research communications
H-imidazol-3-ium) tetrachloridocobaltate(II)
of bis(2-methyl-1aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: mouhamadoubdiop@gmail.com
The 4H7N2)2[CoCl4], consists of two 2-methylimidazolium cations and one tetrahedral [CoCl4]2− anion. The anions and cations interact through N—H⋯Cl hydrogen bonds to define layers with a stacking direction along [100]. Besides weak C—H⋯Cl interactions between these layers stabilize the crystal packing.
of the title compound, (CCCDC reference: 1415257
1. Chemical context
Studies of the behaviour of 2-methylimidazole as a ligand resulted in the title compound, (C4H7N2)2[CoCl4] (Fig. 1), which belongs to salts based on anionic metal halides. This family of organic–inorganic hybrid compounds has been studied intensively for its structural, thermal, spectroscopic and magnetic properties (Issaoui et al., 2015). The structure of the related bis(imidazolium) tetrachloridocobaltate(II) salt has been reported by Zhang et al. (2005) (100 K data) and Adams et al. (2008) (298 K data).
2. Structural commentary
The Co—Cl distances [2.2506 (8)–2.2907 (8) Å] are characteristic, and the mean distance (2.275 Å) is in very good agreement with the average Co—Cl bond length of 2.275 Å calculated on basis of 337 isolated [CoCl4]2− anions from a set of 314 structures retrieved after a search in the Cambridge Structural Database (CSD, Version 5.36 with three updates; Groom & Allen, 2014). The longest Co—Cl distance in the title structure is observed for atom Cl4 which is an acceptor atom of two hydrogen bonds (Mghandef & Boughzala, 2015). The range for the Cl—Co—Cl angles [106.55 (3)–111.89 (3)°] indicates a slight distortion from the ideal tetrahedral geometry. The imidazolium rings of the cations are planar with a maximum deviation of ±0.007 (2) Å and also are almost parallel to each other, with a dihedral angle between them of 0.9 (2)°. For the cations, the N—C distances involving the C atoms that carry the methyl groups (C2—N1/C2—N2 and C6—N3/C6—N4, respectively) are virtually the same (Table 1). A search in the CSD for 2-methylimidazolium cations returned 66 entries from 53 different structures. In 74% of them, these two distances differ by no more than 0.01 Å.
|
3. Supramolecular features
The [CoCl4]2− anion is linked via N—H⋯Cl hydrogen bonds to four cations and each cation is linked to two anions (Table 2). These interactions define layers parallel to (100) with alternating [CoCl4]2− anions and cations (Fig. 2). Within these layers, the 2-methylimidazolium cations are involved in π–π stacking interactions with a centroid-to-centroid distance of 3.615 (2) Å and a distance between the mean planes of these rings of 3.340 (3) Å. Besides weak C—H⋯Cl interactions within and between the layers consolidate the crystal packing. The stacking direction of the layers is along [100].
4. Synthesis and crystallization
All starting materials were used as obtained without further purification. Methyl-2-imidazole and methylammonium chloride were mixed in water with CoCl2·6H2O in an 1:2:1 ratio. Blue crystals suitable for single-crystal X-ray diffraction studies were obtained after slow solvent evaporation at room temperature.
5. Refinement
Crystal data, data collection and structure . All H atoms were located from difference Fourier maps and were fully refined, except those that are part of the methyl group of the 2-methylimidazolium cations which were placed at calculated positions [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)].
details are summarized in Table 3
|
Supporting information
CCDC reference: 1415257
https://doi.org/10.1107/S2056989015014127/wm5189sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014127/wm5189Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).(C4H7N2)2[CoCl4] | F(000) = 1480 |
Mr = 366.96 | Dx = 1.633 Mg m−3 |
Monoclinic, C2/c | Ga Kα radiation, λ = 1.34139 Å |
a = 26.847 (3) Å | Cell parameters from 9758 reflections |
b = 7.9029 (8) Å | θ = 5.1–61.0° |
c = 15.0938 (14) Å | µ = 10.45 mm−1 |
β = 111.184 (6)° | T = 100 K |
V = 2986.0 (5) Å3 | Block, clear light blue |
Z = 8 | 0.23 × 0.12 × 0.06 mm |
Bruker Venture Metaljet diffractometer | 3435 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 3037 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.063 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.9°, θmin = 3.1° |
ω and φ scans | h = −34→34 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −9→10 |
Tmin = 0.392, Tmax = 0.752 | l = −19→19 |
27212 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0316P)2 + 16.8591P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3435 reflections | Δρmax = 0.61 e Å−3 |
188 parameters | Δρmin = −0.54 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.55652 (11) | 0.8138 (4) | 0.22412 (19) | 0.0239 (6) | |
N4 | 0.55734 (11) | 0.8201 (4) | 0.08322 (19) | 0.0233 (6) | |
C5 | 0.55675 (14) | 0.5281 (4) | 0.1500 (3) | 0.0280 (7) | |
H5A | 0.5891 | 0.4842 | 0.1993 | 0.042* | |
H5B | 0.5555 | 0.4895 | 0.0876 | 0.042* | |
H5C | 0.5252 | 0.4865 | 0.1614 | 0.042* | |
C6 | 0.55747 (12) | 0.7154 (4) | 0.1528 (2) | 0.0221 (6) | |
C7 | 0.55565 (14) | 0.9825 (5) | 0.1998 (2) | 0.0252 (7) | |
C8 | 0.55618 (14) | 0.9864 (5) | 0.1105 (2) | 0.0263 (7) | |
N1 | 0.68727 (11) | 0.1769 (4) | 0.2752 (2) | 0.0250 (6) | |
N2 | 0.68983 (11) | −0.0922 (4) | 0.2666 (2) | 0.0247 (6) | |
C1 | 0.68961 (15) | 0.0217 (5) | 0.4219 (3) | 0.0331 (8) | |
H1A | 0.6906 | 0.1353 | 0.4485 | 0.050* | |
H1B | 0.7215 | −0.0415 | 0.4606 | 0.050* | |
H1C | 0.6576 | −0.0376 | 0.4219 | 0.050* | |
C2 | 0.68836 (12) | 0.0349 (4) | 0.3234 (2) | 0.0246 (7) | |
C3 | 0.68876 (14) | 0.1398 (5) | 0.1869 (3) | 0.0282 (7) | |
C4 | 0.69070 (14) | −0.0300 (5) | 0.1817 (3) | 0.0275 (7) | |
Co1 | 0.62832 (2) | 0.50011 (6) | 0.45110 (3) | 0.01829 (13) | |
Cl1 | 0.57795 (3) | 0.73678 (10) | 0.44067 (5) | 0.02206 (17) | |
Cl2 | 0.56998 (3) | 0.28410 (10) | 0.38769 (5) | 0.02368 (17) | |
Cl3 | 0.67944 (3) | 0.43980 (10) | 0.60249 (5) | 0.02279 (17) | |
Cl4 | 0.68208 (3) | 0.54327 (10) | 0.36494 (5) | 0.02248 (17) | |
H8 | 0.5553 (17) | 1.078 (6) | 0.068 (3) | 0.039 (12)* | |
H4A | 0.6916 (16) | −0.099 (6) | 0.132 (3) | 0.036 (11)* | |
H7 | 0.5553 (16) | 1.071 (5) | 0.241 (3) | 0.031 (10)* | |
H3A | 0.6871 (17) | 0.228 (6) | 0.145 (3) | 0.043 (12)* | |
H3 | 0.5586 (16) | 0.778 (5) | 0.275 (3) | 0.029 (11)* | |
H4 | 0.5609 (16) | 0.789 (5) | 0.037 (3) | 0.033 (11)* | |
H2 | 0.6908 (17) | −0.186 (6) | 0.281 (3) | 0.037 (13)* | |
H1 | 0.6852 (19) | 0.264 (6) | 0.295 (3) | 0.043 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.0226 (13) | 0.0358 (17) | 0.0158 (12) | −0.0017 (12) | 0.0099 (10) | 0.0007 (12) |
N4 | 0.0237 (13) | 0.0321 (16) | 0.0172 (13) | −0.0005 (11) | 0.0110 (11) | −0.0005 (11) |
C5 | 0.0249 (16) | 0.0278 (19) | 0.0326 (18) | −0.0001 (14) | 0.0119 (14) | 0.0006 (14) |
C6 | 0.0162 (14) | 0.0306 (18) | 0.0204 (14) | −0.0001 (12) | 0.0075 (11) | 0.0014 (13) |
C7 | 0.0256 (16) | 0.0278 (18) | 0.0238 (16) | −0.0006 (13) | 0.0107 (13) | −0.0034 (14) |
C8 | 0.0245 (16) | 0.0314 (19) | 0.0240 (16) | 0.0008 (13) | 0.0100 (13) | 0.0030 (14) |
N1 | 0.0223 (14) | 0.0212 (16) | 0.0307 (15) | 0.0002 (11) | 0.0086 (11) | −0.0024 (12) |
N2 | 0.0255 (14) | 0.0171 (15) | 0.0333 (15) | −0.0001 (11) | 0.0129 (12) | 0.0035 (12) |
C1 | 0.0303 (18) | 0.041 (2) | 0.0306 (19) | 0.0018 (16) | 0.0141 (15) | 0.0032 (16) |
C2 | 0.0164 (14) | 0.0280 (18) | 0.0293 (17) | −0.0002 (12) | 0.0082 (12) | 0.0008 (14) |
C3 | 0.0257 (17) | 0.0275 (19) | 0.0316 (18) | −0.0033 (14) | 0.0106 (14) | 0.0015 (15) |
C4 | 0.0289 (17) | 0.0282 (19) | 0.0275 (17) | −0.0011 (14) | 0.0128 (14) | −0.0025 (14) |
Co1 | 0.0212 (2) | 0.0198 (2) | 0.0161 (2) | 0.00038 (17) | 0.00940 (17) | 0.00017 (16) |
Cl1 | 0.0257 (4) | 0.0242 (4) | 0.0185 (3) | 0.0057 (3) | 0.0107 (3) | 0.0011 (3) |
Cl2 | 0.0286 (4) | 0.0248 (4) | 0.0202 (3) | −0.0047 (3) | 0.0118 (3) | −0.0035 (3) |
Cl3 | 0.0228 (4) | 0.0257 (4) | 0.0190 (3) | 0.0007 (3) | 0.0066 (3) | 0.0031 (3) |
Cl4 | 0.0280 (4) | 0.0224 (4) | 0.0228 (3) | 0.0000 (3) | 0.0160 (3) | 0.0008 (3) |
N3—C6 | 1.336 (4) | N1—H1 | 0.76 (5) |
N3—C7 | 1.381 (5) | N2—C2 | 1.330 (5) |
N3—H3 | 0.79 (4) | N2—C4 | 1.381 (4) |
N4—C6 | 1.336 (4) | N2—H2 | 0.77 (5) |
N4—C8 | 1.381 (5) | C1—H1A | 0.9800 |
N4—H4 | 0.78 (4) | C1—H1B | 0.9800 |
C5—H5A | 0.9800 | C1—H1C | 0.9800 |
C5—H5B | 0.9800 | C1—C2 | 1.479 (5) |
C5—H5C | 0.9800 | C3—C4 | 1.346 (5) |
C5—C6 | 1.481 (5) | C3—H3A | 0.93 (5) |
C7—C8 | 1.354 (5) | C4—H4A | 0.94 (4) |
C7—H7 | 0.94 (4) | Co1—Cl1 | 2.2799 (9) |
C8—H8 | 0.96 (5) | Co1—Cl2 | 2.2803 (9) |
N1—C2 | 1.332 (5) | Co1—Cl3 | 2.2506 (8) |
N1—C3 | 1.380 (5) | Co1—Cl4 | 2.2907 (8) |
C6—N3—C7 | 110.6 (3) | C2—N2—C4 | 110.1 (3) |
C6—N3—H3 | 124 (3) | C2—N2—H2 | 123 (3) |
C7—N3—H3 | 126 (3) | C4—N2—H2 | 127 (3) |
C6—N4—C8 | 110.4 (3) | H1A—C1—H1B | 109.5 |
C6—N4—H4 | 123 (3) | H1A—C1—H1C | 109.5 |
C8—N4—H4 | 126 (3) | H1B—C1—H1C | 109.5 |
H5A—C5—H5B | 109.5 | C2—C1—H1A | 109.5 |
H5A—C5—H5C | 109.5 | C2—C1—H1B | 109.5 |
H5B—C5—H5C | 109.5 | C2—C1—H1C | 109.5 |
C6—C5—H5A | 109.5 | N1—C2—C1 | 126.6 (3) |
C6—C5—H5B | 109.5 | N2—C2—N1 | 106.6 (3) |
C6—C5—H5C | 109.5 | N2—C2—C1 | 126.8 (3) |
N3—C6—N4 | 106.1 (3) | N1—C3—H3A | 119 (3) |
N3—C6—C5 | 126.9 (3) | C4—C3—N1 | 106.4 (3) |
N4—C6—C5 | 126.9 (3) | C4—C3—H3A | 134 (3) |
N3—C7—H7 | 123 (3) | N2—C4—H4A | 124 (3) |
C8—C7—N3 | 106.3 (3) | C3—C4—N2 | 106.7 (3) |
C8—C7—H7 | 130 (3) | C3—C4—H4A | 130 (3) |
N4—C8—H8 | 121 (3) | Cl1—Co1—Cl2 | 106.55 (3) |
C7—C8—N4 | 106.6 (3) | Cl1—Co1—Cl4 | 108.56 (3) |
C7—C8—H8 | 132 (3) | Cl2—Co1—Cl4 | 110.57 (3) |
C2—N1—C3 | 110.2 (3) | Cl3—Co1—Cl1 | 111.89 (3) |
C2—N1—H1 | 123 (4) | Cl3—Co1—Cl2 | 110.00 (3) |
C3—N1—H1 | 127 (4) | Cl3—Co1—Cl4 | 109.25 (3) |
N3—C7—C8—N4 | 0.0 (4) | N1—C3—C4—N2 | 0.6 (4) |
C6—N3—C7—C8 | −0.1 (4) | C2—N1—C3—C4 | 0.1 (4) |
C6—N4—C8—C7 | 0.1 (4) | C2—N2—C4—C3 | −1.1 (4) |
C7—N3—C6—N4 | 0.1 (4) | C3—N1—C2—N2 | −0.8 (4) |
C7—N3—C6—C5 | −177.8 (3) | C3—N1—C2—C1 | 177.3 (3) |
C8—N4—C6—N3 | −0.1 (4) | C4—N2—C2—N1 | 1.1 (4) |
C8—N4—C6—C5 | 177.8 (3) | C4—N2—C2—C1 | −176.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl4 | 0.76 (5) | 2.46 (5) | 3.220 (3) | 177 (5) |
N2—H2···Cl4i | 0.77 (5) | 2.54 (5) | 3.282 (3) | 163 (4) |
N3—H3···Cl1 | 0.79 (4) | 2.39 (4) | 3.166 (3) | 165 (4) |
N4—H4···Cl2ii | 0.78 (4) | 2.42 (5) | 3.198 (3) | 175 (4) |
C4—H4A···Cl3iii | 0.94 (4) | 2.73 (4) | 3.428 (4) | 132 (3) |
C3—H3A···Cl3ii | 0.93 (5) | 2.70 (5) | 3.535 (4) | 151 (4) |
C8—H8···Cl1iv | 0.96 (5) | 2.65 (5) | 3.575 (4) | 160 (3) |
C7—H7···Cl2v | 0.94 (4) | 2.69 (4) | 3.617 (4) | 168 (3) |
C5—H5A···Cl4 | 0.98 | 2.86 | 3.738 (4) | 149 |
C5—H5C···Cl2vi | 0.98 | 2.88 | 3.771 (4) | 152 |
C1—H1B···Cl4vii | 0.98 | 2.95 | 3.804 (4) | 146 |
C1—H1C···Cl1i | 0.98 | 2.87 | 3.840 (4) | 169 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z−1/2; (iii) x, −y, z−1/2; (iv) x, −y+2, z−1/2; (v) x, y+1, z; (vi) −x+1, y, −z+1/2; (vii) −x+3/2, −y+1/2, −z+1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.
References
Adams, C. J., Kurawa, M. A., Lusi, M. & Orpen, A. G. (2008). CrystEngComm, 10, 1790–1795. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Issaoui, F., Baklouti, Y., Dharhi, E., Zouari, F. & Valente, M. A. (2015). J. Supercond. Nov. Magn. 28, doi: 10.1007/s10948-015-3057-y. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555–557. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.