research communications
trans-bis{4-bromo-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N′}dichloridoruthenium(II)
ofaDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
*Correspondence e-mail: filipk@nu.ac.th
In the title complex, [RuCl2(C12H9BrN2)2] or [RuCl2(PM-BrA)2] (PM-BrA = 4-bromo-N-(2′-pyridylmethylene)aniline), the RuII cation is located on a centre of inversion and is surrounded by four N atoms of two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement, displaying a distorted octahedral coordination environment. Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The benzene and pyridine rings of the PM-BrA ligand are oriented at dihedral angles of 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring. In the crystal, the complex molecules are connected via C—H⋯Cl hydrogen-bonding interactions into a layered arrangement parallel (100). C—H⋯Br hydrogen bonding and weak aromatic π–π stacking interactions complete a three-dimensional supramolecular network.
Keywords: crystal structure; Schiff base ligand; π–π stacking; ruthenium(II).
CCDC reference: 1419653
1. Chemical context
Bidentate ; Gupta & Sutar, 2008). In particular, ruthenium(II) complexes of have been shown to display a variety of structural features and exhibit interesting biological and catalytic reactivities (Li et al., 2015; Wang et al., 2015; Drozdzak et al., 2005). Herein, we report the synthesis and of a ruthenium(II) complex with the bidentate Schiff base ligand of 4-bromo-N-(2′-pyridylmethylene)aniline (PM-BrA), [RuCl2(C12H9BrN2)2], (I).
are one of the most widely used ligands in coordination chemistry. Their complexes have found utility in a wide range of applications (Rezaeivala & Keypour, 20142. Structural commentary
The contains one half of the complex molecule with the RuII cation lying on an inversion centre (Fig. 1). The coordination environment around RuII is a distorted [Cl2N4] octahedron, whereby the metal is chelated by two PM-BrA ligands in the equatorial plane and by two Cl atoms in a trans axial arrangement. The ligand exhibits an N1⋯N2 bite distance of 2.585 (7) Å with an N1—Ru1—N2 bite angle of 76.9 (1)°. The reduced bite angle of the chelating ligand is one of the main factors accounting for the distortion from the ideal octahedral geometry of the with the the largest cis angle being 103.1 (2)°. The Ru—N bond lengths are 2.073 (5) and 2.084 (5) Å, and the Ru—Cl bond length is 2.3908 (14) Å, in agreement with those observed in the structures of similar compounds (Roy et al., 2012). Two C atoms in the benzene ring of the PM-BrA ligand are equally disordered over two sets of sites. The dihedral angle between the least-square planes of the benzene and pyridine rings in the PM-BrA ligand are 62.1 (10) and 73.7 (11)° under consideration of the two orientations of the disordered benzene ring.
of compound (I)3. Supramolecular features
In the crystal, weak intermolecular C—H⋯Cl hydrogen-bonding interactions between the C atoms of the benzene ring and the Cl atoms connect the complex molecules into a supramolecular layered arrangement parallel to (100) (Fig. 2). As shown in Fig. 3, a C—H⋯Br hydrogen bond between the phenyl C atoms and the Br atoms, along with weak aromatic π–π stacking interactions [centroid-to-centroid distance = 4.107 (4) Å, dihedral angle = 0.7 (3)°] complete a three-dimensional supramolecular network. Numerical values of C—H⋯X (X = Cl, Br) interactions are compiled in Table 1.
4. Database survey
The structure of trans-[RuCl2(Hpyrimol)2] (Hpyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenol) with a closely related Schiff base N2 donor set for each ligand has been reported (Roy et al., 2012). The bond lengths and bond angles in this complex are in agreement with those in the structure of (I). A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) gave 12 hits for complexes involving transition metals and the ligand PM-BrA (KISZIX, KISZOD, KISZUJ, Davies et al., 2014; XEDCUG, Khalaji et al., 2012; UNIZOH, Harding et al., 2011; SUYDAS, Harding et al., 2010; FOWBOJ, Khalaj et al., 2009; FOWBID, Mahmoudi et al., 2009; MOYDUA, Dehghanpour et al., 2009; TULKIV, Gao et al., 2009; YOCZAS, Khalaj et al., 2008; YOCZEW, Mahmoudi et al., 2008).
5. Synthesis and crystallization
A solution of the ligand 4-bromo-N-(2′-pyridylmethylene)aniline (104.4 mg, 0.4 mmol) in dry methanol (5 ml) was placed in a test tube. A solution of RuCl3 (41.5 mg, 0.2 mmol) in dry methanol (5 ml) was then carefully layered on the top of a methanolic solution. After slow diffusion at room temperature for three days, pale-green plate- or block-like crystals of complex (I) were obtained.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å. C atoms C11 and C12 and attached H atoms in the benzene ring are disordered over two set of sites and were refined using a split model with equal occupancy.
details are summarized in Table 2Supporting information
CCDC reference: 1419653
https://doi.org/10.1107/S205698901501556X/wm5204sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901501556X/wm5204Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901501556X/wm5204Isup3.cdx
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2007 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).[RuCl2(C12H9BrN2)] | F(000) = 676 |
Mr = 694.21 | Dx = 1.791 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3270 (7) Å | Cell parameters from 4475 reflections |
b = 13.3114 (7) Å | θ = 3.0–25.4° |
c = 7.9673 (4) Å | µ = 3.94 mm−1 |
β = 100.091 (2)° | T = 296 K |
V = 1287.13 (12) Å3 | Block, green |
Z = 2 | 0.26 × 0.20 × 0.18 mm |
Bruker APEXII CCD diffractometer | 1844 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.054 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 25.6°, θmin = 3.0° |
Tmin = 0.549, Tmax = 0.745 | h = −14→14 |
15951 measured reflections | k = −16→16 |
2391 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0854P)2 + 2.577P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2391 reflections | Δρmax = 0.96 e Å−3 |
170 parameters | Δρmin = −1.29 e Å−3 |
73 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.5000 | 0.5000 | 0.0000 | 0.0438 (2) | |
Cl1 | 0.58971 (14) | 0.46179 (12) | 0.28373 (18) | 0.0584 (4) | |
Br1 | −0.03134 (9) | 0.59834 (15) | 0.3013 (2) | 0.1661 (8) | |
N1 | 0.6046 (4) | 0.6219 (4) | −0.0113 (6) | 0.0497 (11) | |
N2 | 0.4128 (4) | 0.6192 (4) | 0.0781 (6) | 0.0503 (11) | |
C7 | 0.3075 (5) | 0.6159 (5) | 0.1302 (8) | 0.0563 (14) | |
C8 | 0.3001 (6) | 0.5804 (5) | 0.2904 (8) | 0.0631 (16) | |
H8 | 0.3635 | 0.5596 | 0.3632 | 0.076* | |
C6 | 0.4524 (6) | 0.7073 (5) | 0.0614 (8) | 0.0600 (16) | |
H6 | 0.4143 | 0.7650 | 0.0817 | 0.072* | |
C5 | 0.5584 (5) | 0.7125 (4) | 0.0100 (8) | 0.0555 (14) | |
C9 | 0.2001 (7) | 0.5755 (6) | 0.3439 (10) | 0.079 (2) | |
H9 | 0.1950 | 0.5530 | 0.4528 | 0.094* | |
C3 | 0.7127 (7) | 0.8027 (6) | −0.0497 (11) | 0.080 (2) | |
H3 | 0.7478 | 0.8626 | −0.0679 | 0.096* | |
C4 | 0.6092 (7) | 0.8027 (5) | −0.0099 (10) | 0.075 (2) | |
H4 | 0.5736 | 0.8630 | 0.0035 | 0.090* | |
C1 | 0.7073 (6) | 0.6224 (5) | −0.0410 (10) | 0.0713 (19) | |
H1 | 0.7433 | 0.5616 | −0.0482 | 0.086* | |
C10 | 0.1078 (7) | 0.6047 (8) | 0.2316 (13) | 0.095 (3) | |
C11B | 0.113 (3) | 0.624 (4) | 0.061 (3) | 0.087 (7) | 0.50 (9) |
H11B | 0.0484 | 0.6332 | −0.0171 | 0.105* | 0.50 (9) |
C2 | 0.7629 (7) | 0.7123 (6) | −0.0620 (11) | 0.082 (2) | |
H2 | 0.8344 | 0.7102 | −0.0844 | 0.099* | |
C12B | 0.2127 (19) | 0.630 (4) | 0.010 (4) | 0.078 (7) | 0.50 (9) |
H12B | 0.2170 | 0.6422 | −0.1035 | 0.093* | 0.50 (9) |
C12A | 0.2157 (19) | 0.661 (3) | 0.035 (6) | 0.077 (7) | 0.50 (9) |
H12A | 0.2222 | 0.6925 | −0.0674 | 0.092* | 0.50 (9) |
C11A | 0.116 (3) | 0.660 (4) | 0.087 (5) | 0.095 (8) | 0.50 (9) |
H11A | 0.0561 | 0.6956 | 0.0276 | 0.114* | 0.50 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.0540 (4) | 0.0368 (3) | 0.0405 (4) | 0.0017 (3) | 0.0078 (3) | 0.0008 (3) |
Cl1 | 0.0767 (10) | 0.0531 (8) | 0.0423 (7) | 0.0036 (8) | 0.0016 (6) | 0.0044 (6) |
Br1 | 0.0811 (7) | 0.2433 (19) | 0.1885 (15) | 0.0388 (9) | 0.0645 (8) | 0.0555 (13) |
N1 | 0.061 (3) | 0.043 (3) | 0.046 (3) | −0.002 (2) | 0.011 (2) | −0.002 (2) |
N2 | 0.061 (3) | 0.048 (3) | 0.041 (2) | 0.004 (2) | 0.008 (2) | 0.000 (2) |
C7 | 0.063 (3) | 0.053 (3) | 0.054 (3) | 0.015 (3) | 0.012 (3) | 0.001 (3) |
C8 | 0.063 (4) | 0.074 (4) | 0.052 (4) | 0.011 (3) | 0.010 (3) | 0.008 (3) |
C6 | 0.073 (4) | 0.041 (3) | 0.065 (4) | 0.007 (3) | 0.011 (3) | −0.001 (3) |
C5 | 0.067 (4) | 0.041 (3) | 0.057 (3) | 0.000 (3) | 0.006 (3) | 0.005 (3) |
C9 | 0.078 (5) | 0.090 (5) | 0.072 (5) | 0.005 (4) | 0.026 (4) | 0.007 (4) |
C3 | 0.080 (5) | 0.057 (4) | 0.102 (6) | −0.015 (4) | 0.013 (4) | 0.004 (4) |
C4 | 0.081 (5) | 0.046 (4) | 0.097 (6) | −0.003 (4) | 0.014 (4) | 0.010 (3) |
C1 | 0.069 (4) | 0.051 (4) | 0.097 (5) | −0.001 (3) | 0.024 (4) | −0.006 (3) |
C10 | 0.063 (4) | 0.123 (7) | 0.106 (6) | 0.029 (5) | 0.033 (4) | 0.023 (5) |
C11B | 0.064 (7) | 0.112 (18) | 0.084 (8) | 0.034 (12) | 0.009 (8) | 0.014 (10) |
C2 | 0.067 (4) | 0.079 (5) | 0.105 (6) | −0.018 (4) | 0.026 (4) | −0.006 (4) |
C12B | 0.069 (8) | 0.099 (19) | 0.064 (9) | 0.028 (10) | 0.010 (5) | 0.019 (11) |
C12A | 0.071 (8) | 0.077 (16) | 0.081 (12) | 0.015 (9) | 0.010 (7) | 0.027 (11) |
C11A | 0.061 (7) | 0.111 (19) | 0.111 (12) | 0.016 (12) | 0.009 (10) | 0.037 (12) |
Ru1—Cl1 | 2.3908 (14) | C5—C4 | 1.376 (9) |
Ru1—Cl1i | 2.3907 (14) | C9—H9 | 0.9300 |
Ru1—N1 | 2.084 (5) | C9—C10 | 1.374 (12) |
Ru1—N1i | 2.084 (5) | C3—H3 | 0.9300 |
Ru1—N2i | 2.073 (5) | C3—C4 | 1.367 (11) |
Ru1—N2 | 2.073 (5) | C3—C2 | 1.365 (11) |
Br1—C10 | 1.895 (8) | C4—H4 | 0.9300 |
N1—C5 | 1.356 (8) | C1—H1 | 0.9300 |
N1—C1 | 1.328 (8) | C1—C2 | 1.403 (10) |
N2—C7 | 1.432 (8) | C10—C11B | 1.392 (17) |
N2—C6 | 1.286 (8) | C10—C11A | 1.391 (17) |
C7—C8 | 1.379 (9) | C11B—H11B | 0.9300 |
C7—C12B | 1.387 (15) | C11B—C12B | 1.365 (17) |
C7—C12A | 1.385 (15) | C2—H2 | 0.9300 |
C8—H8 | 0.9300 | C12B—H12B | 0.9300 |
C8—C9 | 1.374 (10) | C12A—H12A | 0.9300 |
C6—H6 | 0.9300 | C12A—C11A | 1.364 (17) |
C6—C5 | 1.438 (9) | C11A—H11A | 0.9300 |
Cl1i—Ru1—Cl1 | 180.0 | C4—C5—C6 | 122.0 (6) |
N1—Ru1—Cl1 | 91.11 (14) | C8—C9—H9 | 121.0 |
N1i—Ru1—Cl1 | 88.89 (14) | C10—C9—C8 | 118.0 (7) |
N1i—Ru1—Cl1i | 91.11 (14) | C10—C9—H9 | 121.0 |
N1—Ru1—Cl1i | 88.89 (14) | C4—C3—H3 | 121.0 |
N1—Ru1—N1i | 180.0 (2) | C2—C3—H3 | 121.0 |
N2i—Ru1—Cl1i | 93.28 (13) | C2—C3—C4 | 118.0 (7) |
N2i—Ru1—Cl1 | 86.71 (13) | C5—C4—H4 | 120.4 |
N2—Ru1—Cl1i | 86.72 (13) | C3—C4—C5 | 119.3 (7) |
N2—Ru1—Cl1 | 93.29 (13) | C3—C4—H4 | 120.4 |
N2i—Ru1—N1i | 76.9 (2) | N1—C1—H1 | 119.1 |
N2—Ru1—N1 | 76.9 (2) | N1—C1—C2 | 121.7 (7) |
N2i—Ru1—N1 | 103.1 (2) | C2—C1—H1 | 119.1 |
N2—Ru1—N1i | 103.1 (2) | C9—C10—Br1 | 119.0 (7) |
N2—Ru1—N2i | 180.0 | C9—C10—C11B | 120.9 (15) |
C5—N1—Ru1 | 114.3 (4) | C9—C10—C11A | 121.3 (16) |
C1—N1—Ru1 | 128.9 (4) | C11B—C10—Br1 | 119.4 (15) |
C1—N1—C5 | 116.9 (5) | C11A—C10—Br1 | 117.9 (17) |
C7—N2—Ru1 | 127.4 (4) | C10—C11B—H11B | 120.0 |
C6—N2—Ru1 | 116.1 (4) | C12B—C11B—C10 | 120 (3) |
C6—N2—C7 | 116.0 (5) | C12B—C11B—H11B | 120.0 |
C8—C7—N2 | 119.3 (5) | C3—C2—C1 | 120.4 (7) |
C8—C7—C12B | 120.0 (17) | C3—C2—H2 | 119.8 |
C8—C7—C12A | 118.5 (18) | C1—C2—H2 | 119.8 |
C12B—C7—N2 | 119.5 (15) | C7—C12B—H12B | 120.7 |
C12A—C7—N2 | 121.5 (17) | C11B—C12B—C7 | 119 (3) |
C7—C8—H8 | 119.6 | C11B—C12B—H12B | 120.7 |
C9—C8—C7 | 120.8 (6) | C7—C12A—H12A | 119.3 |
C9—C8—H8 | 119.6 | C11A—C12A—C7 | 121 (3) |
N2—C6—H6 | 121.5 | C11A—C12A—H12A | 119.3 |
N2—C6—C5 | 117.0 (6) | C10—C11A—H11A | 121.4 |
C5—C6—H6 | 121.5 | C12A—C11A—C10 | 117 (3) |
N1—C5—C6 | 114.5 (5) | C12A—C11A—H11A | 121.4 |
N1—C5—C4 | 123.5 (6) | ||
Ru1—N1—C5—C6 | 8.8 (7) | C8—C7—C12B—C11B | 11 (4) |
Ru1—N1—C5—C4 | −173.2 (6) | C8—C7—C12A—C11A | −8 (4) |
Ru1—N1—C1—C2 | 173.2 (6) | C8—C9—C10—Br1 | 179.8 (7) |
Ru1—N2—C7—C8 | 76.6 (7) | C8—C9—C10—C11B | 10 (3) |
Ru1—N2—C7—C12B | −91 (3) | C8—C9—C10—C11A | −16 (3) |
Ru1—N2—C7—C12A | −113 (3) | C6—N2—C7—C8 | −111.0 (7) |
Ru1—N2—C6—C5 | −7.1 (8) | C6—N2—C7—C12B | 81 (3) |
Br1—C10—C11B—C12B | 179.5 (19) | C6—N2—C7—C12A | 59 (3) |
Br1—C10—C11A—C12A | −178 (2) | C6—C5—C4—C3 | 176.3 (7) |
N1—C5—C4—C3 | −1.4 (11) | C5—N1—C1—C2 | −4.5 (11) |
N1—C1—C2—C3 | 1.0 (13) | C9—C10—C11B—C12B | −10 (4) |
N2—C7—C8—C9 | −179.5 (7) | C9—C10—C11A—C12A | 18 (5) |
N2—C7—C12B—C11B | 178.6 (18) | C4—C3—C2—C1 | 2.6 (13) |
N2—C7—C12A—C11A | −178 (2) | C1—N1—C5—C6 | −173.1 (6) |
N2—C6—C5—N1 | −1.3 (9) | C1—N1—C5—C4 | 4.8 (10) |
N2—C6—C5—C4 | −179.3 (6) | C10—C11B—C12B—C7 | 0 (4) |
C7—N2—C6—C5 | 179.7 (6) | C2—C3—C4—C5 | −2.3 (12) |
C7—C8—C9—C10 | 1.5 (12) | C12B—C7—C8—C9 | −12 (3) |
C7—C12A—C11A—C10 | −6 (4) | C12A—C7—C8—C9 | 10 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···Cl1ii | 0.93 | 2.79 | 3.472 (7) | 132 |
C6—H6···Cl1iii | 0.93 | 2.83 | 3.673 (7) | 151 |
C3—H3···Br1iv | 0.93 | 3.13 | 3.797 (8) | 131 |
C4—H4···Cl1v | 0.93 | 2.94 | 3.529 (7) | 122 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1, −y+3/2, z−1/2; (v) x, −y+3/2, z−1/2. |
Acknowledgements
We gratefully acknowledge the financial support provided by the National Research Council of Thailand through the Naresuan University Research Scholar (Contact No. R2557B081).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039. CSD CrossRef CAS PubMed Google Scholar
Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074. Web of Science CrossRef CAS Google Scholar
Gao, Y., Zhang, Y.-C. & Zhao, J.-Q. (2009). Chin. J. Inorg. Chem. 25, 1686–1989. CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138–m1139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2011). Acta Cryst. E67, m404–m405. CSD CrossRef IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Bahramian, B., Jafari, K., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, m1001–m1002. CSD CrossRef IUCr Journals Google Scholar
Li, F., Collins, J. G. & Keene, F. R. (2015). Chem. Soc. Rev. 44, 2529–2542. CrossRef CAS PubMed Google Scholar
Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahmoudi, A., Hajikazemi, M., Khalaj, M. & Dehghanpour, S. (2008). Acta Cryst. E64, m1019. CSD CrossRef IUCr Journals Google Scholar
Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253. Web of Science CrossRef CAS Google Scholar
Roy, S., Maheswari, P. U., Golobič, A., Kozlevčar, B. & Reedijk, J. (2012). Inorg. Chim. Acta, 393, 239–245. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, C., Chen, Y. & Fu, W.-F. (2015). Dalton Trans. 44, 14483–14493. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.