research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­aqua­nickel(II) bis­{2-[(5,6-di­hy­dr­oxy-3-sul­fon­ato­quino­lin-1-ium-7-yl)­oxy]acetate} dihydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy - Cau Giay, Hanoi, Vietnam, and bChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeeervelt@chem.kuleuven.be

Edited by A. Van der Lee, Université de Montpellier II, France (Received 21 July 2015; accepted 20 August 2015; online 26 August 2015)

The asymmetric unit of the title compound, [Ni(H2O)6](C11H8NO8S)2·2H2O, features a half-hexa­aqua­nickel(II) complex cation with the NiII ion on an inversion center, one deprotonated 5,6-dihy­droxy-3-sulfoquinolin-7-yloxyacetic acid (QOH) molecule appearing in its zwitterionic form and one lattice water mol­ecule. The sulfonate group is disordered over two positions with occupancy factors of 0.655 (5) and 0.345 (5). The hexa­aqua­nickel(II) cation inter­acts through hydrogen bonding with eight QOH mol­ecules and two water mol­ecules. The six-membered rings of quinoline show ππ stacking [centroid-to-centroid distances of 3.679 (2) Å and 3.714 (2) Å].

1. Chemical context

Quinoline and its derivatives have been of great inter­est due to their inter­esting biochemical activities. Quinine, cinchonine, chloro­quine, plasmoquine and acriquine, for instance, are known to be able to cure malaria (Foley & Tilley, 1998[Foley, M. & Tilley, L. (1998). Pharmacol. Ther. 79, 55-87.]; Długosz & Duś, 1996[Długosz, A. & Duś, D. (1996). Farmaco, 51, 367-374.]; Nayyar et al., 2006[Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302-7310.]). Complexes of quinoline-containing organic compounds with transition metals are also known for their wide variety of structures and profound biochemical activities which allow them to act as anti­bacterial and anti-Alzheimer agents (Deraeve et al., 2008[Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682-696.]) and as cures for many types of cancers such as cervical cancer, lung cancer and breast cancer (Yan et al., 2012[Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46-51.]; Daniel et al., 2004[Daniel, K. G., Gupta, P., Harbach, R. H., Guida, W. C. & Dou, Q. P. (2004). Biochem. Pharmacol. 67, 1139-1151.]). These complexes, therefore, have been synthesized and investigated intensively (Kitanovic et al., 2014[Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496-2507.]).

[Scheme 1]

Recently, the new quinoline derivative 6-hy­droxy-3-sulfoquinolin-7-yloxyacetic (Q) has been synthesized from eugenol and its anti­bacterial activities have been reported (Dinh et al., 2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles 85, 627-637.]). Here, we report the synthesis of 5,6-dihy­droxy-3-sulfoquinolin-7-yloxyacetic acid (QOH). As quinoline rings are known to complex with metal ions, the formation of a complex between QOH and NiII was studied. The reaction product, however, could not be characterized unambiguously by IR or 1H NMR spectroscopic methods. The spectroscopic data are different from those obtained for free QOH and in favour of a deprotonated carb­oxy­lic acid group, but give no indication about a possible complex formation. X-ray diffraction now shows that QOH is not complexing directly with NiII.

2. Structural commentary

The structure determination shows that the carboxyl group of QOH is deprotonated and the anion is present in its zwitterionic form (Fig. 1[link]), which was also observed for Q (Dinh et al., 2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles 85, 627-637.]). The best plane through the quinoline ring (r.m.s. deviation = 0.009 Å) makes an angle of 15.29 (19)° with the carboxyl­ate plane. The sulfonate group at the 3-position occurs in two orientations with occupancy factors of 0.655 (5) and 0.345 (5). QOH, however, is not acting as a ligand for NiII, which occurs as a hexa­aqua complex. This [Ni(H2O)6]2+ is located about an inversion center and has an octa­hedral volume of 11.629 Å3 with Ni—O bond lengths between 2.034 (3) and 2.106 (2) Å.

[Figure 1]
Figure 1
The structures of the molecular components in the title compound with ellipsoids drawn at the 50% probability level. [Symmetry code: (iv) −x + 2, −y + 1, −z + 2.]

3. Supra­molecular features

The hexa­aqua­nickel(II) cation plays the role of glue in the crystal packing. In total, it inter­acts with eight QOH moieties and two water mol­ecules through O—H⋯O and N—H⋯O hydrogen bonding (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O27i 0.84 1.86 2.694 (3) 175
O2—H2B⋯O29ii 0.88 (4) 1.85 (4) 2.718 (5) 169 (4)
O3—H3A⋯O8iii 0.84 2.14 2.829 (5) 139
O3—H3B⋯O6iv 0.76 (5) 2.05 (5) 2.691 (5) 142 (5)
O4—H4A⋯O28i 0.84 1.73 2.569 (4) 173
O4—H4B⋯O6 0.81 (4) 1.95 (4) 2.709 (5) 156 (4)
N14—H14⋯O4v 0.81 (4) 2.00 (4) 2.809 (4) 174 (3)
O22—H22⋯O8vi 0.84 2.03 2.779 (5) 147
O23—H23⋯O29i 0.84 1.85 2.625 (5) 153
O29—H29A⋯O27i 0.83 (4) 1.82 (4) 2.630 (4) 165 (4)
O29—H29B⋯O7iii 0.83 (4) 2.23 (4) 2.959 (6) 148 (5)
C13—H13⋯O7vii 0.95 2.24 3.166 (6) 165
C17—H17⋯O22vi 0.95 2.43 3.354 (4) 166
C18—H18⋯O28viii 0.95 2.40 3.345 (5) 176
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+2, -z+2; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+2; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+2, -z+2; (viii) -x+2, -y+3, -z+1.
[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing the hydrogen-bonding inter­actions (red dotted lines, see Table 1[link] for details).

Furthermore, ππ stacking between the quinoline rings results in the formation of inversion dimers [Cg1⋯Cg1ix = 3.679 (2) Å, Cg1⋯Cg2ix = 3.714 (2) Å; Cg1 and Cg2 are the centroids of the rings C12/C13/N14/C15–C17 and C15/C16/C18–C21, respectively; symmetry code: (ix) −x + 1, −y + 2, −z + 1; Fig. 3[link]].

[Figure 3]
Figure 3
Partial packing diagram of the title compound, showing ππ inter­actions between quinoline rings (grey dotted lines; Cg1 and Cg2 are the centroids of rings C12/C13/N14/C15–C17 and C15/C16/C18–C21, respectively). [Symmetry code: (ix) −x + 1, −y + 2, −z + 1.]

Lattice water mol­ecule O29 inter­acts with the carboxyl­ate (O27) and hydroxyl (O23) groups of a neighboring QOH mol­ecule and furthermore with the sulfonate group (O7) of a second QOH mol­ecule and the hexa­aqua complex (O2). Whereas hydroxyl group O23—H23 only inter­acts with water mol­ecule O29, the second hydroxyl group O22—H22 is involved in the formation of another type of inversion dimers through C—H⋯O hydrogen bonding and inter­acts with a sulfonate group (O8) (Table 1[link], Fig. 2[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for quinoline derivatives gives 3040 hits of which 529 are protonated at the nitro­gen atom. Searching for quinoline derivatives bearing a sulfonate group results in 30 hits for substitution at the 5-position, 3 hits at the 8-position, 2 hits at the 7-position and two structures have a sulfonate group at the 3-position [CSD refcodes BAPBOK (Skrzypek & Suwinska, 2002[Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035-2044.]) and HIVHUQ (Skrzypek & Suwinska, 2007[Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363-1370.])]. As for the title compound, these two structures occur in the zwitterionic form, but do not show disorder in the sulfonate group.

5. Synthesis and crystallization

Starting from eugenol, a main constituent of Ocimum sanctum L. oil, the quinoline derivative 6-hy­droxy-3-sulfoquinolin-7-yloxyacetic acid (Q) was synthesized and further transformed to 5,6-dihy­droxy-3-sulfoquinolin-7-yloxyacetic acid (QOH) according to a procedure described by Dinh et al. (2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles 85, 627-637.]).

A solution containing NiCl2·6H2O (0.262 g, 1.1 mmol) in ethanol–water (10 mL; 1:1 v/v) was added dropwise to a solution of QOH (0.630 g, 2 mmol) in ethanol–water (15 mL, 1:1 v/v). The obtained solution was stirred for three hours, at 313–323 K, during reflux. A few days later, the green–yellow precipitate was collected by filtration, washed consecutively with ethanol and diethyl ether and dried in vacuo. The obtained crystals are soluble in water and DMSO, but only slightly soluble in ethanol, acetone and chloro­form. The yield was 65%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:1 v/v) solution at room temperature. IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3420 (νOH); 3080, 2918 (νC-H); 1620 (νCOOas); 1426(νCOOs); 1528 (νC=Cring or νC=N); 466 (νNi-O). 1H NMR (Bruker Avance 500 MHz, d6-DMSO): δ 8.74 (1H, s, Ar), 8.17 (1H, s, Ar), 7.2 (1H, s, Ar), 4.64 (2H, s, CH2); (Bruker Avance 500 MHz, D2O): δ 9.26 (1H, s, Ar), 9.01 (1H, s, Ar), 7.01 (1H, s, Ar), 4.80 (2H, s, CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms H2B, H3B, H4B, H14, H29A and H29B were located in difference Fourier maps. All other H atoms were placed at idealized positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.99 Å (methyl­ene), and O—H distances of 0.84 Å. The H atoms of water mol­ecule O29 were refined with an O—H distance restraint of 0.85 Å and H⋯H distance restraint of 1.39 Å. For all H atoms, Uiso(H) values were assigned as 1.2Ueq of the parent atoms (1.5Ueq for H22 and H23). The SO3 group is disordered over two positions, the occupancy ratio refines to 0.655 (5):0.345 (5) for part 1 (O6, O7, 08) and part 2 (O9, O10, O11), respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(H2O)6](C11H8NO8S)2·2H2O
Mr 831.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.1632 (5), 8.2829 (6), 11.8492 (8)
α, β, γ (°) 102.316 (6), 102.250 (6), 93.003 (6)
V3) 760.91 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8135, 3071, 2513
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.09
No. of reflections 3071
No. of parameters 283
No. of restraints 213
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.84
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), XS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: XS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Hexaaquanickel(II) bis(5,6-dihydroxy-3-sulfoquinolin-7-yloxyacetic acid) dihydrate top
Crystal data top
[Ni(H2O)6](C11H8NO8S)2·2H2OZ = 1
Mr = 831.31F(000) = 430
Triclinic, P1Dx = 1.814 Mg m3
a = 8.1632 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2829 (6) ÅCell parameters from 2769 reflections
c = 11.8492 (8) Åθ = 3.4–28.9°
α = 102.316 (6)°µ = 0.88 mm1
β = 102.250 (6)°T = 100 K
γ = 93.003 (6)°Block, yellow
V = 760.91 (9) Å30.3 × 0.2 × 0.15 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3071 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2513 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
k = 1010
Tmin = 0.781, Tmax = 1.000l = 1414
8135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.8778P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3071 reflectionsΔρmax = 0.48 e Å3
283 parametersΔρmin = 0.84 e Å3
213 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni11.00000.50001.00000.02176 (19)
O21.0198 (3)0.7442 (3)0.9941 (2)0.0260 (6)
H2A0.99960.75200.92300.031*
H2B0.952 (5)0.803 (5)1.031 (4)0.031*
O31.1954 (4)0.4632 (3)0.9188 (2)0.0313 (6)
H3A1.19670.52960.87440.038*
H3B1.265 (6)0.413 (6)0.943 (4)0.038*
O40.8307 (3)0.4307 (3)0.8328 (2)0.0249 (5)
H4A0.87700.45580.78110.030*
H4B0.748 (5)0.478 (5)0.840 (4)0.030*
S50.48964 (11)0.73394 (10)0.85461 (7)0.0223 (2)
O60.6221 (5)0.6546 (6)0.9048 (4)0.0389 (13)0.655 (5)
O70.4212 (6)0.8513 (5)0.9337 (4)0.0368 (12)0.655 (5)
O80.3539 (5)0.6107 (5)0.7699 (3)0.0321 (11)0.655 (5)
O90.6135 (9)0.7895 (10)0.9785 (6)0.029 (2)0.345 (5)
O100.3282 (9)0.7681 (11)0.8587 (7)0.031 (2)0.345 (5)
O110.5153 (9)0.5620 (9)0.8093 (6)0.0245 (18)0.345 (5)
C120.5705 (4)0.8478 (4)0.7634 (3)0.0213 (7)
C130.6412 (4)1.0124 (4)0.8098 (3)0.0213 (7)
H130.64091.06580.88910.026*
N140.7090 (4)1.0941 (4)0.7428 (2)0.0212 (6)
H140.744 (5)1.190 (5)0.774 (3)0.025*
C150.7152 (4)1.0268 (4)0.6280 (3)0.0196 (7)
C160.6429 (4)0.8599 (4)0.5784 (3)0.0201 (7)
C170.5717 (4)0.7727 (4)0.6481 (3)0.0208 (7)
H170.52400.66100.61580.025*
C180.7910 (4)1.1199 (4)0.5627 (3)0.0210 (7)
H180.83761.23170.59620.025*
C190.7951 (4)1.0426 (4)0.4485 (3)0.0209 (7)
C200.7240 (5)0.8766 (4)0.3960 (3)0.0240 (7)
C210.6498 (4)0.7865 (4)0.4600 (3)0.0231 (7)
O220.5812 (4)0.6280 (3)0.4145 (2)0.0337 (6)
H220.60860.59130.35010.051*
O230.7252 (4)0.7973 (3)0.2843 (2)0.0374 (7)
H230.78590.85560.25600.056*
O240.8641 (3)1.1125 (3)0.3741 (2)0.0254 (5)
C250.9285 (4)1.2848 (4)0.4117 (3)0.0242 (7)
H25A1.01461.30440.48720.029*
H25B0.83621.35440.42460.029*
C261.0064 (4)1.3300 (5)0.3152 (3)0.0271 (8)
O271.0256 (3)1.2204 (3)0.2309 (2)0.0341 (6)
O281.0496 (4)1.4828 (4)0.3317 (2)0.0424 (8)
O291.1564 (6)1.0664 (4)0.8667 (3)0.0543 (10)
H29A1.088 (5)0.986 (5)0.829 (4)0.065*
H29B1.242 (4)1.041 (6)0.908 (4)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0296 (4)0.0192 (3)0.0192 (3)0.0028 (2)0.0124 (3)0.0049 (2)
O20.0364 (15)0.0224 (12)0.0229 (13)0.0015 (11)0.0139 (11)0.0064 (10)
O30.0401 (16)0.0279 (14)0.0321 (15)0.0007 (11)0.0206 (13)0.0089 (11)
O40.0304 (14)0.0262 (13)0.0218 (12)0.0041 (10)0.0120 (11)0.0091 (10)
S50.0271 (5)0.0246 (4)0.0205 (4)0.0015 (3)0.0129 (3)0.0105 (3)
O60.030 (2)0.059 (3)0.043 (3)0.008 (2)0.0156 (19)0.036 (2)
O70.061 (3)0.030 (2)0.031 (2)0.004 (2)0.034 (2)0.0087 (18)
O80.037 (2)0.039 (2)0.0203 (19)0.0153 (18)0.0114 (16)0.0079 (16)
O90.030 (4)0.039 (4)0.020 (3)0.011 (3)0.004 (3)0.018 (3)
O100.021 (3)0.048 (5)0.036 (5)0.004 (3)0.012 (3)0.027 (4)
O110.029 (4)0.026 (3)0.021 (4)0.007 (3)0.007 (3)0.011 (3)
C120.0217 (16)0.0264 (16)0.0218 (16)0.0010 (13)0.0103 (13)0.0134 (13)
C130.0234 (17)0.0279 (17)0.0168 (15)0.0005 (13)0.0095 (13)0.0100 (13)
N140.0248 (15)0.0224 (14)0.0181 (14)0.0035 (12)0.0079 (11)0.0065 (11)
C150.0195 (16)0.0250 (16)0.0176 (15)0.0006 (13)0.0072 (12)0.0096 (12)
C160.0199 (16)0.0255 (16)0.0177 (15)0.0013 (13)0.0066 (12)0.0090 (13)
C170.0203 (16)0.0243 (16)0.0206 (16)0.0007 (13)0.0066 (13)0.0100 (13)
C180.0208 (16)0.0268 (17)0.0193 (15)0.0012 (13)0.0067 (13)0.0125 (13)
C190.0218 (16)0.0251 (16)0.0227 (16)0.0039 (13)0.0110 (13)0.0144 (13)
C200.0330 (19)0.0274 (17)0.0165 (15)0.0046 (14)0.0114 (14)0.0093 (13)
C210.0301 (18)0.0247 (16)0.0173 (15)0.0015 (14)0.0085 (13)0.0086 (13)
O220.0572 (18)0.0255 (13)0.0210 (13)0.0090 (12)0.0187 (12)0.0044 (10)
O230.072 (2)0.0257 (13)0.0224 (13)0.0002 (13)0.0269 (13)0.0076 (11)
O240.0367 (14)0.0249 (12)0.0214 (12)0.0000 (10)0.0168 (10)0.0108 (10)
C250.0257 (18)0.0297 (18)0.0201 (16)0.0045 (14)0.0080 (14)0.0110 (14)
C260.0219 (17)0.041 (2)0.0224 (17)0.0031 (15)0.0059 (14)0.0172 (15)
O270.0420 (16)0.0423 (15)0.0316 (14)0.0108 (12)0.0238 (12)0.0211 (12)
O280.0592 (19)0.0433 (16)0.0254 (14)0.0226 (14)0.0169 (13)0.0088 (12)
O290.113 (3)0.0303 (16)0.0419 (19)0.0166 (17)0.057 (2)0.0147 (14)
Geometric parameters (Å, º) top
Ni1—O22.038 (2)N14—C151.368 (4)
Ni1—O2i2.038 (2)C15—C161.423 (5)
Ni1—O3i2.034 (3)C15—C181.409 (4)
Ni1—O32.034 (3)C16—C171.399 (4)
Ni1—O4i2.106 (2)C16—C211.419 (5)
Ni1—O42.106 (2)C17—H170.9500
O2—H2A0.8400C18—H180.9500
O2—H2B0.88 (4)C18—C191.375 (5)
O3—H3A0.8400C19—C201.419 (5)
O3—H3B0.76 (5)C19—O241.351 (4)
O4—H4A0.8400C20—C211.374 (4)
O4—H4B0.81 (4)C20—O231.348 (4)
S5—O61.387 (4)C21—O221.350 (4)
S5—O71.423 (4)O22—H220.8400
S5—O81.500 (4)O23—H230.8400
S5—O91.556 (7)O24—C251.436 (4)
S5—O101.371 (7)C25—H25A0.9900
S5—O111.454 (7)C25—H25B0.9900
S5—C121.779 (3)C25—C261.522 (4)
C12—C131.399 (5)C26—O271.242 (5)
C12—C171.377 (5)C26—O281.258 (5)
C13—H130.9500O29—H29A0.827 (19)
C13—N141.331 (4)O29—H29B0.826 (19)
N14—H140.81 (4)
O2i—Ni1—O2180.0N14—C13—C12119.9 (3)
O2—Ni1—O492.67 (10)N14—C13—H13120.0
O2i—Ni1—O4i92.67 (10)C13—N14—H14115 (3)
O2i—Ni1—O487.33 (10)C13—N14—C15123.9 (3)
O2—Ni1—O4i87.33 (10)C15—N14—H14121 (3)
O3i—Ni1—O290.14 (11)N14—C15—C16117.3 (3)
O3—Ni1—O289.86 (11)N14—C15—C18120.9 (3)
O3i—Ni1—O2i89.86 (11)C18—C15—C16121.9 (3)
O3—Ni1—O2i90.14 (11)C17—C16—C15119.3 (3)
O3i—Ni1—O3180.0C17—C16—C21122.3 (3)
O3—Ni1—O4i90.58 (11)C21—C16—C15118.3 (3)
O3i—Ni1—O4i89.43 (11)C12—C17—C16120.4 (3)
O3—Ni1—O489.42 (11)C12—C17—H17119.8
O3i—Ni1—O490.57 (11)C16—C17—H17119.8
O4i—Ni1—O4180.0C15—C18—H18121.3
Ni1—O2—H2A109.5C19—C18—C15117.5 (3)
Ni1—O2—H2B113 (3)C19—C18—H18121.3
H2A—O2—H2B109.2C18—C19—C20122.2 (3)
Ni1—O3—H3A109.5O24—C19—C18125.3 (3)
Ni1—O3—H3B119 (4)O24—C19—C20112.4 (3)
H3A—O3—H3B129.1C21—C20—C19120.0 (3)
Ni1—O4—H4A109.5O23—C20—C19123.8 (3)
Ni1—O4—H4B106 (3)O23—C20—C21116.2 (3)
H4A—O4—H4B113.9C20—C21—C16120.1 (3)
O6—S5—O7117.0 (3)O22—C21—C16117.5 (3)
O6—S5—O8111.0 (3)O22—C21—C20122.4 (3)
O6—S5—C12106.2 (2)C21—O22—H22109.5
O7—S5—O8111.2 (3)C20—O23—H23109.5
O7—S5—C12105.9 (2)C19—O24—C25118.6 (3)
O8—S5—C12104.47 (18)O24—C25—H25A110.1
O9—S5—C12104.9 (3)O24—C25—H25B110.1
O10—S5—O9112.3 (5)O24—C25—C26108.1 (3)
O10—S5—O11117.2 (5)H25A—C25—H25B108.4
O10—S5—C12110.5 (3)C26—C25—H25A110.1
O11—S5—O9105.7 (4)C26—C25—H25B110.1
O11—S5—C12105.3 (3)O27—C26—C25120.6 (3)
C13—C12—S5120.3 (2)O27—C26—O28125.5 (3)
C17—C12—S5120.4 (3)O28—C26—C25113.9 (3)
C17—C12—C13119.2 (3)H29A—O29—H29B114 (3)
C12—C13—H13120.0
S5—C12—C13—N14176.7 (3)C15—C16—C21—O22179.8 (3)
S5—C12—C17—C16176.8 (3)C15—C18—C19—C201.0 (5)
O6—S5—C12—C1390.9 (4)C15—C18—C19—O24179.3 (3)
O6—S5—C12—C1785.9 (4)C16—C15—C18—C190.9 (5)
O7—S5—C12—C1334.2 (4)C17—C12—C13—N140.2 (5)
O7—S5—C12—C17149.0 (3)C17—C16—C21—C20178.7 (3)
O8—S5—C12—C13151.7 (3)C17—C16—C21—O221.5 (5)
O8—S5—C12—C1731.5 (4)C18—C15—C16—C17179.0 (3)
O9—S5—C12—C1337.7 (4)C18—C15—C16—C210.6 (5)
O9—S5—C12—C17139.1 (4)C18—C19—C20—C210.9 (5)
O10—S5—C12—C1383.5 (5)C18—C19—C20—O23179.7 (3)
O10—S5—C12—C1799.7 (5)C18—C19—O24—C254.8 (5)
O11—S5—C12—C13149.1 (4)C19—C20—C21—C160.6 (5)
O11—S5—C12—C1727.7 (4)C19—C20—C21—O22179.6 (3)
C12—C13—N14—C150.2 (5)C19—O24—C25—C26177.2 (3)
C13—C12—C17—C160.0 (5)C20—C19—O24—C25174.9 (3)
C13—N14—C15—C160.6 (5)C21—C16—C17—C12178.8 (3)
C13—N14—C15—C18179.1 (3)O23—C20—C21—C16180.0 (3)
N14—C15—C16—C170.8 (5)O23—C20—C21—O220.2 (5)
N14—C15—C16—C21179.2 (3)O24—C19—C20—C21179.4 (3)
N14—C15—C18—C19178.9 (3)O24—C19—C20—O230.0 (5)
C15—C16—C17—C120.5 (5)O24—C25—C26—O279.2 (5)
C15—C16—C21—C200.4 (5)O24—C25—C26—O28172.1 (3)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O27ii0.841.862.694 (3)175
O2—H2B···O29iii0.88 (4)1.85 (4)2.718 (5)169 (4)
O3—H3A···O8iv0.842.142.829 (5)139
O3—H3B···O6i0.76 (5)2.05 (5)2.691 (5)142 (5)
O4—H4A···O28ii0.841.732.569 (4)173
O4—H4B···O60.81 (4)1.95 (4)2.709 (5)156 (4)
N14—H14···O4v0.81 (4)2.00 (4)2.809 (4)174 (3)
O22—H22···O8vi0.842.032.779 (5)147
O23—H23···O29ii0.841.852.625 (5)153
O29—H29A···O27ii0.83 (4)1.82 (4)2.630 (4)165 (4)
O29—H29B···O7iv0.83 (4)2.23 (4)2.959 (6)148 (5)
C13—H13···O7vii0.952.243.166 (6)165
C17—H17···O22vi0.952.433.354 (4)166
C18—H18···O28viii0.952.403.345 (5)176
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y+2, z+2; (viii) x+2, y+3, z+1.
 

Acknowledgements

The authors thank VLIR-UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDaniel, K. G., Gupta, P., Harbach, R. H., Guida, W. C. & Dou, Q. P. (2004). Biochem. Pharmacol. 67, 1139–1151.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles 85, 627–637.  Google Scholar
First citationDługosz, A. & Duś, D. (1996). Farmaco, 51, 367–374.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoley, M. & Tilley, L. (1998). Pharmacol. Ther. 79, 55–87.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496–2507.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302–7310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035–2044.  CSD CrossRef CAS Google Scholar
First citationSkrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363–1370.  CSD CrossRef CAS Google Scholar
First citationYan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds