research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[bis­­(μ-2-amino-4,5-di­cyano­imidazolato-κ2N1:N3)-trans-bis­­(N,N′-di­methyl­formamide-κO)cadmium]

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China, and bSchool of Textile and Clothing, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: 18260599283@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 July 2015; accepted 1 August 2015; online 12 August 2015)

In the title structure, [Cd(C5H2N5)2(C3H7NO)2]n or [Cd(adci)2(DMF)2]n, the Cd2+ ion is located on a twofold rotation axis and is six-coordinated in a CdN4O2 manner by four imidazole N atoms of four symmetry-related 2-amino-4,5-di­cyano­imidazolate (adci) anions in the equatorial plane and by two O atoms of symmetry-related N,N-di­methyl­formamide (DMF) ligands in axial positions. The adci anions bridge adjacent Cd2+ ions [shortest Cd⋯Cd separation = 6.733 (3) Å] into a layered coordination polymer extending parallel to (001). The primary amino group and the non-coordinating cyano groups of adci anions are involved in hydrogen-bonding inter­actions with DMF ligands to stabilize the crystal structure.

1. Chemical context

Porous materials such as metal-organic frameworks (MOFs) combining advantages of both organic and inorganic components have emerged as a unique class of crystalline solid-state materials today due to their potential applications in gas adsorption and separation (Collins & Zhou, 2007[Collins, D. J. & Zhou, H.-C. (2007). J. Mater. Chem. 17, 3154-3160.]), catalysis (Gu et al., 2012[Gu, Z.-Y., Yang, C.-X., Chang, N. & Yan, X.-P. (2012). Acc. Chem. Res. 45, 734-745.]) and analytical chemistry (Mondal et al., 2013[Mondal, S. S., Bhunia, A., Baburin, I. A., Jäger, C., Kelling, A., Schilde, U., Seifert, G., Janiak, C. & Holdt, H. J. (2013). Chem. Commun. 49, 7599-7601.]). As a branch of MOFs, zeolitic imidazolate frameworks (ZIFs), which are topologically related to inorganic zeolites, commonly reveal high thermal and chemical stability (Eddaoudi et al., 2015[Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.]). Bridging N-donor ligands such as 2-substituted 4,5-di­cyano­imidazole (dci) mol­ecules are often used to synthesize ZIFs (Sava et al., 2009[Sava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394-10396.]; Mondal et al., 2014[Mondal, S. S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C. & Holdt, H.-J. (2014). J. Am. Chem. Soc. 136, 44-47.]). In addition, the cyano group of dci can generate carboxyl­ate- (Orcajo et al., 2014[Orcajo, G., Calleja, G., Botas, J. A., Wojtas, L., Alkordi, M. H. & Sánchez-Sánchez, M. (2014). Cryst. Growth Des. 14, 739-746.]) or tetra­zole-based (Xiong et al., 2002[Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]) ligands by in-situ ligand reactions.

[Scheme 1]

We chose a rigid planar ligand, viz. 2-amino-4,5-di­cyano­imidazole (adci), and Cd2+ that exhibits strong coordination capabilities for imidazolates, to prepare new metal-organic polymers and report here the structure of the title compound, [Cd(C5H2N5)2(C3H7NO)2]n, or [Cd(adci)2(DMF)2]n (DMF is di­methyl­formamide), (I)[link].

2. Structural commentary

Complex (I)[link] is a mononuclear cadmium coordination polymer, in which the central Cd2+ ion exhibits a tetra­gonally distorted octa­hedral coordination environment (Fig. 1[link]). The asymmetric unit of (I)[link] comprises one Cd2+ ion located on a twofold rotation axis, one 2-amino-4,5-di­cyano­imidazolate ion and one DMF ligand, both in general positions. The Cd2+ ion has an N4O2 coordination set defined by four N atoms of four symmetry-related adci anions in the equatorial plane and by two oxygen atoms of two symmetry-related DMF ligands in axial positions. The Cd—N bond lengths [2.339 (4) and 2.353 (4) Å] and Cd—O bond length [2.322 (4) Å] fall in normal ranges (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). Each adci anion bridges two adjacent Cd2+ ions in a bis-monodentate mode through two imidazole N atoms whereas the DMF mol­ecules serve as terminal ligands. Thus, four Cd2+ ions and four bridging adci ligands generate a square motif aligned parallel to (001), as shown in Fig. 2[link]. The Cd⋯Cd distance along the edge of the square is 6.733 (3) Å, which is similar to previously reported structures (Li et al., 2010[Li, J.-X., Du, Z.-X., Zhou, J., An, H.-Q., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2010). Inorg. Chem. Commun. 13, 127-130.]; Wang et al., 2010[Wang, S., Zhao, T.-T., Li, G.-H., Wojtas, L., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). J. Am. Chem. Soc. 132, 18038-18041.]).

[Figure 1]
Figure 1
The coordination sphere around Cd2+ in the structure of (I)[link], with displacement ellipsoids drawn at the 30% probability level. H atoms bonded to C and N atoms have been omitted for clarity. [Symmetry code: (A) 2 − x, y, [{3\over 2}] − z.].
[Figure 2]
Figure 2
The two-dimensional network in the structure of (I)[link], viewed perpendicular to the ab plane. Colour key: Cd steel, N blue, H grey, C light grey ande O red.

3. Supra­molecular features

Complex (I)[link] possesses various hydrogen-bonding inter­actions (Table 1[link]). The amino group and the non-coordinating cyano N atoms are involved in hydrogen-bonding inter­actions with DMF ligands to stabilize the crystal structure. In the 2D metal-organic network, inter­molecular N1—H1A⋯O1 hydrogen bonds between the primary amine group of adci and the O atoms of an DMF ligand as well as C7—H7C⋯N5 inter­actions between the methyl C atoms of DMF and the non-coordinating N atoms of the cyano group of an adci anion play a crucial role in directing and stabilizing the assembly of the supra­molecular structure (Kim et al., 2015[Kim, D.-W., Shin, J. W., Kim, J. H. & Moon, D. (2015). Acta Cryst. E71, 173-175.]; Sava et al., 2009[Sava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394-10396.]), as shown in Fig. 3[link]a. The layers are packed together by weak C7—H7B⋯N4 inter­actions, involving the methyl C atom of DMF and another N atom of a cyano group (Fig. 3[link]b). The lengths of these three hydrogen bonds fall in or approach the range (3.2–4.0 Å) of weak hydrogen-bonding inter­actions (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]; Steed & Atwood, 2000[Steed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 26. Chichester: John Wiley & Son.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.45 3.187 (6) 144
C7—H7C⋯N5i 0.96 2.68 3.429 (12) 135
C7—H7B⋯N4ii 0.96 2.65 3.496 (11) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
(a) View of two kinds of hydrogen bonds in the layers. Dashed lines represent C—H⋯N (green) and N—H⋯O (red) hydrogen bonds, respectively. (b) The crystal packing between the layers in the title structure. C—H⋯N hydrogen-bonding inter­actions are drawn as red dashed lines. [Symmetry codes: (a) [{3\over 2}] − x, −[{1\over 2}] + y, z; (b) [{3\over 2}] − x, [{1\over 2}] + y, z; (c) x, −y, −[{1\over 2}] + z].

4. Database survey

The cyano groups of the dci ligands exhibit a strong electron-withdrawing effect. Consequently, the formation of anionic species is relatively straightforward (Prasad et al., 1999[Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25-30.]) and 4,5-di­cyano­imidazoles can be used in the preparation of coordination frameworks with different metal ions. However, reports on systems with 2-amino-4,5-di­cyano­imidazole, a novel rigid planar ligand with five potential coordination sites, are rather scarce. A search in the Cambridge Structural Database (Version 5.27, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 4,5-di­cyano­imidazole revealed eleven complexes with 2-substituted 4,5-imidazole­dicarbo­nitrile ligands. An unprecedented SHG-active silver-containing MOF with a rare 103 topology has been reported (Yang et al., 2013[Yang, H., Sang, R.-L., Xu, X. & Xu, L. (2013). Chem. Commun. 49, 2909-2911.]), as well as the synthesis and fluorescent properties of a 3D heterometallic polymeric complex {[K[Cd(dci)2(H2O)6]Cl]}n (Li et al., 2010[Li, J.-X., Du, Z.-X., Zhou, J., An, H.-Q., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2010). Inorg. Chem. Commun. 13, 127-130.]), and of {[Zn2(IMDN)4(H2O)3]·3H2O3}n and [Co(IMDN)2(H2O)2]n (Hu et al., 2013[Hu, T.-P., Liu, J.-F., Lu, X.-Y., Xiao, L.-Q. & Song, J.-F. (2013). Chin. J. Inorg. Chem. 29, 1928-1934.]) (IMDN is 2H-imidazole-4,5-dicarbo­nitrile) with chain structures. However, the coordination modes of the imidazoles in these complexes are different.

5. Synthesis and crystallization

Compound (I)[link] was synthesized as follows: adci (0.0266 g, 0.2 mmol) and HNO3 (0.2 ml, 3.5 M in DMF) were mixed in 2 ml DMF. After stirring for 0.5 h, Cd(NO3)2·4H2O (0.0308 g, 0.1 mmol) in 6 ml methanol was added dropwise. The mixture was further stirred for another hour and then filtrated. The filtrate was kept at ambient temperature. After about three weeks, yellow block-shaped crystals of (I)[link] suitable for single X-ray diffraction were obtained. Yield: 0.0224 g (43% based on Cd). FT–IR (KBr, cm−1): 3436, 3346, 2930, 2217, 1658, 1525, 1486, 1444, 1385, 1328, 1305, 1115, 675.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. Hydrogen atoms of the organic ligands were placed in idealized positions, with d(C—H) = 0.93 Å for sp2-bound H atoms and Uiso(H) = 1.2Ueq(C), and d(C—H) = 0.96 Å for methyl H atoms and Uiso(H) = 1.5Ueq(C). H atoms of the amino group were located from a difference map and were refined with d(N—H) = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C5H2N5)2(C3H7NO)2]
Mr 522.83
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 9.8438 (2), 9.1897 (2), 22.8948 (4)
V3) 2071.10 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.18 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.854, 0.896
No. of measured, independent and observed [I > 2σ(I)] reflections 9497, 2386, 1741
Rint 0.022
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.159, 1.07
No. of reflections 2353
No. of parameters 143
No. of restraints 96
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.71, −0.66
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al. (2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al. (2006) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[bis(µ-2-amino-4,5-dicyanoimidazolato-κ2N1:N3)-trans-bis(N,N'-dimethylformamide-κO)cadmium] top
Crystal data top
[Cd(C5H2N5)2(C3H7NO)2]F(000) = 1048
Mr = 522.83Dx = 1.677 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abθ = 3.5–27.5°
a = 9.8438 (2) ŵ = 1.10 mm1
b = 9.1897 (2) ÅT = 296 K
c = 22.8948 (4) ÅBlock, yellow
V = 2071.10 (7) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.854, Tmax = 0.896k = 1111
9497 measured reflectionsl = 2926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0999P)2 + 4.109P]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 1.71 e Å3
96 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.11224 (5)0.75000.0180 (2)
N10.8425 (4)0.4650 (5)0.71416 (18)0.0327 (10)
H1A0.80430.53870.69780.039*
H1B0.92430.44160.70500.039*
N20.8289 (4)0.2699 (4)0.78205 (17)0.0269 (9)
C40.7391 (6)0.1135 (5)0.8626 (2)0.0360 (12)
O10.9090 (4)0.1297 (4)0.65667 (17)0.0449 (10)
N31.1454 (4)0.0840 (4)0.72898 (18)0.0224 (8)
C10.7732 (6)0.3852 (5)0.75474 (18)0.0235 (10)
C20.7281 (5)0.2249 (5)0.81951 (18)0.0258 (9)
C31.1166 (4)0.1874 (5)0.6876 (2)0.0234 (9)
N60.9069 (5)0.1975 (7)0.5616 (2)0.0516 (13)
N50.8982 (5)0.2271 (6)0.6291 (3)0.0571 (15)
N40.7418 (7)0.0315 (6)0.9000 (2)0.0651 (17)
C50.9921 (5)0.2038 (6)0.6565 (2)0.0308 (11)
C60.9373 (9)0.2022 (10)0.6174 (3)0.0700 (18)
H60.99310.28010.62720.084*
C80.9492 (13)0.3011 (17)0.5189 (5)0.122 (3)
H8A0.91150.39470.52820.183*
H8B0.91780.27110.48110.183*
H8C1.04650.30730.51870.183*
C70.8193 (12)0.0771 (13)0.5425 (5)0.113 (3)
H7A0.86680.01340.54720.169*
H7B0.79590.09020.50220.169*
H7C0.73810.07580.56570.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0143 (3)0.0181 (3)0.0217 (3)0.0000.00059 (15)0.000
N10.023 (2)0.032 (2)0.043 (2)0.0050 (18)0.0117 (18)0.0122 (19)
N20.0247 (19)0.029 (2)0.027 (2)0.0072 (17)0.0029 (15)0.0036 (16)
C40.043 (3)0.033 (3)0.032 (2)0.017 (2)0.010 (2)0.0043 (19)
O10.048 (2)0.060 (2)0.0270 (18)0.0003 (19)0.0062 (17)0.0052 (16)
N30.0155 (18)0.024 (2)0.0272 (18)0.0032 (16)0.0015 (16)0.0037 (17)
C10.022 (2)0.024 (2)0.024 (2)0.0054 (17)0.0030 (16)0.0004 (16)
C20.029 (2)0.026 (2)0.023 (2)0.0059 (19)0.0019 (18)0.0001 (17)
C30.021 (2)0.021 (2)0.028 (2)0.0009 (17)0.0007 (18)0.0001 (17)
N60.052 (3)0.076 (3)0.027 (2)0.014 (3)0.006 (2)0.005 (2)
N50.036 (3)0.069 (4)0.067 (4)0.004 (3)0.019 (3)0.021 (3)
N40.100 (5)0.054 (3)0.041 (3)0.030 (3)0.022 (3)0.018 (2)
C50.029 (3)0.028 (3)0.035 (3)0.0021 (19)0.001 (2)0.008 (2)
C60.072 (4)0.084 (4)0.054 (3)0.025 (4)0.004 (3)0.007 (3)
C80.143 (7)0.138 (8)0.085 (6)0.023 (7)0.016 (6)0.036 (6)
C70.116 (7)0.130 (7)0.092 (6)0.023 (6)0.024 (5)0.032 (6)
Geometric parameters (Å, º) top
Cd1—O1i2.322 (4)C1—N3iii1.342 (7)
Cd1—O12.322 (4)C2—C3iii1.371 (6)
Cd1—N2i2.339 (4)C3—C2ii1.371 (6)
Cd1—N22.339 (4)C3—C51.426 (6)
Cd1—N3i2.353 (4)N6—C61.311 (9)
Cd1—N32.353 (4)N6—C81.427 (13)
N1—C11.366 (6)N6—C71.469 (12)
N1—H1A0.8600N5—C51.136 (7)
N1—H1B0.8600C6—H60.9300
N2—C11.347 (6)C8—H8A0.9600
N2—C21.375 (6)C8—H8B0.9600
C4—N41.141 (6)C8—H8C0.9600
C4—C21.426 (6)C7—H7A0.9600
O1—C61.154 (8)C7—H7B0.9600
N3—C1ii1.342 (7)C7—H7C0.9600
N3—C31.371 (6)
O1i—Cd1—O1172.1 (2)N3iii—C1—N1123.0 (4)
O1i—Cd1—N2i88.18 (14)N2—C1—N1122.3 (5)
O1—Cd1—N2i86.91 (14)C3iii—C2—N2109.1 (4)
O1i—Cd1—N286.91 (14)C3iii—C2—C4124.4 (4)
O1—Cd1—N288.18 (14)N2—C2—C4126.3 (4)
N2i—Cd1—N2103.5 (2)C2ii—C3—N3108.9 (4)
O1i—Cd1—N3i95.71 (15)C2ii—C3—C5124.5 (4)
O1—Cd1—N3i90.38 (15)N3—C3—C5126.6 (4)
N2i—Cd1—N3i167.68 (14)C6—N6—C8125.3 (9)
N2—Cd1—N3i88.42 (14)C6—N6—C7116.6 (8)
O1i—Cd1—N390.38 (15)C8—N6—C7118.0 (8)
O1—Cd1—N395.71 (15)N5—C5—C3173.8 (6)
N2i—Cd1—N388.42 (13)O1—C6—N6133.3 (9)
N2—Cd1—N3167.68 (15)O1—C6—H6113.4
N3i—Cd1—N379.89 (19)N6—C6—H6113.4
C1—N1—H1A120.0N6—C8—H8A109.5
C1—N1—H1B120.0N6—C8—H8B109.5
H1A—N1—H1B120.0H8A—C8—H8B109.5
C1—N2—C2103.4 (4)N6—C8—H8C109.5
C1—N2—Cd1129.4 (3)H8A—C8—H8C109.5
C2—N2—Cd1122.0 (3)H8B—C8—H8C109.5
N4—C4—C2174.4 (6)N6—C7—H7A109.5
C6—O1—Cd1131.7 (6)N6—C7—H7B109.5
C1ii—N3—C3103.9 (4)H7A—C7—H7B109.5
C1ii—N3—Cd1132.5 (3)N6—C7—H7C109.5
C3—N3—Cd1123.1 (3)H7A—C7—H7C109.5
N3iii—C1—N2114.7 (4)H7B—C7—H7C109.5
O1i—Cd1—N2—C1136.9 (5)N2i—Cd1—N3—C3116.7 (4)
O1—Cd1—N2—C136.8 (5)N2—Cd1—N3—C378.0 (8)
N2i—Cd1—N2—C149.6 (4)N3i—Cd1—N3—C359.4 (3)
N3i—Cd1—N2—C1127.3 (5)C2—N2—C1—N3iii0.9 (5)
N3—Cd1—N2—C1145.5 (6)Cd1—N2—C1—N3iii153.2 (3)
O1i—Cd1—N2—C273.1 (4)C2—N2—C1—N1178.5 (4)
O1—Cd1—N2—C2113.1 (4)Cd1—N2—C1—N127.4 (7)
N2i—Cd1—N2—C2160.5 (4)C1—N2—C2—C3iii1.1 (5)
N3i—Cd1—N2—C222.7 (3)Cd1—N2—C2—C3iii155.5 (3)
N3—Cd1—N2—C24.4 (9)C1—N2—C2—C4174.0 (5)
O1i—Cd1—O1—C644.5 (6)Cd1—N2—C2—C429.4 (6)
N2i—Cd1—O1—C67.3 (6)N4—C4—C2—C3iii35 (8)
N2—Cd1—O1—C696.3 (6)N4—C4—C2—N2140 (7)
N3i—Cd1—O1—C6175.3 (6)C1ii—N3—C3—C2ii0.4 (5)
N3—Cd1—O1—C695.4 (6)Cd1—N3—C3—C2ii172.2 (3)
O1i—Cd1—N3—C1ii34.6 (4)C1ii—N3—C3—C5179.5 (5)
O1—Cd1—N3—C1ii140.3 (4)Cd1—N3—C3—C57.9 (7)
N2i—Cd1—N3—C1ii53.5 (4)C2ii—C3—C5—N51 (6)
N2—Cd1—N3—C1ii111.8 (7)N3—C3—C5—N5179 (100)
N3i—Cd1—N3—C1ii130.4 (5)Cd1—O1—C6—N6164.9 (6)
O1i—Cd1—N3—C3155.1 (4)C8—N6—C6—O1178.2 (9)
O1—Cd1—N3—C330.0 (4)C7—N6—C6—O10.2 (13)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iv0.862.453.187 (6)144
C7—H7C···N5iv0.962.683.429 (12)135
C7—H7B···N4v0.962.653.496 (11)148
Symmetry codes: (iv) x+3/2, y+1/2, z; (v) x, y, z1/2.
 

Acknowledgements

This work was supported by the Nation Natural Science Foundation of China (grant Nos. 21173122 and 21006054).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollins, D. J. & Zhou, H.-C. (2007). J. Mater. Chem. 17, 3154–3160.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, Z.-Y., Yang, C.-X., Chang, N. & Yan, X.-P. (2012). Acc. Chem. Res. 45, 734–745.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, T.-P., Liu, J.-F., Lu, X.-Y., Xiao, L.-Q. & Song, J.-F. (2013). Chin. J. Inorg. Chem. 29, 1928–1934.  CAS Google Scholar
First citationKim, D.-W., Shin, J. W., Kim, J. H. & Moon, D. (2015). Acta Cryst. E71, 173–175.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Du, Z.-X., Zhou, J., An, H.-Q., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2010). Inorg. Chem. Commun. 13, 127–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMondal, S. S., Bhunia, A., Baburin, I. A., Jäger, C., Kelling, A., Schilde, U., Seifert, G., Janiak, C. & Holdt, H. J. (2013). Chem. Commun. 49, 7599–7601.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, S. S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C. & Holdt, H.-J. (2014). J. Am. Chem. Soc. 136, 44–47.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOrcajo, G., Calleja, G., Botas, J. A., Wojtas, L., Alkordi, M. H. & Sánchez-Sánchez, M. (2014). Cryst. Growth Des. 14, 739–746.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25–30.  Web of Science CSD CrossRef Google Scholar
First citationSava, D. F., Kravtsov, V. C., Eckert, J., Eubank, J. F., Nouar, F. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 10394–10396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 26. Chichester: John Wiley & Son.  Google Scholar
First citationWang, S., Zhao, T.-T., Li, G.-H., Wojtas, L., Huo, Q.-S., Eddaoudi, M. & Liu, Y.-L. (2010). J. Am. Chem. Soc. 132, 18038–18041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  CrossRef CAS Google Scholar
First citationYang, H., Sang, R.-L., Xu, X. & Xu, L. (2013). Chem. Commun. 49, 2909–2911.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds