metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [N,N′-bis­­(4-methyl­phen­yl)-1,2-di­phenyl­ethane-1,2-di­imine-κ2N,N′]di­chlorido­palladium(II) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

a13406 Philadelphia Street, Whittier College, Department of Chemistry, Whittier College, Whittier, CA 90601, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: risovitsch@whittier.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 July 2015; accepted 7 August 2015; online 15 August 2015)

The title compound, [PdCl2(C28H24N2)]·CH3OH, was pre­pared from the reaction of PdCl2(DMSO)2 (DMSO is di­methyl sulfoxide) and N,N′-bis­(4-methyl­phen­yl)-1,2-di­phenyl­ethane-1,2-di­imine in methanol. The chelating di­imine core of the title compound deviates slightly from planarity, with an N—C—C—N torsion angle of 5.3 (3)°. Delocalization in the di­imine core is indicated by N—C and C—C bonds that are, respectively, longer and shorter than those found in related nonchelating di­imines. The distorted square-planar coordination environment around the PdII atom is manifested as bond angles that are smaller and larger than 90°, and palladacycle torsion angles of −173.22 (16) and 167.06 (16)°. These deviations are attributed to the small bite angle of 79.13 (8)° of the di­imine chelate. The crystal packing exhibits weak inter­molecular hydrogen-bonding inter­actions involving aromatic H atoms, Cl atoms and inter­calated methanol solvent mol­ecules, defining layers parallel to (010).

1. Related literature

Palladium(II) diimiine complexes have been widely used as polymerization catalysts for α-olefins (Johnson et al., 1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]; Popeney & Guan, 2005[Popeney, C. & Guan, Z. (2005). Organometallics, 24, 1145-1155.]) and are prepared easily by the reaction of PdCl2(DMSO)2 with the di­imine of choice (Kubota et al., 2013[Kubota, M., Covarrubias, D., Pye, C., Fronczek, F. R. & Isovitsch, R. (2013). J. Coord. Chem. 66, 1350-1362.]; Ettedgui & Neumann, 2009[Ettedgui, J. & Neumann, J. (2009). J. Am. Chem. Soc. 131, 4-5.]; Price et al., 1972[Price, J. H., Williamson, A. N., Schramm, R. F. & Wayland, B. B. (1972). Inorg. Chem. 11, 1280-1284.]). For structural information about related palladium(II) di­imine complexes, see: Kubota et al. (2013[Kubota, M., Covarrubias, D., Pye, C., Fronczek, F. R. & Isovitsch, R. (2013). J. Coord. Chem. 66, 1350-1362.]); Comerlato et al. (2001[Comerlato, N. M., Crossetti, G. L., Howie, R. A., Tibultino, P. C. D. & Wardell, J. L. (2001). Acta Cryst. E57, m295-m297.]); Dyakonenko et al. (2015[Dyakonenko, V. V., Zholob, O. O., Orysyk, S. I. & Pekhnyo, V. I. (2015). Acta Cryst. E71, m10-m11.]). For structures of other di­imines, see: Wang et al. (2012[Wang, L., Luo, X., Gao, B., Wu, Q. & Mu, Y. (2012). Acta Cryst. E68, o128.]); Zhao et al. (2015[Zhao, Y., Yuan, J., Zhao, J. & Zhao, S. (2015). Acta Cryst. E71, o251-o252.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [PdCl2(C28H24N2)]·CH4O

  • Mr = 597.83

  • Triclinic, [P \overline 1]

  • a = 8.8213 (3) Å

  • b = 12.3364 (3) Å

  • c = 12.7697 (4) Å

  • α = 108.992 (2)°

  • β = 93.900 (3)°

  • γ = 92.457 (3)°

  • V = 1307.83 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 90 K

  • 0.18 × 0.10 × 0.06 mm

2.2. Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.831, Tmax = 0.946

  • 12258 measured reflections

  • 5965 independent reflections

  • 5026 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.066

  • S = 1.02

  • 5965 reflections

  • 322 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10H⋯Cl2 0.83 (2) 2.36 (2) 3.161 (2) 163 (3)
C17—H17⋯Cl2i 0.95 2.80 3.708 (3) 161
C21—H21⋯O1ii 0.95 2.48 3.275 (3) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Synthesis and crystallization top

0.086 g (0.257 mmol, 1 eq.) of PdCl2(DMSO)2 and 0.100 g (0.257 mmol, 1 eq.) of N,N'-di(4-methyl­phenyl)-1,2-di­phenyl­ethane-1,2-di­imine were combined with 10 ml of methanol and stirred for 1.5 hours at room temperature. The orange precipitate that formed was collected via vacuum filtration, washed well with water and then air-dried giving 0.0363 g (25%) of the title compound. Slow evaporation of the reaction mixture gave X-ray quality crystals of the title compound. MP: > 532 K. IR (KCl): 3135, 2922, 1514 cm-1. UV-Vis (λ nm (ε)): 242 (41,200), 264 (34,800), 317 (17,800). TLC (alumina, ethanol): Rf = 0.59.

Refinement top

H atoms were placed in idealized positions, guided by difference maps, with C—H bond lengths in the range 0.95-0.98 Å, with Uiso(H) = 1.2Ueq(C) of the attached atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group. The H atom of the methanol solvent molecule was refined with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Related literature top

Palladium(II) diimiine complexes have been widely used as polymerization catalysts for α-olefins (Johnson et al., 1995; Popeney & Guan, 2005) and are easily prepared by the reaction of PdCl2(DMSO)2 with the diimine of choice (Kubota et al., 2013; Ettedgui & Neumann, 2009; Price et al., 1972). For structural information about related palladium(II) diimine complexes, see: Kubota et al. (2013); Comerlato et al. (2001); Dyakonenko et al. (2015). For structures of other diimines, see: Wang et al. (2012); Zhao et al. (2015).

Structure description top

Palladium(II) diimiine complexes have been widely used as polymerization catalysts for α-olefins (Johnson et al., 1995; Popeney & Guan, 2005) and are easily prepared by the reaction of PdCl2(DMSO)2 with the diimine of choice (Kubota et al., 2013; Ettedgui & Neumann, 2009; Price et al., 1972). For structural information about related palladium(II) diimine complexes, see: Kubota et al. (2013); Comerlato et al. (2001); Dyakonenko et al. (2015). For structures of other diimines, see: Wang et al. (2012); Zhao et al. (2015).

Synthesis and crystallization top

0.086 g (0.257 mmol, 1 eq.) of PdCl2(DMSO)2 and 0.100 g (0.257 mmol, 1 eq.) of N,N'-di(4-methyl­phenyl)-1,2-di­phenyl­ethane-1,2-di­imine were combined with 10 ml of methanol and stirred for 1.5 hours at room temperature. The orange precipitate that formed was collected via vacuum filtration, washed well with water and then air-dried giving 0.0363 g (25%) of the title compound. Slow evaporation of the reaction mixture gave X-ray quality crystals of the title compound. MP: > 532 K. IR (KCl): 3135, 2922, 1514 cm-1. UV-Vis (λ nm (ε)): 242 (41,200), 264 (34,800), 317 (17,800). TLC (alumina, ethanol): Rf = 0.59.

Refinement details top

H atoms were placed in idealized positions, guided by difference maps, with C—H bond lengths in the range 0.95-0.98 Å, with Uiso(H) = 1.2Ueq(C) of the attached atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group. The H atom of the methanol solvent molecule was refined with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound. Displacement ellipsoids are represented at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the title compound, with intermolecular hydrogen bonding emphasized as dashed lines.
[Figure 3] Fig. 3. Crystal packing in the title compound as viewed along [100].
[N,N'-Bis(4-methylphenyl)-1,2-diphenylethane-1,2-diimine-κ2N,N']dichloridopalladium(II) methanol monosolvate top
Crystal data top
[PdCl2(C28H24N2)]·CH4OZ = 2
Mr = 597.83F(000) = 608
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8213 (3) ÅCell parameters from 4900 reflections
b = 12.3364 (3) Åθ = 2.8–27.5°
c = 12.7697 (4) ŵ = 0.94 mm1
α = 108.992 (2)°T = 90 K
β = 93.900 (3)°Plate, orange
γ = 92.457 (3)°0.18 × 0.10 × 0.06 mm
V = 1307.83 (7) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
5965 independent reflections
Radiation source: fine-focus sealed tube5026 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.831, Tmax = 0.946k = 1616
12258 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.2447P]
where P = (Fo2 + 2Fc2)/3
5965 reflections(Δ/σ)max = 0.002
322 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.64 e Å3
Crystal data top
[PdCl2(C28H24N2)]·CH4Oγ = 92.457 (3)°
Mr = 597.83V = 1307.83 (7) Å3
Triclinic, P1Z = 2
a = 8.8213 (3) ÅMo Kα radiation
b = 12.3364 (3) ŵ = 0.94 mm1
c = 12.7697 (4) ÅT = 90 K
α = 108.992 (2)°0.18 × 0.10 × 0.06 mm
β = 93.900 (3)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
5965 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
5026 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.946Rint = 0.032
12258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.57 e Å3
5965 reflectionsΔρmin = 0.64 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.72678 (2)0.502582 (15)0.508729 (15)0.00896 (6)
Cl10.66581 (7)0.51705 (5)0.33726 (5)0.01389 (13)
Cl20.78558 (7)0.31784 (5)0.42450 (5)0.01609 (14)
N10.7550 (2)0.49790 (16)0.66557 (16)0.0092 (4)
N20.6911 (2)0.66555 (16)0.59660 (16)0.0102 (4)
C10.7157 (3)0.5882 (2)0.7421 (2)0.0109 (5)
C20.6855 (3)0.6871 (2)0.7029 (2)0.0114 (5)
C30.8034 (3)0.39982 (19)0.69323 (19)0.0110 (5)
C40.9500 (3)0.3682 (2)0.67176 (19)0.0125 (5)
H41.01220.40740.63570.015*
C51.0047 (3)0.2789 (2)0.7035 (2)0.0151 (5)
H51.10580.25800.69000.018*
C60.9146 (3)0.2192 (2)0.7545 (2)0.0150 (5)
C70.7650 (3)0.2482 (2)0.7692 (2)0.0163 (6)
H70.70020.20540.80020.020*
C80.7082 (3)0.3385 (2)0.7394 (2)0.0130 (5)
H80.60600.35780.75050.016*
C90.9798 (3)0.1291 (2)0.7979 (2)0.0226 (6)
H9A1.06740.09850.75730.034*
H9B0.90180.06670.78740.034*
H9C1.01260.16390.87730.034*
C100.7048 (3)0.59987 (19)0.8604 (2)0.0112 (5)
C110.8257 (3)0.5791 (2)0.9252 (2)0.0142 (5)
H110.91850.55600.89370.017*
C120.8109 (3)0.5920 (2)1.0360 (2)0.0186 (6)
H120.89430.57891.08050.022*
C130.6756 (3)0.6238 (2)1.0820 (2)0.0212 (6)
H130.66580.63181.15770.025*
C140.5547 (3)0.6441 (2)1.0180 (2)0.0184 (6)
H140.46160.66541.04960.022*
C150.5689 (3)0.6334 (2)0.9075 (2)0.0155 (5)
H150.48620.64880.86410.019*
C160.6638 (3)0.8028 (2)0.78122 (19)0.0117 (5)
C170.5369 (3)0.8595 (2)0.7631 (2)0.0158 (5)
H170.46300.82280.70290.019*
C180.5185 (3)0.9697 (2)0.8332 (2)0.0192 (6)
H180.43161.00840.82100.023*
C190.6264 (3)1.0236 (2)0.9210 (2)0.0211 (6)
H190.61451.09970.96810.025*
C200.7514 (3)0.9665 (2)0.9400 (2)0.0192 (6)
H200.82441.00311.00100.023*
C210.7709 (3)0.8564 (2)0.8709 (2)0.0155 (5)
H210.85680.81750.88440.019*
C220.6995 (3)0.75880 (19)0.55233 (19)0.0107 (5)
C230.5828 (3)0.7719 (2)0.4801 (2)0.0130 (5)
H230.49600.71880.45810.016*
C240.5944 (3)0.8638 (2)0.4402 (2)0.0141 (5)
H240.51460.87340.39080.017*
C250.7211 (3)0.9422 (2)0.4715 (2)0.0136 (5)
C260.8371 (3)0.9256 (2)0.5424 (2)0.0149 (5)
H260.92430.97830.56400.018*
C270.8288 (3)0.8339 (2)0.5825 (2)0.0135 (5)
H270.91010.82270.62980.016*
C280.7325 (3)1.0438 (2)0.4304 (2)0.0200 (6)
H28A0.80041.02800.37040.030*
H28B0.77341.11220.49170.030*
H28C0.63111.05720.40260.030*
O10.9588 (2)0.31675 (18)0.21549 (16)0.0275 (5)
H10H0.916 (4)0.333 (3)0.274 (2)0.041*
C290.8406 (3)0.2883 (3)0.1302 (2)0.0322 (8)
H29A0.76350.23620.14410.048*
H29B0.88150.25050.05890.048*
H29C0.79420.35840.12810.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01082 (10)0.00890 (9)0.00697 (10)0.00045 (7)0.00080 (7)0.00251 (7)
Cl10.0166 (3)0.0163 (3)0.0086 (3)0.0014 (2)0.0004 (2)0.0042 (2)
Cl20.0252 (4)0.0101 (3)0.0123 (3)0.0019 (2)0.0020 (3)0.0027 (2)
N10.0083 (10)0.0103 (10)0.0096 (10)0.0003 (8)0.0001 (8)0.0045 (8)
N20.0105 (10)0.0094 (10)0.0110 (10)0.0014 (8)0.0002 (8)0.0037 (8)
C10.0070 (12)0.0140 (12)0.0120 (12)0.0020 (9)0.0010 (9)0.0055 (10)
C20.0091 (12)0.0126 (12)0.0123 (12)0.0010 (9)0.0012 (9)0.0037 (10)
C30.0153 (13)0.0085 (11)0.0076 (12)0.0006 (9)0.0016 (9)0.0010 (10)
C40.0135 (13)0.0141 (12)0.0084 (12)0.0003 (10)0.0008 (10)0.0018 (10)
C50.0147 (13)0.0171 (13)0.0103 (13)0.0046 (10)0.0010 (10)0.0001 (10)
C60.0247 (15)0.0090 (12)0.0095 (12)0.0046 (10)0.0028 (10)0.0012 (10)
C70.0227 (15)0.0134 (13)0.0132 (13)0.0013 (11)0.0033 (11)0.0049 (11)
C80.0138 (13)0.0131 (12)0.0106 (12)0.0003 (10)0.0001 (10)0.0021 (10)
C90.0314 (16)0.0203 (14)0.0182 (15)0.0105 (12)0.0013 (12)0.0083 (12)
C100.0138 (13)0.0089 (12)0.0107 (12)0.0005 (9)0.0001 (10)0.0034 (10)
C110.0149 (13)0.0133 (12)0.0146 (13)0.0036 (10)0.0001 (10)0.0051 (10)
C120.0244 (15)0.0172 (14)0.0121 (13)0.0012 (11)0.0066 (11)0.0038 (11)
C130.0306 (16)0.0221 (14)0.0113 (13)0.0031 (12)0.0034 (12)0.0066 (11)
C140.0190 (14)0.0204 (14)0.0150 (14)0.0001 (11)0.0052 (11)0.0041 (11)
C150.0183 (14)0.0142 (13)0.0142 (13)0.0002 (10)0.0001 (10)0.0053 (11)
C160.0159 (13)0.0110 (12)0.0087 (12)0.0009 (10)0.0025 (10)0.0036 (10)
C170.0188 (14)0.0179 (13)0.0114 (13)0.0026 (10)0.0016 (10)0.0057 (11)
C180.0222 (15)0.0187 (14)0.0194 (14)0.0086 (11)0.0055 (11)0.0084 (12)
C190.0324 (17)0.0136 (13)0.0165 (14)0.0031 (12)0.0103 (12)0.0023 (11)
C200.0252 (15)0.0165 (13)0.0124 (13)0.0042 (11)0.0004 (11)0.0010 (11)
C210.0182 (14)0.0166 (13)0.0127 (13)0.0018 (10)0.0011 (10)0.0062 (11)
C220.0162 (13)0.0079 (11)0.0085 (12)0.0031 (9)0.0045 (10)0.0023 (9)
C230.0132 (13)0.0139 (12)0.0105 (12)0.0011 (10)0.0014 (10)0.0021 (10)
C240.0138 (13)0.0173 (13)0.0119 (13)0.0056 (10)0.0008 (10)0.0052 (11)
C250.0179 (13)0.0119 (12)0.0125 (13)0.0044 (10)0.0063 (10)0.0046 (10)
C260.0148 (13)0.0138 (13)0.0170 (14)0.0003 (10)0.0031 (10)0.0063 (11)
C270.0138 (13)0.0178 (13)0.0093 (12)0.0002 (10)0.0004 (10)0.0053 (10)
C280.0232 (15)0.0182 (14)0.0243 (15)0.0064 (11)0.0077 (12)0.0129 (12)
O10.0199 (11)0.0366 (12)0.0214 (11)0.0001 (9)0.0066 (9)0.0027 (10)
C290.0231 (17)0.0367 (18)0.0260 (17)0.0004 (13)0.0067 (13)0.0050 (14)
Geometric parameters (Å, º) top
Pd1—N22.0086 (19)C14—C151.388 (3)
Pd1—N12.0211 (19)C14—H140.9500
Pd1—Cl22.2807 (6)C15—H150.9500
Pd1—Cl12.2842 (6)C16—C171.390 (4)
N1—C11.299 (3)C16—C211.396 (3)
N1—C31.440 (3)C17—C181.386 (4)
N2—C21.300 (3)C17—H170.9500
N2—C221.439 (3)C18—C191.386 (4)
C1—C101.480 (3)C18—H180.9500
C1—C21.489 (3)C19—C201.383 (4)
C2—C161.481 (3)C19—H190.9500
C3—C41.386 (3)C20—C211.383 (4)
C3—C81.390 (3)C20—H200.9500
C4—C51.386 (3)C21—H210.9500
C4—H40.9500C22—C231.386 (3)
C5—C61.389 (3)C22—C271.387 (3)
C5—H50.9500C23—C241.388 (3)
C6—C71.392 (4)C23—H230.9500
C6—C91.512 (3)C24—C251.392 (3)
C7—C81.390 (3)C24—H240.9500
C7—H70.9500C25—C261.386 (4)
C8—H80.9500C25—C281.511 (3)
C9—H9A0.9800C26—C271.387 (3)
C9—H9B0.9800C26—H260.9500
C9—H9C0.9800C27—H270.9500
C10—C111.389 (3)C28—H28A0.9800
C10—C151.396 (3)C28—H28B0.9800
C11—C121.387 (3)C28—H28C0.9800
C11—H110.9500O1—C291.400 (4)
C12—C131.382 (4)O1—H10H0.831 (17)
C12—H120.9500C29—H29A0.9800
C13—C141.380 (4)C29—H29B0.9800
C13—H130.9500C29—H29C0.9800
N2—Pd1—N179.13 (8)C13—C14—H14119.9
N2—Pd1—Cl2173.82 (6)C15—C14—H14119.9
N1—Pd1—Cl295.67 (6)C14—C15—C10119.9 (2)
N2—Pd1—Cl196.49 (6)C14—C15—H15120.0
N1—Pd1—Cl1172.74 (6)C10—C15—H15120.0
Cl2—Pd1—Cl189.02 (2)C17—C16—C21119.8 (2)
C1—N1—C3120.6 (2)C17—C16—C2119.3 (2)
C1—N1—Pd1115.20 (17)C21—C16—C2120.8 (2)
C3—N1—Pd1124.03 (15)C18—C17—C16119.9 (2)
C2—N2—C22119.9 (2)C18—C17—H17120.1
C2—N2—Pd1115.61 (16)C16—C17—H17120.1
C22—N2—Pd1123.53 (15)C19—C18—C17120.2 (3)
N1—C1—C10125.8 (2)C19—C18—H18119.9
N1—C1—C2114.2 (2)C17—C18—H18119.9
C10—C1—C2120.0 (2)C20—C19—C18119.9 (2)
N2—C2—C16123.2 (2)C20—C19—H19120.1
N2—C2—C1114.7 (2)C18—C19—H19120.1
C16—C2—C1121.9 (2)C19—C20—C21120.5 (3)
C4—C3—C8120.8 (2)C19—C20—H20119.8
C4—C3—N1117.3 (2)C21—C20—H20119.8
C8—C3—N1121.9 (2)C20—C21—C16119.7 (3)
C3—C4—C5119.2 (2)C20—C21—H21120.1
C3—C4—H4120.4C16—C21—H21120.1
C5—C4—H4120.4C23—C22—C27121.0 (2)
C4—C5—C6121.3 (2)C23—C22—N2120.8 (2)
C4—C5—H5119.4C27—C22—N2118.1 (2)
C6—C5—H5119.4C22—C23—C24119.1 (2)
C5—C6—C7118.3 (2)C22—C23—H23120.5
C5—C6—C9120.8 (2)C24—C23—H23120.5
C7—C6—C9120.8 (2)C23—C24—C25121.1 (2)
C8—C7—C6121.4 (2)C23—C24—H24119.5
C8—C7—H7119.3C25—C24—H24119.5
C6—C7—H7119.3C26—C25—C24118.5 (2)
C3—C8—C7118.8 (2)C26—C25—C28120.3 (2)
C3—C8—H8120.6C24—C25—C28121.2 (2)
C7—C8—H8120.6C25—C26—C27121.5 (2)
C6—C9—H9A109.5C25—C26—H26119.2
C6—C9—H9B109.5C27—C26—H26119.2
H9A—C9—H9B109.5C26—C27—C22118.8 (2)
C6—C9—H9C109.5C26—C27—H27120.6
H9A—C9—H9C109.5C22—C27—H27120.6
H9B—C9—H9C109.5C25—C28—H28A109.5
C11—C10—C15119.5 (2)C25—C28—H28B109.5
C11—C10—C1121.9 (2)H28A—C28—H28B109.5
C15—C10—C1118.6 (2)C25—C28—H28C109.5
C12—C11—C10119.9 (2)H28A—C28—H28C109.5
C12—C11—H11120.0H28B—C28—H28C109.5
C10—C11—H11120.0C29—O1—H10H105 (2)
C13—C12—C11120.4 (3)O1—C29—H29A109.5
C13—C12—H12119.8O1—C29—H29B109.5
C11—C12—H12119.8H29A—C29—H29B109.5
C14—C13—C12120.0 (2)O1—C29—H29C109.5
C14—C13—H13120.0H29A—C29—H29C109.5
C12—C13—H13120.0H29B—C29—H29C109.5
C13—C14—C15120.2 (3)
N2—Pd1—N1—C110.15 (16)N1—C1—C10—C15126.3 (3)
Cl2—Pd1—N1—C1173.22 (16)C2—C1—C10—C1556.1 (3)
N2—Pd1—N1—C3174.59 (18)C15—C10—C11—C120.2 (3)
Cl2—Pd1—N1—C32.04 (17)C1—C10—C11—C12179.5 (2)
N1—Pd1—N2—C27.07 (17)C10—C11—C12—C131.0 (4)
Cl1—Pd1—N2—C2167.06 (16)C11—C12—C13—C140.7 (4)
N1—Pd1—N2—C22161.36 (19)C12—C13—C14—C150.4 (4)
Cl1—Pd1—N2—C2224.50 (18)C13—C14—C15—C101.2 (4)
C3—N1—C1—C104.4 (3)C11—C10—C15—C140.9 (3)
Pd1—N1—C1—C10171.05 (18)C1—C10—C15—C14179.4 (2)
C3—N1—C1—C2173.36 (19)N2—C2—C16—C1756.3 (3)
Pd1—N1—C1—C211.2 (2)C1—C2—C16—C17128.8 (2)
C22—N2—C2—C169.6 (3)N2—C2—C16—C21122.0 (3)
Pd1—N2—C2—C16178.51 (18)C1—C2—C16—C2152.8 (3)
C22—N2—C2—C1165.5 (2)C21—C16—C17—C181.0 (3)
Pd1—N2—C2—C13.3 (3)C2—C16—C17—C18177.4 (2)
N1—C1—C2—N25.3 (3)C16—C17—C18—C190.2 (4)
C10—C1—C2—N2176.8 (2)C17—C18—C19—C201.2 (4)
N1—C1—C2—C16170.0 (2)C18—C19—C20—C211.0 (4)
C10—C1—C2—C167.9 (3)C19—C20—C21—C160.2 (4)
C1—N1—C3—C4119.0 (2)C17—C16—C21—C201.2 (4)
Pd1—N1—C3—C466.0 (3)C2—C16—C21—C20177.2 (2)
C1—N1—C3—C861.1 (3)C2—N2—C22—C23115.9 (3)
Pd1—N1—C3—C8113.9 (2)Pd1—N2—C22—C2376.1 (3)
C8—C3—C4—C54.1 (4)C2—N2—C22—C2765.1 (3)
N1—C3—C4—C5176.0 (2)Pd1—N2—C22—C27102.8 (2)
C3—C4—C5—C61.1 (4)C27—C22—C23—C241.9 (4)
C4—C5—C6—C72.6 (4)N2—C22—C23—C24179.2 (2)
C4—C5—C6—C9174.5 (2)C22—C23—C24—C250.2 (4)
C5—C6—C7—C83.5 (4)C23—C24—C25—C260.9 (4)
C9—C6—C7—C8173.6 (2)C23—C24—C25—C28178.6 (2)
C4—C3—C8—C73.3 (4)C24—C25—C26—C270.3 (4)
N1—C3—C8—C7176.8 (2)C28—C25—C26—C27179.2 (2)
C6—C7—C8—C30.6 (4)C25—C26—C27—C221.3 (4)
N1—C1—C10—C1154.0 (3)C23—C22—C27—C262.4 (4)
C2—C1—C10—C11123.6 (3)N2—C22—C27—C26178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···Cl20.83 (2)2.36 (2)3.161 (2)163 (3)
C17—H17···Cl2i0.952.803.708 (3)161
C21—H21···O1ii0.952.483.275 (3)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10H···Cl20.831 (17)2.357 (19)3.161 (2)163 (3)
C17—H17···Cl2i0.952.803.708 (3)161.3
C21—H21···O1ii0.952.483.275 (3)141.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

Whittier College is acknowledged for the funds that supported this research. Tammy Le is acknowledged for obtaining the UV–Vis spectrum of the title compound. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011–2012)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationBruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComerlato, N. M., Crossetti, G. L., Howie, R. A., Tibultino, P. C. D. & Wardell, J. L. (2001). Acta Cryst. E57, m295–m297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDyakonenko, V. V., Zholob, O. O., Orysyk, S. I. & Pekhnyo, V. I. (2015). Acta Cryst. E71, m10–m11.  CSD CrossRef IUCr Journals Google Scholar
First citationEttedgui, J. & Neumann, J. (2009). J. Am. Chem. Soc. 131, 4–5.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationKubota, M., Covarrubias, D., Pye, C., Fronczek, F. R. & Isovitsch, R. (2013). J. Coord. Chem. 66, 1350–1362.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopeney, C. & Guan, Z. (2005). Organometallics, 24, 1145–1155.  Web of Science CrossRef CAS Google Scholar
First citationPrice, J. H., Williamson, A. N., Schramm, R. F. & Wayland, B. B. (1972). Inorg. Chem. 11, 1280–1284.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Luo, X., Gao, B., Wu, Q. & Mu, Y. (2012). Acta Cryst. E68, o128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Y., Yuan, J., Zhao, J. & Zhao, S. (2015). Acta Cryst. E71, o251–o252.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds