research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of post-perovskite-type CaIrO3 reinvestigated: new insights into atomic thermal vibration behaviors

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan, bInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan, cInstitute for Study of the Earth's Interior, Okayama University, Misasa 682-0193, Japan, and dGraduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
*Correspondence e-mail: tuka@yamaguchi-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 June 2015; accepted 20 August 2015; online 29 August 2015)

Single crystals of the title compound, the post-perovskite-type CaIrO3 [calcium iridium(IV) trioxide], have been grown from a CaCl2 flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6 octa­hedral layers and CaO8 hendeca­hedral layers along [010]. Chains formed by edge-sharing of IrO6 octa­hedra (point-group symmetry 2/m..) run along [100] and are inter­connected along [001] by sharing apical O atoms to build up the IrO6 octa­hedral layers. Chains formed by face-sharing of CaO8 hendeca­hedra (point-group symmetry m2m) run along [100] and are inter­connected along [001] by edge-sharing to build up the CaO8 hendeca­hedral layers. The IrO6 octa­hedral layers and CaO8 hendeca­hedral layers are inter­connected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]) [Z. Kristallogr. 224, 345–350], who had revised our previous report [Sugahara et al. (2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]). Am. Mineral. 93, 1148–1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir⋯Ca direction across the shared edge because of the dominant repulsion between the two atoms.

1. Chemical context

The ortho­rhom­bic perovskite-type MgSiO3, the dominant constituent in the Earth's lower mantle, is now believed to undergo the phase transition to the so-called `post-perovskite-type structure', associated with the D′′ seismic discontinuity, at 125 GPa and 2500 K (Murakami et al., 2004[Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. (2004). Science, 304, 855-858.]; Tsuchiya et al., 2004[Tsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. M. (2004). Earth Planet. Sci. Lett. 224, 241-248.]; Oganov & Ono, 2004[Oganov, A. R. & Ono, S. (2004). Nature, 430, 445-448.]; Iitaka et al., 2004[Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. (2004). Nature, 430, 442-445.]; Mao et al., 2004[Mao, W. L., Shen, G., Prakapenka, V. B., Meng, Y., Campbell, A. J., Heinz, D. L., Shu, J., Hemley, R. J. & Mao, H.-K. (2004). Proc. Natl Acad. Sci. USA, 101, 15867-15869.]; Ono & Oganov, 2005[Ono, S. & Oganov, A. R. (2005). Earth Planet. Sci. Lett. 236, 914-932.]; Wentzcovitch et al., 2006[Wentzcovitch, R. M., Tsuchiya, T. & Tsuchiya, J. (2006). Proc. Natl Acad. Sci. USA, 103, 543-546.]; Shieh et al., 2006[Shieh, S. R., Duffy, T. S., Kubo, A., Shen, G., Prakapenka, V. B., Sata, N., Hirose, K. & Ohishi, Y. (2006). Proc. Natl Acad. Sci. USA, 103, 3039-3043.]). Since the discovery of the post-perovskite-type MgSiO3, several ortho­rhom­bic A2+B4+O3 perovskite-type compounds have been found to transform into the post-perovskite-type structure under high pressure and high temperature (Kojitani et al., 2007[Kojitani, H., Shirako, Y. & Akaogi, M. (2007). Phys. Earth Planet. Inter. 165, 127-134.]; Yamaura et al., 2009[Yamaura, K., Shirako, Y., Kojitani, H., Arai, M., Young, D. P., Akaogi, M., Nakashima, M., Katsumata, T., Inaguma, Y. & Takayama-Muromachi, E. (2009). J. Am. Chem. Soc. 131, 2722-2726.]; Tateno et al., 2010[Tateno, S., Hirose, K., Sata, N. & Ohishi, Y. (2010). Phys. Earth Planet. Inter. 181, 54-59.]). Meanwhile, CaIrO3 is known to be one of the few post-perovskite-type compounds stable at ambient conditions (Rodi & Babel, 1965[Rodi, F. & Babel, D. (1965). Z. Anorg. Allg. Chem. 336, 17-23.]; McDaniel & Schneider, 1972[McDaniel, C. L. & Schneider, S. J. (1972). J. Solid State Chem. 4, 275-280.]). The post-perovskite-type CaIrO3 has attracted much attention in the field of Earth science as an excellent low-pressure analogue of the post-perovskite-type MgSiO3 (see, for example, Niwa et al., 2007[Niwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N. & Kikegawa, T. (2007). Phys. Chem. Miner. 34, 679-686.]; Tsuchiya & Tsuchiya, 2007[Tsuchiya, T. & Tsuchiya, J. (2007). Phys. Rev. B, 76, 144119.]; Yoneda et al., 2014[Yoneda, A., Fukui, H., Xu, F., Nakatsuka, A., Yoshiasa, A., Seto, Y., Ono, K., Tsutsui, S., Uchiyama, H. & Baron, A. Q. R. (2014). Nat. Comms, 5, doi: 10.1038/ncomms4453.]).

The crystal structure of the post-perovskite-type CaIrO3 was first proposed by Rodi & Babel (1965[Rodi, F. & Babel, D. (1965). Z. Anorg. Allg. Chem. 336, 17-23.]) on the basis of a single-crystal X-ray diffraction experiment, but incorrect atomic positions were reported. Recently, we have successfully grown single crystals of the post-perovskite-type CaIrO3 and refined the crystal structure of this compound on the basis of single-crystal X-ray diffraction data measured using a sealed X-ray tube (40 kV, 30 mA) as the radiation source (Sugahara et al., 2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]). However, the measured intensity data were rather weak and their accuracy was rather low, because thin needle-like crystals were obtained and the selected crystal for the intensity measurements had a poor grade of crystallinity. This resulted in rather large reliability indices [R(F) = 0.064, wR(F) = 0.065 for 377 reflections] and in structural parameters with rather large uncertainties. In particular, the resulting displace­ment ellipsoids were unusually elongated or flattened. Subsequently, Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]) reinvestigated the crystal structure of the post-perovskite-type CaIrO3 by single-crystal X-ray diffraction and conducted structure refinements for two different crystals using two different types of diffractometers. The two independent refinements showed convergent results with much better reliability indices [R(F2) = 0.013, wR(F2) = 0.031 for 365 reflections; R(F2) = 0.007, wR(F2) = 0.008 for 149 reflections] and structural parameters with reasonably smaller uncertainties. Consequently, Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]) concluded that the displacement ellipsoids had no significant anisotropies in contradiction to our previous report (Sugahara et al., 2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]), but provided no further details of the atomic thermal vibration behaviors. Their X-ray diffraction experiments were conducted under the operating conditions of 2θmax = 80° at 45 kV/40 mA for one crystal and 2θmax = 55° at 50 kV/85 mA for the other crystal. These operating conditions with a low X-ray power and a relatively low 2θmax value may be insufficient for the determination of reliable atomic displacement parameters (ADPs).

In the present study, the crystal structure of the post-perovskite-type CaIrO3 was reinvestigated on the basis of single-crystal X-ray diffraction data measured over a much wider 2θ range using a high-power rotating-anode X-ray generator (60 kV, 250 mA). Special attention to exclude the influence of multiple scattering effects and secondary extinction effects on ADPs was paid as far as possible during data reduction and structure refinement procedures, as will be described in Section 5. On the basis of the resulting structural parameters, the validity of the crystal structure proposed by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]) is examined and the detailed atomic thermal vibration behaviors are discussed.

2. Structural commentary

The post-perovskite-type phase of CaIrO3 crystallizes in the space group Cmcm. The crystal structure consists of IrO6 octa­hedral layers and CaO8 hendeca­hedral layers stacked alternately along [010] (Fig. 1[link]). The Ca and Ir atoms occupy Wyckoff positions 4c and 4a, respectively. The O atoms occupy two non-equivalent sites: O1 at Wyckoff position 4c and O2 at Wyckoff position 8f. The site symmetries are m2m for Ca, 2/m.. for Ir, m2m for O1 and m.. for O2. Ca—O and Ir—O bond lengths are listed in Table 1[link]. In the IrO6 octa­hedral layers (Fig. 2[link]), chains of IrO6 octa­hedra along [100] are formed by sharing O2⋯O2 edges, and these chains are inter­connected along [001] by sharing the apical O1 atoms. In the CaO8 hendeca­hedral layers (Fig. 3[link]), chains of CaO8 hendeca­hedra along [100] are formed by sharing O2⋯O1⋯O2 faces, and these chains are inter­connected along [001] by sharing O2⋯O2 edges. The alternate stacking of IrO6 octa­hedral layers and CaO8 hendeca­hedral layers along [010] results from sharing O1⋯O2 and O2⋯O2 edges between both layers. Further details of the general description of the crystal structure are provided in our previous paper (Sugahara et al., 2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]).

Table 1
Selected bond lengths (Å)

Ca—O1i 2.333 (3) Ir—O1 1.9722 (15)
Ca—O2i 2.460 (2) Ir—O2iii 2.0488 (18)
Ca—O2ii 2.506 (3)    
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) x, -y+1, -z+1; (iii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Polyhedral representation of the CaIrO3 post-perovskite-type structure, composed of the alternate stacking of IrO6 octa­hedral layers and CaO8 hendeca­hedral layers along [010].
[Figure 2]
Figure 2
Polyhedral view of an IrO6 octa­hedral layer projected on (010). Symmetry codes: (i) x + [{1\over 2}], y + [{1\over 2}], z; (ii) x + [{1\over 2}], −y + [{1\over 2}], −z; (iii) x + 1, −y + 1, z − [{1\over 2}]; (iv) x + 1, y, −z + [{1\over 2}]; (v) x, −y + 1, z − [{1\over 2}]; (vi) x, y, −z + [{1\over 2}].
[Figure 3]
Figure 3
Polyhedral view of a CaO8 hendeca­hedral layer projected on (010). Symmetry codes: (i) x, −y + 1, −z + 1; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iii) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (v) x, y, −z + [{3\over 2}]; (vi) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.

3. Atomic thermal vibration behaviors

In the present structure refinement using a high-power X-ray source, the accuracy of the refined structural parameters was considerably improved compared with our previous report (Sugahara et al., 2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]), being comparable to those reported by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]). The resulting positional parameters also show excellent consistency with those reported by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]). On the other hand, the present displacement ellipsoids (Fig. 4[link]) are different from those given by Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]). They considered that the thermal vibrations of the Ir and Ca atoms exhibited no significant anisotropies, but in fact the reported displacement ellipsoids of both atoms were somewhat elongated parallel to the (100) plane. In contrast, the mean-square displacements (MSDs) of both atoms obtained from the present refinement are as follows: Ir, 0.00316 (5) Å2 along the shortest ellipsoid axis, 0.00319 (5) Å2 along the inter­mediate one and 0.00387 (6) Å2 along the longest one; Ca, 0.0055 (3) Å2 along the shortest ellipsoid axis, 0.0058 (3) Å2 along the inter­mediate one and 0.0065 (3) Å2 along the longest one. Here, in both atoms, the longest ellipsoid axes are just in the [100] direction and the inter­mediate and the shortest ones are within the (100) plane. The present results indicate that the MSDs of both atoms are significantly the largest in the [100] direction, in contradiction to the report of Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]), although the thermal vibrations of both atoms only exhibit small anisotropies.

[Figure 4]
Figure 4
Unit cell of the CaIrO3 post-perovskite with displacement ellipsoids drawn at the 80% probability level.

As understood from the MSDs shown above, the displacement ellipsoid of the Ir atom is very close to a uniaxial ellipsoid elongating along [100]. The Ir⋯Ca direction across the O2⋯O2 shared edge between the IrO6 octa­hedron and CaO8 hendeca­hedron is parallel to the (100) plane; hence, this direction can be considered as the direction of nearly the smallest MSD of the Ir atom although it deviates by 10.1° from the direction of the shortest ellipsoid axis. The ellipsoid axes of the Ca atom are in the [100], [010] and [001] directions by requirements of its site symmetry, but its displacement ellipsoid can also be approximated as a uniaxial ellipsoid elongating along [100]. The Ir⋯Ca direction across the O2⋯O2 shared edge can thus be characterized also as the direction of nearly the smallest MSD of the Ca atom. These suggest that the dominant Ir⋯Ca repulsion across the O2⋯O2 shared edge suppresses the mutual thermal vibrations of both atoms towards the Ir⋯Ca direction. Indeed, the Ir⋯Ca distance [= 3.0678 (9) Å] is the shortest of the cation–cation distances [cf. 3.1466 (5) Å for the Ir⋯Ir distance across the O2⋯O2 shared edge between IrO6 octa­hedra; 3.1466 (5) Å for the Ca⋯Ca distance across the O2⋯O1⋯O2 shared face between CaO8 hendeca­hedra; 3.4501 (8) Å for the Ir⋯Ca distance across the O1⋯O2 shared edge between the IrO6 octa­hedron and CaO8 hendeca­hedron; 3.9755 (3) Å for the Ca⋯Ca distance across the O2⋯O2 shared edge between CaO8 hendeca­hedra].

4. Synthesis and crystallization

The reagents Ca(OH)2 and Ir were employed as the starting materials, and mixed together with CaCl2 in the molar ratio Ca(OH)2:Ir:CaCl2 = 1:1:10. The mixture was heated in air at 1100 K for 8 h, and then cooled gradually to 600 K at a rate of 10 K h−1. Dark reddish-brown crystals of the post-perovskite-type CaIrO3 with a thin needle shape were grown from the CaCl2 flux. The crystals were isolated by dissolving the solid­ified CaCl2 melt with distilled water.

5. Refinement

A total of 2593 intensity data up to 2θmax = 100° were collected. After the intensity data were corrected for Lorentz-polarization factors and absorption effects (ψ-scan method; North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]), they were averaged in Laue symmetry mmm to give 692 independent reflections. Of these, independent reflections with Fo ≤ 3σ(Fo) were eliminated. Even if independent reflections had intensities of Fo > 3σ(Fo) after averaging, those averaged from a data set of equivalent reflections including reflection(s) with Fo ≤ 3σ(Fo) were also discarded since these reflections were potentially affected by multiple scattering. Moreover, independent reflections with (sin θ)/λ < 0.334 Å−1 were eliminated to reduce secondary extinction effects and to avoid dependence on atomic charge as far as possible in the choice of atomic scattering factors. Finally, 412 independent reflections were used in the present refinement. Several correction models for the secondary extinction effects were attempted during the refinement, and the isotropic correction of Type II (Becker & Coppens, 1974a[Becker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129-147.],b[Becker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148-153.]) with a Gaussian particle-size-distribution model yielded the best fit. The reliability indices converged to R(F) = 0.0108 and wR(F) = 0.0104 for 412 reflections, comparable to those of Hirai et al. (2009[Hirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345-350.]), and were dramatically improved in comparison with those of our previous report (Sugahara et al., 2008[Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148-1152.]). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula CaIrO3
Mr 280.30
Crystal system, space group Orthorhombic, Cmcm
Temperature (K) 298
a, b, c (Å) 3.1466 (5), 9.8690 (16), 7.3019 (5)
V3) 226.75 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 61.02
Crystal size (mm) 0.20 × 0.01 × 0.01
 
Data collection
Diffractometer Rigaku AFC7R
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.486, 0.543
No. of measured, independent and observed [F > 3.0σ(F)] reflections 2593, 692, 438
Rint 0.019
(sin θ/λ)max−1) 1.078
 
Refinement
R[F > 3σ(F)], wR(F), S 0.011, 0.010, 1.56
No. of reflections 412
No. of parameters 20
Δρmax, Δρmin (e Å−3) 1.21, −1.89
Computer programs: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC. Rigaku Corporation, Tokyo, Japan.]), RADY (Sasaki, 1987[Sasaki, S. (1987). RADY. National Laboratory for High Energy Physics, Japan.]), ATOMS for Windows (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: RADY (Sasaki, 1987); program(s) used to solve structure: coordinates taken from a previous refinement; program(s) used to refine structure: RADY (Sasaki, 1987); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Calcium iridium(IV) trioxide top
Crystal data top
CaIrO3F(000) = 484
Mr = 280.30Dx = 8.214 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2c 2Cell parameters from 25 reflections
a = 3.1466 (5) Åθ = 22.5–25.0°
b = 9.8690 (16) ŵ = 61.02 mm1
c = 7.3019 (5) ÅT = 298 K
V = 226.75 (6) Å3Needle, dark reddish-brown
Z = 40.20 × 0.01 × 0.01 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.019
ω–2θ scansθmax = 50.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 06
Tmin = 0.486, Tmax = 0.543k = 2121
2593 measured reflectionsl = 1515
692 independent reflections3 standard reflections every 150 reflections
438 reflections with F > 3.0σ(F) intensity decay: none
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/σ2(F)
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.0003
wR(F2) = 0.021Δρmax = 1.21 e Å3
S = 1.56Δρmin = 1.89 e Å3
412 reflectionsExtinction correction: isotropic Type II (Becker & Coppens, 1974a,b)
20 parametersExtinction coefficient: 1.50E4 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.00000.7502 (1)0.25000.0060 (2)
Ir0.00000.00000.00000.00340 (5)
O10.00000.0756 (4)0.25000.0065 (11)
O20.00000.3724 (3)0.4495 (3)0.0059 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0065 (3)0.0055 (3)0.0058 (3)0.00000.00000.0000
Ir0.00387 (6)0.00317 (5)0.00317 (5)0.00000.00000.00001 (10)
O10.0084 (13)0.0067 (12)0.0045 (10)0.00000.00000.0000
O20.0064 (9)0.0054 (8)0.0058 (7)0.00000.00000.0007 (6)
Geometric parameters (Å, º) top
Ca—O1i2.333 (3)Ir—Irxxv3.6510 (3)
Ca—O1ii2.333 (3)O1—Ir1.9722 (15)
Ca—O2i2.460 (2)O1—Irxxv1.9722 (15)
Ca—O2ii2.460 (2)O1—Caxxiii2.333 (3)
Ca—O2iii2.460 (2)O1—Caxxiv2.333 (3)
Ca—O2iv2.460 (2)O1—O1xii3.1466 (5)
Ca—O2v2.506 (3)O1—O1xiii3.1466 (5)
Ca—O2vi2.506 (3)O1—O1vii3.944 (3)
Ir—O11.9722 (15)O1—O1xxv3.944 (3)
Ir—O1vii1.9722 (15)O1—O2viii2.748 (2)
Ir—O2viii2.0488 (18)O1—O2ix2.748 (2)
Ir—O2ix2.0488 (18)O1—O2xxvi2.748 (2)
Ir—O2x2.0488 (18)O1—O2xxvii2.748 (2)
Ir—O2xi2.0488 (18)O1—O2xxiii2.936 (3)
Ca—Caxii3.1466 (5)O1—O2xxiv2.936 (3)
Ca—Caxiii3.1466 (5)O1—O2x2.936 (3)
Ca—Caxiv3.9755 (3)O1—O2xi2.936 (3)
Ca—Caxv3.9755 (3)O1—O2xxviii3.271 (4)
Ca—Caxvi3.9755 (3)O1—O23.271 (4)
Ca—Caxvii3.9755 (3)O2—Irxx2.0488 (18)
Ca—Irxviii3.0678 (9)O2—Irxxi2.0488 (18)
Ca—Irxix3.0678 (9)O2—Caxxiii2.460 (2)
Ca—Iri3.4501 (8)O2—Caxxiv2.460 (2)
Ca—Irii3.4501 (8)O2—Caxix2.506 (3)
Ca—Irxx3.4501 (8)O2—O1xx2.748 (2)
Ca—Irxxi3.4501 (8)O2—O1xxi2.748 (2)
Ir—Caxxii3.0678 (9)O2—O1i2.936 (3)
Ir—Cavi3.0678 (9)O2—O1ii2.936 (3)
Ir—Caxxiii3.4501 (8)O2—O13.271 (4)
Ir—Caxxiv3.4501 (8)O2—O2v2.625 (5)
Ir—Caviii3.4501 (8)O2—O2xxviii2.913 (5)
Ir—Caix3.4501 (8)O2—O2xxvi2.976 (5)
Ir—Irxii3.1466 (5)O2—O2xxvii2.976 (5)
Ir—Irxiii3.1466 (5)O2—O2xii3.1466 (5)
Ir—Irvii3.6510 (3)O2—O2xiii3.1466 (5)
O1i—Ca—O1ii84.82 (13)O2vi—Ca—O2iii73.63 (9)
O1i—Ca—O2i86.02 (7)O2vi—Ca—O2iv73.63 (9)
O1i—Ca—O2ii142.50 (6)O2vi—Ca—O2v122.28 (13)
O1i—Ca—O2vi69.12 (5)O2iii—Ca—O2iv79.52 (8)
O1i—Ca—O2iii86.02 (7)O2iii—Ca—O2v139.04 (5)
O1i—Ca—O2iv142.50 (6)O2iv—Ca—O2v139.04 (5)
O1i—Ca—O2v69.12 (5)O1—Ir—O1vii180.00
O1ii—Ca—O2i142.50 (6)O1—Ir—O2viii86.22 (10)
O1ii—Ca—O2ii86.02 (7)O1—Ir—O2ix86.22 (10)
O1ii—Ca—O2vi69.12 (5)O1—Ir—O2x93.78 (10)
O1ii—Ca—O2iii142.50 (6)O1—Ir—O2xi93.78 (10)
O1ii—Ca—O2iv86.02 (7)O1vii—Ir—O2viii93.78 (10)
O1ii—Ca—O2v69.12 (5)O1vii—Ir—O2ix93.78 (10)
O2i—Ca—O2ii79.52 (8)O1vii—Ir—O2x86.22 (10)
O2i—Ca—O2vi139.04 (5)O1vii—Ir—O2xi86.22 (10)
O2i—Ca—O2iii72.61 (10)O2viii—Ir—O2ix100.33 (12)
O2i—Ca—O2iv121.28 (13)O2viii—Ir—O2x79.67 (12)
O2i—Ca—O2v73.63 (9)O2viii—Ir—O2xi179.97
O2ii—Ca—O2vi139.04 (5)O2ix—Ir—O2x179.97
O2ii—Ca—O2iii121.28 (13)O2ix—Ir—O2xi79.67 (12)
O2ii—Ca—O2iv72.61 (10)O2x—Ir—O2xi100.33 (12)
O2ii—Ca—O2v73.63 (9)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x, y+1, z1/2; (vii) x, y, z1/2; (viii) x1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z1/2; (x) x1/2, y1/2, z+1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x1, y, z; (xiii) x+1, y, z; (xiv) x1/2, y+3/2, z1/2; (xv) x1/2, y+3/2, z+1/2; (xvi) x+1/2, y+3/2, z1/2; (xvii) x+1/2, y+3/2, z+1/2; (xviii) x, y+1, z; (xix) x, y+1, z+1/2; (xx) x1/2, y+1/2, z+1/2; (xxi) x+1/2, y+1/2, z+1/2; (xxii) x, y1, z; (xxiii) x1/2, y1/2, z; (xxiv) x+1/2, y1/2, z; (xxv) x, y, z+1/2; (xxvi) x1/2, y+1/2, z+1; (xxvii) x+1/2, y+1/2, z+1; (xxviii) x, y, z+1/2.
 

Acknowledgements

This work was partly performed under the research project No. 2010G608 at the Photon Factory BL-10A, High Energy Accelerator Research Organization, Tsukuba, Japan. We thank F. Yachi and K. Fujii of Yamaguchi University for their experimental assistance.

References

First citationBecker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBecker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148–153.  CrossRef IUCr Journals Web of Science Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationHirai, S., Welch, M. D., Aguado, F. & Redfern, S. A. T. (2009). Z. Kristallogr. 224, 345–350.  Web of Science CrossRef CAS Google Scholar
First citationIitaka, T., Hirose, K., Kawamura, K. & Murakami, M. (2004). Nature, 430, 442–445.  CrossRef PubMed CAS Google Scholar
First citationKojitani, H., Shirako, Y. & Akaogi, M. (2007). Phys. Earth Planet. Inter. 165, 127–134.  Web of Science CrossRef CAS Google Scholar
First citationMao, W. L., Shen, G., Prakapenka, V. B., Meng, Y., Campbell, A. J., Heinz, D. L., Shu, J., Hemley, R. J. & Mao, H.-K. (2004). Proc. Natl Acad. Sci. USA, 101, 15867–15869.  CrossRef PubMed CAS Google Scholar
First citationMcDaniel, C. L. & Schneider, S. J. (1972). J. Solid State Chem. 4, 275–280.  CrossRef CAS Google Scholar
First citationMurakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. (2004). Science, 304, 855–858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNiwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N. & Kikegawa, T. (2007). Phys. Chem. Miner. 34, 679–686.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOganov, A. R. & Ono, S. (2004). Nature, 430, 445–448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, S. & Oganov, A. R. (2005). Earth Planet. Sci. Lett. 236, 914–932.  CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodi, F. & Babel, D. (1965). Z. Anorg. Allg. Chem. 336, 17–23.  CrossRef CAS Web of Science Google Scholar
First citationSasaki, S. (1987). RADY. National Laboratory for High Energy Physics, Japan.  Google Scholar
First citationShieh, S. R., Duffy, T. S., Kubo, A., Shen, G., Prakapenka, V. B., Sata, N., Hirose, K. & Ohishi, Y. (2006). Proc. Natl Acad. Sci. USA, 103, 3039–3043.  CrossRef PubMed CAS Google Scholar
First citationSugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. & Ohtaka, O. (2008). Am. Mineral. 93, 1148–1152.  Web of Science CrossRef CAS Google Scholar
First citationTateno, S., Hirose, K., Sata, N. & Ohishi, Y. (2010). Phys. Earth Planet. Inter. 181, 54–59.  CrossRef CAS Google Scholar
First citationTsuchiya, T. & Tsuchiya, J. (2007). Phys. Rev. B, 76, 144119.  CrossRef Google Scholar
First citationTsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. M. (2004). Earth Planet. Sci. Lett. 224, 241–248.  Web of Science CrossRef CAS Google Scholar
First citationWentzcovitch, R. M., Tsuchiya, T. & Tsuchiya, J. (2006). Proc. Natl Acad. Sci. USA, 103, 543–546.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaura, K., Shirako, Y., Kojitani, H., Arai, M., Young, D. P., Akaogi, M., Nakashima, M., Katsumata, T., Inaguma, Y. & Takayama-Muromachi, E. (2009). J. Am. Chem. Soc. 131, 2722–2726.  CrossRef PubMed CAS Google Scholar
First citationYoneda, A., Fukui, H., Xu, F., Nakatsuka, A., Yoshiasa, A., Seto, Y., Ono, K., Tsutsui, S., Uchiyama, H. & Baron, A. Q. R. (2014). Nat. Comms, 5, doi: 10.1038/ncomms4453.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds