research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2-methyl-1H-imidazol-3-ium) tetra­chlorido­cobaltate(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 July 2015; accepted 27 July 2015; online 22 August 2015)

The asymmetric unit of the title compound, (C4H7N2)2[CoCl4], consists of two 2-methyl­imidazolium cations and one tetra­hedral [CoCl4]2− anion. The anions and cations inter­act through N—H⋯Cl hydrogen bonds to define layers with a stacking direction along [100]. Besides van der Waals forces, weak C—H⋯Cl inter­actions between these layers stabilize the crystal packing.

1. Chemical context

Studies of the behaviour of 2-methyl­imidazole as a ligand resulted in the title compound, (C4H7N2)2[CoCl4] (Fig. 1[link]), which belongs to salts based on anionic metal halides. This family of organic–inorganic hybrid compounds has been studied intensively for its structural, thermal, spectroscopic and magnetic properties (Issaoui et al., 2015[Issaoui, F., Baklouti, Y., Dharhi, E., Zouari, F. & Valente, M. A. (2015). J. Supercond. Nov. Magn. 28, doi: 10.1007/s10948-015-3057-y.]). The structure of the related bis­(imidazolium) tetra­chlorido­cobaltate(II) salt has been reported by Zhang et al. (2005[Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677-m678.]) (100 K data) and Adams et al. (2008[Adams, C. J., Kurawa, M. A., Lusi, M. & Orpen, A. G. (2008). CrystEngComm, 10, 1790-1795.]) (298 K data).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular components in the structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds of the N—H⋯Cl type are drawn as black dotted lines.

2. Structural commentary

The Co—Cl distances [2.2506 (8)–2.2907 (8) Å] are characteristic, and the mean distance (2.275 Å) is in very good agreement with the average Co—Cl bond length of 2.275 Å calculated on basis of 337 isolated [CoCl4]2− anions from a set of 314 structures retrieved after a search in the Cambridge Structural Database (CSD, Version 5.36 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). The longest Co—Cl distance in the title structure is observed for atom Cl4 which is an acceptor atom of two hydrogen bonds (Mghandef & Boughzala, 2015[Mghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555-557.]). The range for the Cl—Co—Cl angles [106.55 (3)–111.89 (3)°] indicates a slight distortion from the ideal tetra­hedral geometry. The imidazolium rings of the cations are planar with a maximum deviation of ±0.007 (2) Å and also are almost parallel to each other, with a dihedral angle between them of 0.9 (2)°. For the cations, the N—C distances involving the C atoms that carry the methyl groups (C2—N1/C2—N2 and C6—N3/C6—N4, respectively) are virtually the same (Table 1[link]). A search in the CSD for 2-methyl­imidazolium cations returned 66 entries from 53 different structures. In 74% of them, these two distances differ by no more than 0.01 Å.

Table 1
Selected bond lengths (Å)

N3—C6 1.336 (4) Co1—Cl1 2.2799 (9)
N4—C6 1.336 (4) Co1—Cl2 2.2803 (9)
N1—C2 1.332 (5) Co1—Cl3 2.2506 (8)
N2—C2 1.330 (5) Co1—Cl4 2.2907 (8)

3. Supra­molecular features

The [CoCl4]2− anion is linked via N—H⋯Cl hydrogen bonds to four cations and each cation is linked to two anions (Table 2[link]). These inter­actions define layers parallel to (100) with alternating [CoCl4]2− anions and cations (Fig. 2[link]). Within these layers, the 2-methyl­imidazolium cations are involved in ππ stacking inter­actions with a centroid-to-centroid distance of 3.615 (2) Å and a distance between the mean planes of these rings of 3.340 (3) Å. Besides van der Waals forces, weak C—H⋯Cl inter­actions within and between the layers consolidate the crystal packing. The stacking direction of the layers is along [100].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4 0.76 (5) 2.46 (5) 3.220 (3) 177 (5)
N2—H2⋯Cl4i 0.77 (5) 2.54 (5) 3.282 (3) 163 (4)
N3—H3⋯Cl1 0.79 (4) 2.39 (4) 3.166 (3) 165 (4)
N4—H4⋯Cl2ii 0.78 (4) 2.42 (5) 3.198 (3) 175 (4)
C4—H4A⋯Cl3iii 0.94 (4) 2.73 (4) 3.428 (4) 132 (3)
C3—H3A⋯Cl3ii 0.93 (5) 2.70 (5) 3.535 (4) 151 (4)
C8—H8⋯Cl1iv 0.96 (5) 2.65 (5) 3.575 (4) 160 (3)
C7—H7⋯Cl2v 0.94 (4) 2.69 (4) 3.617 (4) 168 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [x, -y+2, z-{\script{1\over 2}}]; (v) x, y+1, z.
[Figure 2]
Figure 2
Partial packing diagram of the title structure viewed approximately along [010], showing two layers. Hydrogen bonds of the type N—H⋯Cl are drawn as black dotted lines.

4. Synthesis and crystallization

All starting materials were used as obtained without further purification. Methyl-2-imidazole and methyl­ammonium chloride were mixed in water with CoCl2·6H2O in an 1:2:1 ratio. Blue crystals suitable for single-crystal X-ray diffraction studies were obtained after slow solvent evaporation at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located from difference Fourier maps and were fully refined, except those that are part of the methyl group of the 2-methyl­imidazolium cations which were placed at calculated positions [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula (C4H7N2)2[CoCl4]
Mr 366.96
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 26.847 (3), 7.9029 (8), 15.0938 (14)
β (°) 111.184 (6)
V3) 2986.0 (5)
Z 8
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 10.45
Crystal size (mm) 0.23 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.392, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 27212, 3435, 3037
Rint 0.063
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.10
No. of reflections 3435
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Bis(2-methyl-1H-imidazol-3-ium) tetrachloridocobaltate(II) top
Crystal data top
(C4H7N2)2[CoCl4]F(000) = 1480
Mr = 366.96Dx = 1.633 Mg m3
Monoclinic, C2/cGa Kα radiation, λ = 1.34139 Å
a = 26.847 (3) ÅCell parameters from 9758 reflections
b = 7.9029 (8) Åθ = 5.1–61.0°
c = 15.0938 (14) ŵ = 10.45 mm1
β = 111.184 (6)°T = 100 K
V = 2986.0 (5) Å3Block, clear light blue
Z = 80.23 × 0.12 × 0.06 mm
Data collection top
Bruker Venture Metaljet
diffractometer
3435 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source3037 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.063
Detector resolution: 10.24 pixels mm-1θmax = 60.9°, θmin = 3.1°
ω and φ scansh = 3434
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 910
Tmin = 0.392, Tmax = 0.752l = 1919
27212 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0316P)2 + 16.8591P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3435 reflectionsΔρmax = 0.61 e Å3
188 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.55652 (11)0.8138 (4)0.22412 (19)0.0239 (6)
N40.55734 (11)0.8201 (4)0.08322 (19)0.0233 (6)
C50.55675 (14)0.5281 (4)0.1500 (3)0.0280 (7)
H5A0.58910.48420.19930.042*
H5B0.55550.48950.08760.042*
H5C0.52520.48650.16140.042*
C60.55747 (12)0.7154 (4)0.1528 (2)0.0221 (6)
C70.55565 (14)0.9825 (5)0.1998 (2)0.0252 (7)
C80.55618 (14)0.9864 (5)0.1105 (2)0.0263 (7)
N10.68727 (11)0.1769 (4)0.2752 (2)0.0250 (6)
N20.68983 (11)0.0922 (4)0.2666 (2)0.0247 (6)
C10.68961 (15)0.0217 (5)0.4219 (3)0.0331 (8)
H1A0.69060.13530.44850.050*
H1B0.72150.04150.46060.050*
H1C0.65760.03760.42190.050*
C20.68836 (12)0.0349 (4)0.3234 (2)0.0246 (7)
C30.68876 (14)0.1398 (5)0.1869 (3)0.0282 (7)
C40.69070 (14)0.0300 (5)0.1817 (3)0.0275 (7)
Co10.62832 (2)0.50011 (6)0.45110 (3)0.01829 (13)
Cl10.57795 (3)0.73678 (10)0.44067 (5)0.02206 (17)
Cl20.56998 (3)0.28410 (10)0.38769 (5)0.02368 (17)
Cl30.67944 (3)0.43980 (10)0.60249 (5)0.02279 (17)
Cl40.68208 (3)0.54327 (10)0.36494 (5)0.02248 (17)
H80.5553 (17)1.078 (6)0.068 (3)0.039 (12)*
H4A0.6916 (16)0.099 (6)0.132 (3)0.036 (11)*
H70.5553 (16)1.071 (5)0.241 (3)0.031 (10)*
H3A0.6871 (17)0.228 (6)0.145 (3)0.043 (12)*
H30.5586 (16)0.778 (5)0.275 (3)0.029 (11)*
H40.5609 (16)0.789 (5)0.037 (3)0.033 (11)*
H20.6908 (17)0.186 (6)0.281 (3)0.037 (13)*
H10.6852 (19)0.264 (6)0.295 (3)0.043 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0226 (13)0.0358 (17)0.0158 (12)0.0017 (12)0.0099 (10)0.0007 (12)
N40.0237 (13)0.0321 (16)0.0172 (13)0.0005 (11)0.0110 (11)0.0005 (11)
C50.0249 (16)0.0278 (19)0.0326 (18)0.0001 (14)0.0119 (14)0.0006 (14)
C60.0162 (14)0.0306 (18)0.0204 (14)0.0001 (12)0.0075 (11)0.0014 (13)
C70.0256 (16)0.0278 (18)0.0238 (16)0.0006 (13)0.0107 (13)0.0034 (14)
C80.0245 (16)0.0314 (19)0.0240 (16)0.0008 (13)0.0100 (13)0.0030 (14)
N10.0223 (14)0.0212 (16)0.0307 (15)0.0002 (11)0.0086 (11)0.0024 (12)
N20.0255 (14)0.0171 (15)0.0333 (15)0.0001 (11)0.0129 (12)0.0035 (12)
C10.0303 (18)0.041 (2)0.0306 (19)0.0018 (16)0.0141 (15)0.0032 (16)
C20.0164 (14)0.0280 (18)0.0293 (17)0.0002 (12)0.0082 (12)0.0008 (14)
C30.0257 (17)0.0275 (19)0.0316 (18)0.0033 (14)0.0106 (14)0.0015 (15)
C40.0289 (17)0.0282 (19)0.0275 (17)0.0011 (14)0.0128 (14)0.0025 (14)
Co10.0212 (2)0.0198 (2)0.0161 (2)0.00038 (17)0.00940 (17)0.00017 (16)
Cl10.0257 (4)0.0242 (4)0.0185 (3)0.0057 (3)0.0107 (3)0.0011 (3)
Cl20.0286 (4)0.0248 (4)0.0202 (3)0.0047 (3)0.0118 (3)0.0035 (3)
Cl30.0228 (4)0.0257 (4)0.0190 (3)0.0007 (3)0.0066 (3)0.0031 (3)
Cl40.0280 (4)0.0224 (4)0.0228 (3)0.0000 (3)0.0160 (3)0.0008 (3)
Geometric parameters (Å, º) top
N3—C61.336 (4)N1—H10.76 (5)
N3—C71.381 (5)N2—C21.330 (5)
N3—H30.79 (4)N2—C41.381 (4)
N4—C61.336 (4)N2—H20.77 (5)
N4—C81.381 (5)C1—H1A0.9800
N4—H40.78 (4)C1—H1B0.9800
C5—H5A0.9800C1—H1C0.9800
C5—H5B0.9800C1—C21.479 (5)
C5—H5C0.9800C3—C41.346 (5)
C5—C61.481 (5)C3—H3A0.93 (5)
C7—C81.354 (5)C4—H4A0.94 (4)
C7—H70.94 (4)Co1—Cl12.2799 (9)
C8—H80.96 (5)Co1—Cl22.2803 (9)
N1—C21.332 (5)Co1—Cl32.2506 (8)
N1—C31.380 (5)Co1—Cl42.2907 (8)
C6—N3—C7110.6 (3)C2—N2—C4110.1 (3)
C6—N3—H3124 (3)C2—N2—H2123 (3)
C7—N3—H3126 (3)C4—N2—H2127 (3)
C6—N4—C8110.4 (3)H1A—C1—H1B109.5
C6—N4—H4123 (3)H1A—C1—H1C109.5
C8—N4—H4126 (3)H1B—C1—H1C109.5
H5A—C5—H5B109.5C2—C1—H1A109.5
H5A—C5—H5C109.5C2—C1—H1B109.5
H5B—C5—H5C109.5C2—C1—H1C109.5
C6—C5—H5A109.5N1—C2—C1126.6 (3)
C6—C5—H5B109.5N2—C2—N1106.6 (3)
C6—C5—H5C109.5N2—C2—C1126.8 (3)
N3—C6—N4106.1 (3)N1—C3—H3A119 (3)
N3—C6—C5126.9 (3)C4—C3—N1106.4 (3)
N4—C6—C5126.9 (3)C4—C3—H3A134 (3)
N3—C7—H7123 (3)N2—C4—H4A124 (3)
C8—C7—N3106.3 (3)C3—C4—N2106.7 (3)
C8—C7—H7130 (3)C3—C4—H4A130 (3)
N4—C8—H8121 (3)Cl1—Co1—Cl2106.55 (3)
C7—C8—N4106.6 (3)Cl1—Co1—Cl4108.56 (3)
C7—C8—H8132 (3)Cl2—Co1—Cl4110.57 (3)
C2—N1—C3110.2 (3)Cl3—Co1—Cl1111.89 (3)
C2—N1—H1123 (4)Cl3—Co1—Cl2110.00 (3)
C3—N1—H1127 (4)Cl3—Co1—Cl4109.25 (3)
N3—C7—C8—N40.0 (4)N1—C3—C4—N20.6 (4)
C6—N3—C7—C80.1 (4)C2—N1—C3—C40.1 (4)
C6—N4—C8—C70.1 (4)C2—N2—C4—C31.1 (4)
C7—N3—C6—N40.1 (4)C3—N1—C2—N20.8 (4)
C7—N3—C6—C5177.8 (3)C3—N1—C2—C1177.3 (3)
C8—N4—C6—N30.1 (4)C4—N2—C2—N11.1 (4)
C8—N4—C6—C5177.8 (3)C4—N2—C2—C1176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.76 (5)2.46 (5)3.220 (3)177 (5)
N2—H2···Cl4i0.77 (5)2.54 (5)3.282 (3)163 (4)
N3—H3···Cl10.79 (4)2.39 (4)3.166 (3)165 (4)
N4—H4···Cl2ii0.78 (4)2.42 (5)3.198 (3)175 (4)
C4—H4A···Cl3iii0.94 (4)2.73 (4)3.428 (4)132 (3)
C3—H3A···Cl3ii0.93 (5)2.70 (5)3.535 (4)151 (4)
C8—H8···Cl1iv0.96 (5)2.65 (5)3.575 (4)160 (3)
C7—H7···Cl2v0.94 (4)2.69 (4)3.617 (4)168 (3)
C5—H5A···Cl40.982.863.738 (4)149
C5—H5C···Cl2vi0.982.883.771 (4)152
C1—H1B···Cl4vii0.982.953.804 (4)146
C1—H1C···Cl1i0.982.873.840 (4)169
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z1/2; (iii) x, y, z1/2; (iv) x, y+2, z1/2; (v) x, y+1, z; (vi) x+1, y, z+1/2; (vii) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.

References

First citationAdams, C. J., Kurawa, M. A., Lusi, M. & Orpen, A. G. (2008). CrystEngComm, 10, 1790–1795.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIssaoui, F., Baklouti, Y., Dharhi, E., Zouari, F. & Valente, M. A. (2015). J. Supercond. Nov. Magn. 28, doi: 10.1007/s10948-015-3057-y.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555–557.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds