research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-aqua­chlorido­(rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) tetra­chlorido­zincate trihydrate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 August 2015; accepted 14 August 2015; online 22 August 2015)

The structure of the title compound, cis-[CrCl(cycb)(H2O)][ZnCl4]·3H2O (cycb is rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane; C16H36N4), has been determined from synchrotron data. In the complex cation, the CrIII ion is bound by four N atoms from the tetra­dentate cycb ligand, a chloride ion and one water mol­ecule in a cis arrangement, displaying a distorted octa­hedral coordination geometry. The distorted tetra­hedral [ZnCl4]2− anion and three additional water mol­ecules remain outside the coordination sphere. The Cr—N(cycb) bond lengths are in the range of 2.0837 (14) to 2.1399 (12) Å while the Cr—Cl and Cr—(OH2) bond lengths are 2.2940 (8) and 2.0082 (13) Å, respectively. The crystal packing is stabilized by hydrogen-bonding inter­actions between the N—H groups of the macrocyclic ligand, the O—H groups of the water mol­ecules and the Cl atoms of the tetra­chlorido­zincate anion, leading to the formation of a three-dimensional network.

1. Chemical context

Chromium(III) complexes containing C-meso or racemic-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (cyca and cycb) ligands are known to exist in trans or cis octa­hedral coordination geometries when combined with two auxiliary ligands (House et al., 1983[House, D. A., Hay, R. W. & Akbar Ali, M. (1983). Inorg. Chim. Acta, 72, 239-245.]; Eriksen & Mønsted, 1983[Eriksen, J. & Mønsted, O. (1983). Acta Chem. Scand. 37a, 579-584.]). The cycb ligand readily folds to form the cis isomer while the cyca ligand only folds with difficulty into the trans isomer. There are five conformational trans isomers for the cyclam moiety which differ in the chirality of the sec-NH group (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). Ligands with trans-I, trans-II or trans-V configurations can fold into cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). Infrared and electronic absorption spectral properties are useful in determining the geometric isomers of CrIII complexes with mixed ligands (Choi et al., 2004[Choi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7-12.]; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]; Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774-779.]). However, it should be noted that the geometric assignments based on spectroscopic studies alone are less conclusive. In order to study the mol­ecular structure and crystal packing mode of a complex containing CrIII, the cycb ligand and a ZnCl42− counter-anion, we report herein on the preparation and crystal structure of cis-[CrCl(cycb)(OH2)]ZnCl4·3H2O, (I)[link].

2. Structural commentary

