research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-bis­­{4-bromo-N-[(pyridin-2-yl)­methyl­­idene]aniline-κ2N,N′}di­chlorido­ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
*Correspondence e-mail: filipk@nu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 August 2015; accepted 19 August 2015; online 22 August 2015)

In the title complex, [RuCl2(C12H9BrN2)2] or [RuCl2(PM-BrA)2] (PM-BrA = 4-bromo-N-(2′-pyridyl­methyl­ene)aniline), the RuII cation is located on a centre of inversion and is surrounded by four N atoms of two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement, displaying a distorted octa­hedral coordination environment. Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The benzene and pyridine rings of the PM-BrA ligand are oriented at dihedral angles of 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring. In the crystal, the complex mol­ecules are connected via C—H⋯Cl hydrogen-bonding inter­actions into a layered arrangement parallel (100). C—H⋯Br hydrogen bonding and weak aromatic ππ stacking inter­actions complete a three-dimensional supra­molecular network.

1. Chemical context

Bidentate Schiff bases are one of the most widely used ligands in coordination chemistry. Their complexes have found utility in a wide range of applications (Rezaeivala & Keypour, 2014[Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203-253.]; Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]). In particular, ruthenium(II) complexes of Schiff bases have been shown to display a variety of structural features and exhibit inter­esting biological and catalytic reactivities (Li et al., 2015[Li, F., Collins, J. G. & Keene, F. R. (2015). Chem. Soc. Rev. 44, 2529-2542.]; Wang et al., 2015[Wang, C., Chen, Y. & Fu, W.-F. (2015). Dalton Trans. 44, 14483-14493.]; Drozdzak et al., 2005[Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055-3074.]). Herein, we report the synthesis and crystal structure of a ruthenium(II) complex with the bidentate Schiff base ligand of 4-bromo-N-(2′-pyridyl­methyl­ene)aniline (PM-BrA), [RuCl2(C12H9BrN2)2], (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of compound (I)[link] contains one half of the complex mol­ecule with the RuII cation lying on an inversion centre (Fig. 1[link]). The coordination environment around RuII is a distorted [Cl2N4] octa­hedron, whereby the metal is chelated by two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement. The ligand exhibits an N1⋯N2 bite distance of 2.585 (7) Å with an N1—Ru1—N2 bite angle of 76.9 (1)°. The reduced bite angle of the chelating ligand is one of the main factors accounting for the distortion from the ideal octa­hedral geometry of the coordination polyhedron, with the the largest cis angle being 103.1 (2)°. The Ru—N bond lengths are 2.073 (5) and 2.084 (5) Å, and the Ru—Cl bond length is 2.3908 (14) Å, in agreement with those observed in the structures of similar compounds (Roy et al., 2012[Roy, S., Maheswari, P. U., Golobič, A., Kozlevčar, B. & Reedijk, J. (2012). Inorg. Chim. Acta, 393, 239-245.]). Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The dihedral angle between the least-square planes of the benzene and pyridine rings in the PM-BrA ligand are 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of complex (I)[link], showing displacement ellipsoids at the 50% probability level. Disorder is displayed for the C11 and C12 atoms of the benzene ring. [Symmetry operator: (i) −x + 1, −y + 1, −z.]

3. Supra­molecular features

In the crystal, weak inter­molecular C—H⋯Cl hydrogen-bonding inter­actions between the C atoms of the benzene ring and the Cl atoms connect the complex mol­ecules into a supra­molecular layered arrangement parallel to (100) (Fig. 2[link]). As shown in Fig. 3[link], a C—H⋯Br hydrogen bond between the phenyl C atoms and the Br atoms, along with weak aromatic ππ stacking inter­actions [centroid-to-centroid distance = 4.107 (4) Å, dihedral angle = 0.7 (3)°] complete a three-dimensional supra­molecular network. Numerical values of C—H⋯X (X = Cl, Br) inter­actions are compiled in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1i 0.93 2.79 3.472 (7) 132
C6—H6⋯Cl1ii 0.93 2.83 3.673 (7) 151
C3—H3⋯Br1iii 0.93 3.13 3.797 (8) 131
C4—H4⋯Cl1iv 0.93 2.94 3.529 (7) 122
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of complex (I)[link] in a view along [100]. C—H⋯Cl hydrogen-bonding inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
Crystal packing and C—H⋯Br and C—H⋯Cl hydrogen-bonding inter­actions (dashed lines) in complex (I)[link], viewed along [001].

4. Database survey

The structure of trans-[RuCl2(Hpyrimol)2] (Hpyrimol = 4-methyl-2-N-(2-pyridyl­methyl­ene)amino­phenol) with a closely related Schiff base N2 donor set for each ligand has been reported (Roy et al., 2012[Roy, S., Maheswari, P. U., Golobič, A., Kozlevčar, B. & Reedijk, J. (2012). Inorg. Chim. Acta, 393, 239-245.]). The bond lengths and bond angles in this complex are in agreement with those in the structure of (I)[link]. A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 12 hits for complexes involving transition metals and the ligand PM-BrA (KISZIX, KISZOD, KISZUJ, Davies et al., 2014[Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026-4039.]; XEDCUG, Khalaji et al., 2012[Khalaji, A. D., Bahramian, B., Jafari, K., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, m1001-m1002.]; UNIZOH, Harding et al., 2011[Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2011). Acta Cryst. E67, m404-m405.]; SUYDAS, Harding et al., 2010[Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138-m1139.]; FOWBOJ, Khalaj et al., 2009[Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.]; FOWBID, Mahmoudi et al., 2009[Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.]; MOYDUA, Dehghanpour et al., 2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]; TULKIV, Gao et al., 2009[Gao, Y., Zhang, Y.-C. & Zhao, J.-Q. (2009). Chin. J. Inorg. Chem. 25, 1686-1989.]; YOCZAS, Khalaj et al., 2008[Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.]; YOCZEW, Mahmoudi et al., 2008[Mahmoudi, A., Hajikazemi, M., Khalaj, M. & Dehghanpour, S. (2008). Acta Cryst. E64, m1019.]).

5. Synthesis and crystallization

A solution of the ligand 4-bromo-N-(2′-pyridyl­methyl­ene)aniline (104.4 mg, 0.4 mmol) in dry methanol (5 ml) was placed in a test tube. A solution of RuCl3 (41.5 mg, 0.2 mmol) in dry methanol (5 ml) was then carefully layered on the top of a methano­lic solution. After slow diffusion at room temperature for three days, pale-green plate- or block-like crystals of complex (I)[link] were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å. C atoms C11 and C12 and attached H atoms in the benzene ring are disordered over two set of sites and were refined using a split model with equal occupancy.

Table 2
Experimental details

Crystal data
Chemical formula [RuCl2(C12H9BrN2)]
Mr 694.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.3270 (7), 13.3114 (7), 7.9673 (4)
β (°) 100.091 (2)
V3) 1287.13 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.94
Crystal size (mm) 0.26 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.549, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15951, 2391, 1844
Rint 0.054
(sin θ/λ)max−1) 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 1.04
No. of reflections 2391
No. of parameters 170
No. of restraints 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −1.29
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2007 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2007 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

trans-Bis{4-bromo-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}dichloridoruthenium(II) top
Crystal data top
[RuCl2(C12H9BrN2)]F(000) = 676
Mr = 694.21Dx = 1.791 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3270 (7) ÅCell parameters from 4475 reflections
b = 13.3114 (7) Åθ = 3.0–25.4°
c = 7.9673 (4) ŵ = 3.94 mm1
β = 100.091 (2)°T = 296 K
V = 1287.13 (12) Å3Block, green
Z = 20.26 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1844 reflections with I > 2σ(I)
φ and ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.6°, θmin = 3.0°
Tmin = 0.549, Tmax = 0.745h = 1414
15951 measured reflectionsk = 1616
2391 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0854P)2 + 2.577P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2391 reflectionsΔρmax = 0.96 e Å3
170 parametersΔρmin = 1.29 e Å3
73 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.50000.50000.00000.0438 (2)
Cl10.58971 (14)0.46179 (12)0.28373 (18)0.0584 (4)
Br10.03134 (9)0.59834 (15)0.3013 (2)0.1661 (8)
N10.6046 (4)0.6219 (4)0.0113 (6)0.0497 (11)
N20.4128 (4)0.6192 (4)0.0781 (6)0.0503 (11)
C70.3075 (5)0.6159 (5)0.1302 (8)0.0563 (14)
C80.3001 (6)0.5804 (5)0.2904 (8)0.0631 (16)
H80.36350.55960.36320.076*
C60.4524 (6)0.7073 (5)0.0614 (8)0.0600 (16)
H60.41430.76500.08170.072*
C50.5584 (5)0.7125 (4)0.0100 (8)0.0555 (14)
C90.2001 (7)0.5755 (6)0.3439 (10)0.079 (2)
H90.19500.55300.45280.094*
C30.7127 (7)0.8027 (6)0.0497 (11)0.080 (2)
H30.74780.86260.06790.096*
C40.6092 (7)0.8027 (5)0.0099 (10)0.075 (2)
H40.57360.86300.00350.090*
C10.7073 (6)0.6224 (5)0.0410 (10)0.0713 (19)
H10.74330.56160.04820.086*
C100.1078 (7)0.6047 (8)0.2316 (13)0.095 (3)
C11B0.113 (3)0.624 (4)0.061 (3)0.087 (7)0.50 (9)
H11B0.04840.63320.01710.105*0.50 (9)
C20.7629 (7)0.7123 (6)0.0620 (11)0.082 (2)
H20.83440.71020.08440.099*
C12B0.2127 (19)0.630 (4)0.010 (4)0.078 (7)0.50 (9)
H12B0.21700.64220.10350.093*0.50 (9)
C12A0.2157 (19)0.661 (3)0.035 (6)0.077 (7)0.50 (9)
H12A0.22220.69250.06740.092*0.50 (9)
C11A0.116 (3)0.660 (4)0.087 (5)0.095 (8)0.50 (9)
H11A0.05610.69560.02760.114*0.50 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0540 (4)0.0368 (3)0.0405 (4)0.0017 (3)0.0078 (3)0.0008 (3)
Cl10.0767 (10)0.0531 (8)0.0423 (7)0.0036 (8)0.0016 (6)0.0044 (6)
Br10.0811 (7)0.2433 (19)0.1885 (15)0.0388 (9)0.0645 (8)0.0555 (13)
N10.061 (3)0.043 (3)0.046 (3)0.002 (2)0.011 (2)0.002 (2)
N20.061 (3)0.048 (3)0.041 (2)0.004 (2)0.008 (2)0.000 (2)
C70.063 (3)0.053 (3)0.054 (3)0.015 (3)0.012 (3)0.001 (3)
C80.063 (4)0.074 (4)0.052 (4)0.011 (3)0.010 (3)0.008 (3)
C60.073 (4)0.041 (3)0.065 (4)0.007 (3)0.011 (3)0.001 (3)
C50.067 (4)0.041 (3)0.057 (3)0.000 (3)0.006 (3)0.005 (3)
C90.078 (5)0.090 (5)0.072 (5)0.005 (4)0.026 (4)0.007 (4)
C30.080 (5)0.057 (4)0.102 (6)0.015 (4)0.013 (4)0.004 (4)
C40.081 (5)0.046 (4)0.097 (6)0.003 (4)0.014 (4)0.010 (3)
C10.069 (4)0.051 (4)0.097 (5)0.001 (3)0.024 (4)0.006 (3)
C100.063 (4)0.123 (7)0.106 (6)0.029 (5)0.033 (4)0.023 (5)
C11B0.064 (7)0.112 (18)0.084 (8)0.034 (12)0.009 (8)0.014 (10)
C20.067 (4)0.079 (5)0.105 (6)0.018 (4)0.026 (4)0.006 (4)
C12B0.069 (8)0.099 (19)0.064 (9)0.028 (10)0.010 (5)0.019 (11)
C12A0.071 (8)0.077 (16)0.081 (12)0.015 (9)0.010 (7)0.027 (11)
C11A0.061 (7)0.111 (19)0.111 (12)0.016 (12)0.009 (10)0.037 (12)
Geometric parameters (Å, º) top
Ru1—Cl12.3908 (14)C5—C41.376 (9)
Ru1—Cl1i2.3907 (14)C9—H90.9300
Ru1—N12.084 (5)C9—C101.374 (12)
Ru1—N1i2.084 (5)C3—H30.9300
Ru1—N2i2.073 (5)C3—C41.367 (11)
Ru1—N22.073 (5)C3—C21.365 (11)
Br1—C101.895 (8)C4—H40.9300
N1—C51.356 (8)C1—H10.9300
N1—C11.328 (8)C1—C21.403 (10)
N2—C71.432 (8)C10—C11B1.392 (17)
N2—C61.286 (8)C10—C11A1.391 (17)
C7—C81.379 (9)C11B—H11B0.9300
C7—C12B1.387 (15)C11B—C12B1.365 (17)
C7—C12A1.385 (15)C2—H20.9300
C8—H80.9300C12B—H12B0.9300
C8—C91.374 (10)C12A—H12A0.9300
C6—H60.9300C12A—C11A1.364 (17)
C6—C51.438 (9)C11A—H11A0.9300
Cl1i—Ru1—Cl1180.0C4—C5—C6122.0 (6)
N1—Ru1—Cl191.11 (14)C8—C9—H9121.0
N1i—Ru1—Cl188.89 (14)C10—C9—C8118.0 (7)
N1i—Ru1—Cl1i91.11 (14)C10—C9—H9121.0
N1—Ru1—Cl1i88.89 (14)C4—C3—H3121.0
N1—Ru1—N1i180.0 (2)C2—C3—H3121.0
N2i—Ru1—Cl1i93.28 (13)C2—C3—C4118.0 (7)
N2i—Ru1—Cl186.71 (13)C5—C4—H4120.4
N2—Ru1—Cl1i86.72 (13)C3—C4—C5119.3 (7)
N2—Ru1—Cl193.29 (13)C3—C4—H4120.4
N2i—Ru1—N1i76.9 (2)N1—C1—H1119.1
N2—Ru1—N176.9 (2)N1—C1—C2121.7 (7)
N2i—Ru1—N1103.1 (2)C2—C1—H1119.1
N2—Ru1—N1i103.1 (2)C9—C10—Br1119.0 (7)
N2—Ru1—N2i180.0C9—C10—C11B120.9 (15)
C5—N1—Ru1114.3 (4)C9—C10—C11A121.3 (16)
C1—N1—Ru1128.9 (4)C11B—C10—Br1119.4 (15)
C1—N1—C5116.9 (5)C11A—C10—Br1117.9 (17)
C7—N2—Ru1127.4 (4)C10—C11B—H11B120.0
C6—N2—Ru1116.1 (4)C12B—C11B—C10120 (3)
C6—N2—C7116.0 (5)C12B—C11B—H11B120.0
C8—C7—N2119.3 (5)C3—C2—C1120.4 (7)
C8—C7—C12B120.0 (17)C3—C2—H2119.8
C8—C7—C12A118.5 (18)C1—C2—H2119.8
C12B—C7—N2119.5 (15)C7—C12B—H12B120.7
C12A—C7—N2121.5 (17)C11B—C12B—C7119 (3)
C7—C8—H8119.6C11B—C12B—H12B120.7
C9—C8—C7120.8 (6)C7—C12A—H12A119.3
C9—C8—H8119.6C11A—C12A—C7121 (3)
N2—C6—H6121.5C11A—C12A—H12A119.3
N2—C6—C5117.0 (6)C10—C11A—H11A121.4
C5—C6—H6121.5C12A—C11A—C10117 (3)
N1—C5—C6114.5 (5)C12A—C11A—H11A121.4
N1—C5—C4123.5 (6)
Ru1—N1—C5—C68.8 (7)C8—C7—C12B—C11B11 (4)
Ru1—N1—C5—C4173.2 (6)C8—C7—C12A—C11A8 (4)
Ru1—N1—C1—C2173.2 (6)C8—C9—C10—Br1179.8 (7)
Ru1—N2—C7—C876.6 (7)C8—C9—C10—C11B10 (3)
Ru1—N2—C7—C12B91 (3)C8—C9—C10—C11A16 (3)
Ru1—N2—C7—C12A113 (3)C6—N2—C7—C8111.0 (7)
Ru1—N2—C6—C57.1 (8)C6—N2—C7—C12B81 (3)
Br1—C10—C11B—C12B179.5 (19)C6—N2—C7—C12A59 (3)
Br1—C10—C11A—C12A178 (2)C6—C5—C4—C3176.3 (7)
N1—C5—C4—C31.4 (11)C5—N1—C1—C24.5 (11)
N1—C1—C2—C31.0 (13)C9—C10—C11B—C12B10 (4)
N2—C7—C8—C9179.5 (7)C9—C10—C11A—C12A18 (5)
N2—C7—C12B—C11B178.6 (18)C4—C3—C2—C12.6 (13)
N2—C7—C12A—C11A178 (2)C1—N1—C5—C6173.1 (6)
N2—C6—C5—N11.3 (9)C1—N1—C5—C44.8 (10)
N2—C6—C5—C4179.3 (6)C10—C11B—C12B—C70 (4)
C7—N2—C6—C5179.7 (6)C2—C3—C4—C52.3 (12)
C7—C8—C9—C101.5 (12)C12B—C7—C8—C912 (3)
C7—C12A—C11A—C106 (4)C12A—C7—C8—C910 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1ii0.932.793.472 (7)132
C6—H6···Cl1iii0.932.833.673 (7)151
C3—H3···Br1iv0.933.133.797 (8)131
C4—H4···Cl1v0.932.943.529 (7)122
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+3/2, z1/2; (v) x, y+3/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the financial support provided by the National Research Council of Thailand through the Naresuan University Research Scholar (Contact No. R2557B081).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039.  CSD CrossRef CAS PubMed Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.  Web of Science CrossRef CAS Google Scholar
First citationGao, Y., Zhang, Y.-C. & Zhao, J.-Q. (2009). Chin. J. Inorg. Chem. 25, 1686–1989.  CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHarding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138–m1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarding, P., Harding, D. J., Soponrat, N. & Adams, H. (2011). Acta Cryst. E67, m404–m405.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Bahramian, B., Jafari, K., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, m1001–m1002.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, F., Collins, J. G. & Keene, F. R. (2015). Chem. Soc. Rev. 44, 2529–2542.  CrossRef CAS PubMed Google Scholar
First citationMahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, A., Hajikazemi, M., Khalaj, M. & Dehghanpour, S. (2008). Acta Cryst. E64, m1019.  CSD CrossRef IUCr Journals Google Scholar
First citationRezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253.  Web of Science CrossRef CAS Google Scholar
First citationRoy, S., Maheswari, P. U., Golobič, A., Kozlevčar, B. & Reedijk, J. (2012). Inorg. Chim. Acta, 393, 239–245.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, C., Chen, Y. & Fu, W.-F. (2015). Dalton Trans. 44, 14483–14493.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds