iii | 0.88 (4) | 1.85 (4) | 2.718 (5) | 169 (4) |
O3—H3A···O8iv | 0.84 | 2.14 | 2.829 (5) | 139 |
O3—H3B···O6i | 0.76 (5) | 2.05 (5) | 2.691 (5) | 142 (5) |
O4—H4A···O28ii | 0.84 | 1.73 | 2.569 (4) | 173 |
O4—H4B···O6 | 0.81 (4) | 1.95 (4) | 2.709 (5) | 156 (4) |
N14—H14···O4v | 0.81 (4) | 2.00 (4) | 2.809 (4) | 174 (3) |
O22—H22···O8vi | 0.84 | 2.03 | 2.779 (5) | 147 |
O23—H23···O29ii | 0.84 | 1.85 | 2.625 (5) | 153 |
O29—H29A···O27ii | 0.83 (4) | 1.82 (4) | 2.630 (4) | 165 (4) |
O29—H29B···O7iv | 0.83 (4) | 2.23 (4) | 2.959 (6) | 148 (5) |
C13—H13···O7vii | 0.95 | 2.24 | 3.166 (6) | 165 |
C17—H17···O22vi | 0.95 | 2.43 | 3.354 (4) | 166 |
C18—H18···O28viii | 0.95 | 2.40 | 3.345 (5) | 176 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y+2, −z+1; (iii) −x+2, −y+2, −z+2; (iv) x+1, y, z; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+2, −z+2; (viii) −x+2, −y+3, −z+1. |
Acknowledgements
The authors thank VLIR-UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Daniel, K. G., Gupta, P., Harbach, R. H., Guida, W. C. & Dou, Q. P. (2004). Biochem. Pharmacol. 67, 1139–1151. Web of Science CrossRef PubMed CAS Google Scholar
Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles 85, 627–637. Google Scholar
Długosz, A. & Duś, D. (1996). Farmaco, 51, 367–374. PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foley, M. & Tilley, L. (1998). Pharmacol. Ther. 79, 55–87. CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496–2507. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302–7310. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035–2044. CSD CrossRef CAS Google Scholar
Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363–1370. CSD CrossRef CAS Google Scholar
Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.