In the mol­ecular structure of the complex cation, there is one chlorine atom and one water mol­ecule coordinating the CrIII ion with an O1A—Cr1A—Cl1A bond angle of 85.74 (4)°. The rest of the coordination sites are occupied by four nitro­gen atoms of the tetra­dentate macrocyclic cycb ligand, giving rise to a distorted octa­hedral coordination sphere.

[Scheme 1]

The cycb ligand is folded about the N2A—Cr1A—N4A line and is in its most stable cis-V conformation (Fig. 1[link]). The Cr—N(cycb) bond lengths are in the range 2.0837 (14) to 2.1399 (12) Å, in good agreement with those observed in cis-[Cr(OH)2(cycb)]ClO4·2H2O [2.140–2.142 Å; Bang & Mønsted, 1984[Bang, E. & Mønsted, O. (1984). Acta Chem. Scand. A38, 281-287.]], cis-[Cr(NCS)2(cycb)]ClO4·H2O [2.103 (4)–2.147 (4) Å; Byun et al., 2005[Byun, J. C., Han, J. H. & Park, Y. C. (2005). Bull. Korean Chem. Soc. 26, 1044-1050.]], cis-[Cr(O2CO)(cycb)]Br·H2O [2.093 (3)–2.115 (3) Å; Dobrzańska, 2005[Dobrzańska, L. (2005). Acta Cryst. E61, m1625-m1627.]], cis-[Cr(CN)2(cycb)]Cl [2.119 (3)–2.135 (2) Å; Lessard et al., 1992[Lessard, B., Heeg, M. J., Buranda, T., Perkovic, M. W., Schwarz, C. L., Yang, R. & Endicott, J. F. (1992). Inorg. Chem. 31, 3091-3103.]], or cis-[Cr(acac)(cycb)]ClO4·0.5H2O [acac is acetyl­acetonate; 2.107 (3)–2.133 (3) Å; Byun & Han, 2005[Byun, J. C. & Han, J. H. (2005). Bull. Korean Chem. Soc. 26, 1395-1402.]]. The Cr—Cl and Cr—(OH2) bond lengths are 2.2940 (8) and 2.0082 (13) Å, respectively. The Cr—Cl bond is slightly shorter than in trans-[CrCl(cyca)(OH2)](NO3)2 [2.307 (2) Å; Temple et al., 1984[Temple, R., House, D. A. & Robinson, W. T. (1984). Acta Cryst. C40, 1789-1791.]] or trans-[CrCl2(Me2tn)2]Cl [Me2tn = 2,2-di­methyl­propane-1,3-di­amine; 2.3253 (7); Choi et al., 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S.-H., Park, Y.-C. & Habibi, M. H. (2007). Spectrochim Acta Part A 68, 796-801.]]. The length of the Cr—(OH2) bond in the title compound is comparable to the values of 2.090 (6) and 1.996 (4) Å found in trans–[CrCl(cyca)(OH2)](NO3)2 (Temple et al., 1984[Temple, R., House, D. A. & Robinson, W. T. (1984). Acta Cryst. C40, 1789-1791.]) and trans-[CrF(3,2,3-tet)(OH2)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undecane; Choi & Lee, 2008[Choi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.]), respectively. The Cl1A—Cr1A—N1 and O1A—Cr1A—N3A angles are 170.35 (3) and 172.43 (5)°, respectively. The angles N1A—Cr1A—N2A and N3A—Cr1A—N4A are 87.01 (5) and 87.77 (5)°, reflecting the distorted octa­hedral coordination sphere. The tetra­hedral [ZnCl4]2− anion and three additional water mol­ecules remain outside the coordination sphere of CrIII. The complex anion is distorted due to its involvement in hydrogen-bonding inter­actions. Zn—Cl bonds in the anion span a range from 2.2569 (7) to 2.3131 (8) Å, and the Cl—Zn—Cl angles from 106.02 (4) to 111.49 (3)°.

[Figure 1]
Figure 1
The structure of the mol­ecular entities in compound (I)[link], with displacement ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms have been omitted for clarity.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The supra­molecular architecture involves hydrogen-bonding inter­actions including the N—H groups of the macrocycles, the O—H groups of coordinating and lattice water mol­ecules as donors, and the anion Cl atoms and O atoms of coordinating and lattice water mol­ecules as acceptors, giving rise to a three-dimensional network structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯O1W 0.84 (1) 1.90 (1) 2.7227 (19) 170 (2)
O1A—H2OA⋯O2W 0.84 (1) 1.79 (1) 2.623 (2) 173 (2)
N1A—H1NA⋯Cl3Bi 0.98 2.43 3.3748 (18) 163
N2A—H2NA⋯Cl2Bii 0.98 2.64 3.4686 (16) 142
N3A—H3NA⋯Cl3Bi 0.98 2.37 3.3403 (15) 172
N4A—H4NA⋯Cl2B 0.98 2.48 3.4244 (17) 163
O1W—H1O1⋯Cl4B 0.85 (1) 2.33 (1) 3.165 (2) 171 (3)
O1W—H2O1⋯Cl3Bii 0.85 (1) 2.59 (1) 3.4029 (18) 160 (2)
O2W—H2O2⋯O3W 0.86 (1) 1.92 (1) 2.756 (3) 165 (3)
O3W—H1O3⋯O1Wiii 0.87 (1) 2.02 (2) 2.846 (3) 158 (3)
O3W—H2O3⋯Cl1Biii 0.87 (1) 2.52 (1) 3.383 (3) 174 (4)
Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of compound (I)[link], viewed perpendicular to the ac plane. Dashed lines represent hydrogen-bonding inter­actions of the types O—H⋯O (light green), O—H⋯Cl (red) and N—H⋯Cl (cyan). H atoms bonded to C atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 13 hits for CrIII complexes involving the macrocyclic rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane ligand. The crystal structures of cis-[Cr(OH)2(cycb)]ClO4·2H2O (Bang & Mønsted, 1984[Bang, E. & Mønsted, O. (1984). Acta Chem. Scand. A38, 281-287.]), cis-[Cr(NCS)2(cycb)]ClO4·H2O (Byun et al., 2005[Byun, J. C., Han, J. H. & Park, Y. C. (2005). Bull. Korean Chem. Soc. 26, 1044-1050.]), cis-[Cr(O2CO)(cycb)]Br·H2O (Dobrzanska, 2005[Dobrzańska, L. (2005). Acta Cryst. E61, m1625-m1627.]) cis-[Cr(CN)2(cycb)]Cl (Lessard et al., 1992[Lessard, B., Heeg, M. J., Buranda, T., Perkovic, M. W., Schwarz, C. L., Yang, R. & Endicott, J. F. (1992). Inorg. Chem. 31, 3091-3103.]), cis-[Cr(acac)(cycb)]ClO4·0.5H2O (Byun & Han, 2005[Byun, J. C. & Han, J. H. (2005). Bull. Korean Chem. Soc. 26, 1395-1402.]), trans–[CrCl(cyca)(OH2)](NO3)2 (Temple et al., 1984[Temple, R., House, D. A. & Robinson, W. T. (1984). Acta Cryst. C40, 1789-1791.]) and trans-[Cr(OH)(cyca)(OH2)](ClO4)2·H2O (Goodson et al., 2001[Goodson, P. A., Glerup, J., Hodgson, D. J., Jensen, N. B. & Michelsen, K. (2001). J. Chem. Soc. Dalton Trans. pp. 2783-2790.]) have been reported previously. However, no crystal structure of the [CrCl(cycb)(OH2)]2+ cationic complex with any anion was found, although the preparation of cis-[CrCl(cycb)(OH2)](ClO4)2·0.4HClO4·3H2O has been reported (Eriksen & Mønsted, 1983[Eriksen, J. & Mønsted, O. (1983). Acta Chem. Scand. 37a, 579-584.]).

5. Synthesis and crystallization

All chemicals were reagent grade materials and used without further purification. The starting material, cis-[CrCl2(cycb)]Cl·H2O was prepared according to literature procedures (Eriksen & Mønsted, 1983[Eriksen, J. & Mønsted, O. (1983). Acta Chem. Scand. 37a, 579-584.]). Crude cis-[CrCl2(cycb)]Cl·H2O (0.07 g) was dissolved in 4 mL of 0.01 M HCl at 353 K and the 1 mL of 6 M HCl containing 0.15 g of solid ZnCl2 were added to this solution. The mixture was refluxed for 30 min and then cooled to room temperature. The resulting solution was filtered and the filtrate was allowed to stand at room temperature for one day to afford purple crystals of compound (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.96–0.98 Å and N—H = 0.98 Å, and with Uiso(H) values of 1.2 or 1.5 × Ueq of the parent atoms. The hydrogen atoms of water mol­ecules were located in difference maps restrained with O—H = 0.84 Å using DFIX and DANG commands.

Table 2
Experimental details

Crystal data
Chemical formula [CrCl(C16H36N4)(H2O)][ZnCl4]·3H2O
Mr 651.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 260
a, b, c (Å) 9.1010 (18), 9.5830 (19), 17.007 (3)
α, β, γ (°) 81.73 (3), 75.80 (3), 74.90 (3)
V3) 1383.2 (6)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.16
Crystal size (mm) 0.22 × 0.16 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.787, 0.917
No. of measured, independent and observed [I > 2σ(I)] reflections 14317, 7413, 7053
Rint 0.013
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.080, 1.03
No. of reflections 7413
No. of parameters 310
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.76, −0.56
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
[CrCl(C16H38N4O)(H2O)][ZnCl4]3H2OZ = 2
Mr = 651.17F(000) = 678
Triclinic, P1Dx = 1.563 Mg m3
a = 9.1010 (18) ÅSynchrotron radiation, λ = 0.610 Å
b = 9.5830 (19) ÅCell parameters from 68409 reflections
c = 17.007 (3) Åθ = 0.4–33.7°
α = 81.73 (3)°µ = 1.16 mm1
β = 75.80 (3)°T = 260 K
γ = 74.90 (3)°Plate, purple
V = 1383.2 (6) Å30.22 × 0.16 × 0.08 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
7053 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.013
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.787, Tmax = 0.917k = 1313
14317 measured reflectionsl = 2323
7413 independent reflections
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.7948P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7413 reflectionsΔρmax = 0.76 e Å3
310 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.87300 (2)0.33415 (2)0.22043 (2)0.01468 (5)
O1A0.69575 (12)0.46877 (12)0.28842 (7)0.0251 (2)
H1OA0.697 (2)0.5566 (12)0.2814 (12)0.030*
H2OA0.6213 (18)0.456 (2)0.3265 (9)0.030*
N1A0.81211 (13)0.15969 (13)0.30221 (7)0.0189 (2)
H1NA0.88810.07120.28370.023*
N2A1.05645 (13)0.31721 (13)0.28159 (7)0.0203 (2)
H2NA1.08880.40900.26580.024*
N3A1.04622 (12)0.20987 (12)0.13663 (7)0.01725 (19)
H3NA1.04040.10850.15140.021*
N4A0.70640 (12)0.30026 (12)0.15997 (7)0.01734 (19)
H4NA0.61260.37690.17620.021*
C1A0.65887 (16)0.14998 (17)0.28964 (9)0.0235 (3)
H1A10.57680.22720.31530.028*
H1A20.63650.05790.31430.028*
C2A0.80792 (17)0.16149 (17)0.39133 (8)0.0240 (3)
H2A0.73150.24850.41160.029*
C3A0.7586 (2)0.0277 (2)0.44022 (11)0.0397 (4)
H3A10.65210.03310.43970.060*
H3A20.76890.02440.49540.060*
H3A30.82410.05820.41620.060*
C4A0.96572 (18)0.16400 (17)0.40594 (9)0.0265 (3)
H4A11.04110.08030.38270.032*
H4A20.95860.15050.46430.032*
C5A1.03257 (18)0.29722 (17)0.37339 (9)0.0261 (3)
C6A0.9269 (2)0.4363 (2)0.40828 (10)0.0368 (4)
H6A10.97170.51700.38450.055*
H6A20.91650.42770.46620.055*
H6A30.82600.45170.39610.055*
C7A1.1889 (2)0.2726 (2)0.39878 (11)0.0404 (4)
H7A11.25300.17950.38400.061*
H7A21.17020.27590.45660.061*
H7A31.24110.34700.37160.061*
C8A1.18917 (16)0.20584 (17)0.24069 (9)0.0252 (3)
H8A11.17560.10970.26260.030*
H8A21.28580.21640.25090.030*
C9A1.19721 (15)0.22306 (16)0.15068 (9)0.0227 (3)
H9A11.21630.31710.12800.027*
H9A21.28200.14880.12420.027*
C10A1.03870 (15)0.24351 (15)0.04815 (8)0.0200 (2)
H10A1.03350.34710.03350.024*
C11A1.18404 (18)0.15683 (19)0.00605 (9)0.0297 (3)
H11A1.27260.19330.00570.045*
H11B1.16910.16640.06070.045*
H11C1.20160.05640.01420.045*
C12A0.89375 (16)0.20959 (17)0.03353 (8)0.0237 (3)
H12A0.89250.11080.05590.028*
H12B0.90510.21190.02480.028*
C13A0.73394 (15)0.30643 (16)0.06770 (8)0.0214 (2)
C14A0.71987 (19)0.46457 (18)0.03395 (10)0.0304 (3)
H14A0.61830.52090.05690.046*
H14B0.73450.47110.02420.046*
H14C0.79790.50120.04800.046*
C15A0.60817 (18)0.2528 (2)0.04261 (10)0.0312 (3)
H15A0.61600.15230.06150.047*
H15B0.62320.26390.01560.047*
H15C0.50690.30870.06630.047*
C16A0.66416 (16)0.16285 (16)0.19998 (8)0.0225 (3)
H16A0.74030.08080.17540.027*
H16B0.56310.16100.19160.027*
Zn1B0.26864 (2)0.74837 (2)0.24042 (2)0.02510 (6)
Cl1A0.93837 (4)0.54067 (4)0.15097 (2)0.02727 (8)
Cl1B0.22710 (8)0.75375 (7)0.37777 (3)0.05834 (16)
Cl2B0.33787 (5)0.51602 (4)0.20871 (3)0.03437 (9)
Cl3B0.03474 (4)0.86751 (4)0.20538 (3)0.03322 (9)
Cl4B0.45104 (6)0.87103 (6)0.17503 (4)0.05119 (14)
O1W0.70053 (18)0.75266 (16)0.28427 (10)0.0450 (3)
H1O10.639 (2)0.776 (3)0.2521 (13)0.054*
H2O10.7866 (17)0.766 (3)0.2551 (13)0.054*
O2W0.46628 (19)0.4464 (2)0.41394 (11)0.0582 (4)
H1O20.482 (4)0.513 (2)0.4363 (16)0.070*
H2O20.446 (4)0.389 (3)0.4566 (12)0.070*
O3W0.4581 (3)0.2496 (3)0.54916 (14)0.0858 (7)
H1O30.389 (3)0.247 (5)0.5950 (13)0.103*
H2O30.540 (3)0.254 (5)0.565 (2)0.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.01303 (9)0.01372 (10)0.01588 (9)0.00341 (7)0.00166 (7)0.00118 (7)
O1A0.0238 (5)0.0196 (5)0.0268 (5)0.0031 (4)0.0030 (4)0.0036 (4)
N1A0.0197 (5)0.0179 (5)0.0180 (5)0.0061 (4)0.0029 (4)0.0026 (4)
N2A0.0199 (5)0.0213 (6)0.0211 (5)0.0073 (4)0.0066 (4)0.0018 (4)
N3A0.0140 (4)0.0163 (5)0.0194 (5)0.0034 (4)0.0011 (4)0.0002 (4)
N4A0.0138 (4)0.0179 (5)0.0188 (5)0.0025 (4)0.0030 (4)0.0003 (4)
C1A0.0207 (6)0.0261 (7)0.0243 (6)0.0118 (5)0.0024 (5)0.0033 (5)
C2A0.0271 (6)0.0260 (7)0.0174 (6)0.0083 (5)0.0031 (5)0.0041 (5)
C3A0.0512 (10)0.0427 (10)0.0282 (8)0.0253 (9)0.0096 (7)0.0156 (7)
C4A0.0307 (7)0.0277 (7)0.0212 (6)0.0081 (6)0.0089 (5)0.0054 (5)
C5A0.0309 (7)0.0294 (7)0.0218 (6)0.0109 (6)0.0111 (5)0.0018 (5)
C6A0.0519 (10)0.0344 (9)0.0285 (7)0.0128 (8)0.0108 (7)0.0079 (6)
C7A0.0419 (9)0.0540 (11)0.0353 (8)0.0216 (8)0.0229 (7)0.0080 (8)
C8A0.0169 (5)0.0281 (7)0.0297 (7)0.0023 (5)0.0081 (5)0.0004 (5)
C9A0.0129 (5)0.0260 (7)0.0270 (6)0.0039 (5)0.0023 (4)0.0003 (5)
C10A0.0182 (5)0.0206 (6)0.0179 (5)0.0029 (5)0.0003 (4)0.0005 (4)
C11A0.0228 (6)0.0346 (8)0.0259 (7)0.0015 (6)0.0031 (5)0.0082 (6)
C12A0.0208 (6)0.0283 (7)0.0213 (6)0.0039 (5)0.0033 (5)0.0059 (5)
C13A0.0187 (5)0.0254 (7)0.0192 (6)0.0029 (5)0.0059 (4)0.0001 (5)
C14A0.0292 (7)0.0299 (8)0.0279 (7)0.0032 (6)0.0087 (6)0.0091 (6)
C15A0.0236 (6)0.0428 (9)0.0302 (7)0.0063 (6)0.0121 (6)0.0044 (6)
C16A0.0210 (6)0.0235 (7)0.0250 (6)0.0103 (5)0.0056 (5)0.0016 (5)
Zn1B0.02438 (9)0.02053 (9)0.02709 (9)0.00146 (6)0.00336 (6)0.00237 (6)
Cl1A0.03019 (17)0.02080 (16)0.02835 (16)0.00789 (13)0.00262 (13)0.00291 (12)
Cl1B0.0683 (3)0.0656 (4)0.0287 (2)0.0098 (3)0.0092 (2)0.0134 (2)
Cl2B0.02746 (17)0.02228 (18)0.0507 (2)0.00162 (14)0.00473 (15)0.00905 (15)
Cl3B0.02720 (17)0.02074 (17)0.0509 (2)0.00139 (13)0.01244 (15)0.00133 (15)
Cl4B0.0334 (2)0.0375 (3)0.0755 (4)0.01276 (19)0.0026 (2)0.0102 (2)
O1W0.0402 (7)0.0364 (7)0.0533 (8)0.0088 (6)0.0012 (6)0.0074 (6)
O2W0.0380 (7)0.0645 (11)0.0563 (10)0.0082 (7)0.0090 (7)0.0051 (8)
O3W0.0905 (17)0.1024 (19)0.0614 (13)0.0315 (15)0.0022 (11)0.0132 (12)
Geometric parameters (Å, º) top
Cr1A—O1A2.0082 (13)C7A—H7A10.9600
Cr1A—N3A2.0837 (14)C7A—H7A20.9600
Cr1A—N1A2.1147 (13)C7A—H7A30.9600
Cr1A—N2A2.1352 (12)C8A—C9A1.502 (2)
Cr1A—N4A2.1399 (12)C8A—H8A10.9700
Cr1A—Cl1A2.2940 (8)C8A—H8A20.9700
O1A—H1OA0.835 (9)C9A—H9A10.9700
O1A—H2OA0.835 (9)C9A—H9A20.9700
N1A—C1A1.4896 (17)C10A—C12A1.5217 (19)
N1A—C2A1.5093 (17)C10A—C11A1.529 (2)
N1A—H1NA0.9800C10A—H10A0.9800
N2A—C8A1.487 (2)C11A—H11A0.9600
N2A—C5A1.5134 (18)C11A—H11B0.9600
N2A—H2NA0.9800C11A—H11C0.9600
N3A—C9A1.4905 (16)C12A—C13A1.533 (2)
N3A—C10A1.5074 (17)C12A—H12A0.9700
N3A—H3NA0.9800C12A—H12B0.9700
N4A—C16A1.4909 (17)C13A—C14A1.526 (2)
N4A—C13A1.5221 (17)C13A—C15A1.538 (2)
N4A—H4NA0.9800C14A—H14A0.9600
C1A—C16A1.502 (2)C14A—H14B0.9600
C1A—H1A10.9700C14A—H14C0.9600
C1A—H1A20.9700C15A—H15A0.9600
C2A—C4A1.523 (2)C15A—H15B0.9600
C2A—C3A1.532 (2)C15A—H15C0.9600
C2A—H2A0.9800C16A—H16A0.9700
C3A—H3A10.9600C16A—H16B0.9700
C3A—H3A20.9600Zn1B—Cl2B2.2569 (7)
C3A—H3A30.9600Zn1B—Cl4B2.2603 (9)
C4A—C5A1.531 (2)Zn1B—Cl1B2.2789 (7)
C4A—H4A10.9700Zn1B—Cl3B2.3131 (8)
C4A—H4A20.9700O1W—H1O10.847 (9)
C5A—C6A1.528 (3)O1W—H2O10.848 (9)
C5A—C7A1.537 (2)O2W—H1O20.845 (10)
C6A—H6A10.9600O2W—H2O20.859 (10)
C6A—H6A20.9600O3W—H1O30.874 (10)
C6A—H6A30.9600O3W—H2O30.870 (10)
O1A—Cr1A—N3A172.43 (5)H6A1—C6A—H6A2109.5
O1A—Cr1A—N1A88.19 (5)C5A—C6A—H6A3109.5
N3A—Cr1A—N1A97.08 (5)H6A1—C6A—H6A3109.5
O1A—Cr1A—N2A101.33 (5)H6A2—C6A—H6A3109.5
N3A—Cr1A—N2A84.43 (5)C5A—C7A—H7A1109.5
N1A—Cr1A—N2A87.01 (5)C5A—C7A—H7A2109.5
O1A—Cr1A—N4A87.37 (5)H7A1—C7A—H7A2109.5
N3A—Cr1A—N4A87.77 (5)C5A—C7A—H7A3109.5
N1A—Cr1A—N4A84.11 (5)H7A1—C7A—H7A3109.5
N2A—Cr1A—N4A167.37 (5)H7A2—C7A—H7A3109.5
O1A—Cr1A—Cl1A85.74 (4)N2A—C8A—C9A109.92 (12)
N3A—Cr1A—Cl1A89.71 (4)N2A—C8A—H8A1109.7
N1A—Cr1A—Cl1A170.35 (3)C9A—C8A—H8A1109.7
N2A—Cr1A—Cl1A86.83 (4)N2A—C8A—H8A2109.7
N4A—Cr1A—Cl1A103.07 (4)C9A—C8A—H8A2109.7
Cr1A—O1A—H1OA116.7 (14)H8A1—C8A—H8A2108.2
Cr1A—O1A—H2OA133.8 (14)N3A—C9A—C8A108.68 (11)
H1OA—O1A—H2OA109.3 (17)N3A—C9A—H9A1110.0
C1A—N1A—C2A111.26 (11)C8A—C9A—H9A1110.0
C1A—N1A—Cr1A105.43 (8)N3A—C9A—H9A2110.0
C2A—N1A—Cr1A118.74 (9)C8A—C9A—H9A2110.0
C1A—N1A—H1NA106.9H9A1—C9A—H9A2108.3
C2A—N1A—H1NA106.9N3A—C10A—C12A110.54 (11)
Cr1A—N1A—H1NA106.9N3A—C10A—C11A110.80 (12)
C8A—N2A—C5A112.59 (12)C12A—C10A—C11A109.63 (12)
C8A—N2A—Cr1A105.17 (9)N3A—C10A—H10A108.6
C5A—N2A—Cr1A122.52 (9)C12A—C10A—H10A108.6
C8A—N2A—H2NA105.0C11A—C10A—H10A108.6
C5A—N2A—H2NA105.0C10A—C11A—H11A109.5
Cr1A—N2A—H2NA105.0C10A—C11A—H11B109.5
C9A—N3A—C10A111.61 (10)H11A—C11A—H11B109.5
C9A—N3A—Cr1A105.81 (8)C10A—C11A—H11C109.5
C10A—N3A—Cr1A117.28 (8)H11A—C11A—H11C109.5
C9A—N3A—H3NA107.2H11B—C11A—H11C109.5
C10A—N3A—H3NA107.2C10A—C12A—C13A118.61 (12)
Cr1A—N3A—H3NA107.2C10A—C12A—H12A107.7
C16A—N4A—C13A111.76 (11)C13A—C12A—H12A107.7
C16A—N4A—Cr1A105.83 (8)C10A—C12A—H12B107.7
C13A—N4A—Cr1A122.60 (8)C13A—C12A—H12B107.7
C16A—N4A—H4NA105.1H12A—C12A—H12B107.1
C13A—N4A—H4NA105.1N4A—C13A—C14A108.13 (12)
Cr1A—N4A—H4NA105.1N4A—C13A—C12A109.83 (11)
N1A—C1A—C16A109.24 (11)C14A—C13A—C12A112.37 (12)
N1A—C1A—H1A1109.8N4A—C13A—C15A110.71 (11)
C16A—C1A—H1A1109.8C14A—C13A—C15A107.32 (12)
N1A—C1A—H1A2109.8C12A—C13A—C15A108.47 (12)
C16A—C1A—H1A2109.8C13A—C14A—H14A109.5
H1A1—C1A—H1A2108.3C13A—C14A—H14B109.5
N1A—C2A—C4A112.13 (11)H14A—C14A—H14B109.5
N1A—C2A—C3A110.63 (13)C13A—C14A—H14C109.5
C4A—C2A—C3A108.18 (13)H14A—C14A—H14C109.5
N1A—C2A—H2A108.6H14B—C14A—H14C109.5
C4A—C2A—H2A108.6C13A—C15A—H15A109.5
C3A—C2A—H2A108.6C13A—C15A—H15B109.5
C2A—C3A—H3A1109.5H15A—C15A—H15B109.5
C2A—C3A—H3A2109.5C13A—C15A—H15C109.5
H3A1—C3A—H3A2109.5H15A—C15A—H15C109.5
C2A—C3A—H3A3109.5H15B—C15A—H15C109.5
H3A1—C3A—H3A3109.5N4A—C16A—C1A110.80 (11)
H3A2—C3A—H3A3109.5N4A—C16A—H16A109.5
C2A—C4A—C5A119.11 (12)C1A—C16A—H16A109.5
C2A—C4A—H4A1107.5N4A—C16A—H16B109.5
C5A—C4A—H4A1107.5C1A—C16A—H16B109.5
C2A—C4A—H4A2107.5H16A—C16A—H16B108.1
C5A—C4A—H4A2107.5Cl2B—Zn1B—Cl4B111.49 (3)
H4A1—C4A—H4A2107.0Cl2B—Zn1B—Cl1B109.60 (4)
N2A—C5A—C6A108.55 (13)Cl4B—Zn1B—Cl1B110.65 (4)
N2A—C5A—C4A109.66 (12)Cl2B—Zn1B—Cl3B110.73 (3)
C6A—C5A—C4A112.68 (14)Cl4B—Zn1B—Cl3B108.19 (3)
N2A—C5A—C7A110.36 (13)Cl1B—Zn1B—Cl3B106.02 (4)
C6A—C5A—C7A107.49 (14)H1O1—O1W—H2O1104.5 (18)
C4A—C5A—C7A108.08 (13)H1O2—O2W—H2O298.6 (19)
C5A—C6A—H6A1109.5H1O3—O3W—H2O3102 (2)
C5A—C6A—H6A2109.5
C2A—N1A—C1A—C16A174.65 (12)Cr1A—N3A—C9A—C8A44.64 (12)
Cr1A—N1A—C1A—C16A44.67 (13)N2A—C8A—C9A—N3A58.03 (15)
C1A—N1A—C2A—C4A177.23 (12)C9A—N3A—C10A—C12A172.32 (11)
Cr1A—N1A—C2A—C4A60.17 (15)Cr1A—N3A—C10A—C12A65.41 (13)
C1A—N1A—C2A—C3A56.37 (16)C9A—N3A—C10A—C11A50.58 (15)
Cr1A—N1A—C2A—C3A178.97 (11)Cr1A—N3A—C10A—C11A172.84 (9)
N1A—C2A—C4A—C5A65.83 (18)N3A—C10A—C12A—C13A70.03 (16)
C3A—C2A—C4A—C5A171.90 (14)C11A—C10A—C12A—C13A167.54 (13)
C8A—N2A—C5A—C6A164.61 (12)C16A—N4A—C13A—C14A160.54 (11)
Cr1A—N2A—C5A—C6A68.42 (15)Cr1A—N4A—C13A—C14A72.31 (13)
C8A—N2A—C5A—C4A71.90 (15)C16A—N4A—C13A—C12A76.51 (13)
Cr1A—N2A—C5A—C4A55.07 (15)Cr1A—N4A—C13A—C12A50.64 (14)
C8A—N2A—C5A—C7A47.05 (17)C16A—N4A—C13A—C15A43.25 (15)
Cr1A—N2A—C5A—C7A174.03 (11)Cr1A—N4A—C13A—C15A170.39 (10)
C2A—C4A—C5A—N2A61.30 (18)C10A—C12A—C13A—N4A60.60 (16)
C2A—C4A—C5A—C6A59.73 (18)C10A—C12A—C13A—C14A59.80 (16)
C2A—C4A—C5A—C7A178.35 (14)C10A—C12A—C13A—C15A178.28 (12)
C5A—N2A—C8A—C9A174.68 (11)C13A—N4A—C16A—C1A172.31 (11)
Cr1A—N2A—C8A—C9A38.95 (12)Cr1A—N4A—C16A—C1A36.58 (12)
C10A—N3A—C9A—C8A173.29 (11)N1A—C1A—C16A—N4A56.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···O1W0.84 (1)1.90 (1)2.7227 (19)170 (2)
O1A—H2OA···O2W0.84 (1)1.79 (1)2.623 (2)173 (2)
N1A—H1NA···Cl3Bi0.982.433.3748 (18)163
N2A—H2NA···Cl2Bii0.982.643.4686 (16)142
N3A—H3NA···Cl3Bi0.982.373.3403 (15)172
N4A—H4NA···Cl2B0.982.483.4244 (17)163
O1W—H1O1···Cl4B0.85 (1)2.33 (1)3.165 (2)171 (3)
O1W—H2O1···Cl3Bii0.85 (1)2.59 (1)3.4029 (18)160 (2)
O2W—H2O2···O3W0.86 (1)1.92 (1)2.756 (3)165 (3)
O3W—H1O3···O1Wiii0.87 (1)2.02 (2)2.846 (3)158 (3)
O3W—H2O3···Cl1Biii0.87 (1)2.52 (1)3.383 (3)174 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by a grant from 2015 Inter­national Academic Exchange Program of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBang, E. & Mønsted, O. (1984). Acta Chem. Scand. A38, 281–287.  CrossRef CAS Google Scholar
First citationByun, J. C. & Han, J. H. (2005). Bull. Korean Chem. Soc. 26, 1395–1402.  CAS Google Scholar
First citationByun, J. C., Han, J. H. & Park, Y. C. (2005). Bull. Korean Chem. Soc. 26, 1044–1050.  CAS Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Clegg, W., Nichol, G. S., Lee, S.-H., Park, Y.-C. & Habibi, M. H. (2007). Spectrochim Acta Part A 68, 796–801.  CrossRef Google Scholar
First citationChoi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7–12.  CrossRef CAS Google Scholar
First citationDobrzańska, L. (2005). Acta Cryst. E61, m1625–m1627.  CSD CrossRef IUCr Journals Google Scholar
First citationEriksen, J. & Mønsted, O. (1983). Acta Chem. Scand. 37a, 579–584.  CrossRef Google Scholar
First citationGoodson, P. A., Glerup, J., Hodgson, D. J., Jensen, N. B. & Michelsen, K. (2001). J. Chem. Soc. Dalton Trans. pp. 2783–2790.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHouse, D. A., Hay, R. W. & Akbar Ali, M. (1983). Inorg. Chim. Acta, 72, 239–245.  CrossRef CAS Google Scholar
First citationLessard, B., Heeg, M. J., Buranda, T., Perkovic, M. W., Schwarz, C. L., Yang, R. & Endicott, J. F. (1992). Inorg. Chem. 31, 3091–3103.  CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774–779.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationTemple, R., House, D. A. & Robinson, W. T. (1984). Acta Cryst. C40, 1789–1791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds