research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,6,12,12-tetra­chloro­tri­cyclo­[8.2.0.04,7]do­decane-5,11-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Atatürk University, 25240, Erzurum, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 July 2015; accepted 30 July 2015; online 6 August 2015)

The asymmetric unit of the title compound, C12H12Cl4O2, contains two crystallographically independent mol­ecules with almost identical conformations (r.m.s. overlay fit for the non-hydrogen atoms = 0.059 Å). In each mol­ecule, the central eight-membered ring has a distorted boat configuration, and two non-planar four-membered rings are fused on either side of the eight-membered ring. A weak C—H⋯O hydrogen bond links the two independent mol­ecules. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (001).

1. Chemical context

The eight-membered-ring cyclic hydro­carbon, 1,5-cyclo­octa­diene (COD), attracts the attention of researchers because of its use as an inter­mediate product in the production of epoxides, suberic acid (1,8-octa­nodioic acid), caprylolactam (8-amino­octa­noic acid lactam) and related chemicals and polymers (Dowd & Zhang, 1991[Dowd, P. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 9875-9876.]; Zhang & Dowd, 1992[Zhang, W. & Dowd, P. (1992). Tetrahedron Lett. 33, 3285-3288.]; Mehta & Rao, 2006[Mehta, G. & Rao, H. S. P. (2006). Synth. Commun. 15, 991-1000.]; Brady, 1981[T. Brady, W. (1981). Tetrahedron, 37, 2949-2966.]; Ghosez et al. 1971[Ghosez, L., Montaigne, R., Roussel, A., Vanlierde, H. & Mollet, P. (1971). Tetrahedron, 27, 615-633.]; Brady & Roe, 1971[Brady, W. T. & Roe, R. Jr (1971). J. Am. Chem. Soc. 93, 1662-1664.]). COD serves as a useful precursor in the syntheses of other organic compounds and as a ligand in organometallic chemistry (Shriver & Atkins, 1999[Shriver, D. & Atkins, P. (1999). Inorg. Chem. 3rd ed. Oxford University Press.]).

[Scheme 1]

Ketenes, containing R and R′ groups (where R, R′ can be hydrogen), and formed cumulene enon systems are reactive compounds. The stability or reactivity of ketenes depends on the electronic structures of the R and R′ groups. Ketenes providing electron-donating (+I or +M) R groups are stable, and their reactivity is low. Electron-attracting ketenes [containing (-I or -M) R groups] are less stable and behave in a more unstable manner in reactions.

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (Fig. 1[link]). Each mol­ecule consists of a central non-planar eight-membered cyclo­octa­diene [B (C2–C5/C8–C11) and E (C14–C17/C20–C23)] ring system having two non-planar four-membered [A (C1/C2/C11/C12), C (C5–C8) and D (C13/C14/C23/C24), F (C17–C20)] rings fused on both sides. A weak C—H⋯O hydrogen bond (Table 1[link]) links the two independent mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.97 2.57 3.473 (4) 154
C8—H8⋯O4ii 0.98 2.43 3.406 (4) 176
C14—H14⋯O1 0.98 2.38 3.342 (4) 168
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The inter­molecular C—H ⋯ O hydrogen bond is shown as dashed line. H atoms not involved in hydrogen bonds have been omitted for clarity.

The conformations of the cyclo­octa­diene rings can be clarified from the torsion angles of the rings bonds (Table 2[link]). The total puckering amplitudes QT of the cyclo­octa­diene rings are 1.632 (3) Å (for ring B) and 1.631 (3) Å (for ring E). As can also be seen from the distribution of the torsion angles (Table 2[link]), the asymmetry parameters indicate eight local pseudo twofold axes running along C2⋯C8, C3⋯C9, C4⋯C10, C5⋯C11, the midpoints of C2—C3 and C8—C9, the midpoints of C3—C4 and C9—C10, the midpoints of C4—C5 and C10—C11, the midpoints of C5—C8 and C2—C11 (for ring B) and C14⋯C20, C15⋯C21, C16⋯C22, C17⋯C23, the midpoints of C14—C15 and C20—C21, the midpoints of C15—C16 and C21—C22, the midpoints of C16—C17 and C22—C23, the midpoints of C17—C20 and C14—C23 (for ring E) (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). In the cyclo­octa­diene rings, the C—C bond distances vary from 1.514 (4) to 1.573 (4) Å (for ring B) and 1.508 (4) to 1.573 (4) Å (for ring E), while the C—C—C bond angles vary from 114.1 (2) to 121.8 (2)° (for ring B) and 114.5 (2) to 121.6 (3)° (for ring E). The mean ring C—C bond lengths and C—C—C bond angles are 1.537 (4) Å (for rings B and E) and 117.0 (4)° (for ring B) and 116.9 (3)° (for ring E).

Table 2
Selected torsion angles (°)

C11—C2—C3—C4 67.5 (3) C23—C14—C15—C16 −65.6 (4)
C2—C3—C4—C5 24.0 (4) C15—C14—C23—C22 21.1 (4)
C8—C5—C4—C3 −77.3 (3) C17—C16—C15—C14 −25.8 (4)
C9—C8—C5—C4 −19.1 (4) C20—C17—C16—C15 76.5 (4)
C5—C8—C9—C10 65.3 (3) C21—C20—C17—C16 21.6 (4)
C8—C9—C10—C11 24.6 (4) C17—C20—C21—C22 −67.5 (4)
C10—C11—C2—C3 −22.1 (4) C20—C21—C22—C23 −23.7 (4)
C2—C11—C10—C9 −75.4 (3) C14—C23—C22—C21 75.6 (4)

In the non-planar four-membered rings (A, C and D, F), the (C1/C2/C11) and (C1/C11/C12), (C1/C2/C12) and (C2/C11/C12) (in ring A), (C5/C6/C7) and (C5/C7/C8), (C5/C6/C8) and (C6/C7/C8) (in ring C), (C13/C14/C23) and (C13/C23/C24), (C13/C14/C24) and (C14/C23/C24) (in ring D), (C17/C18/C19) and (C17/C19/C20), (C17/C18/C20) and (C18/C19/C20) (in ring F) fragments are oriented at dihedral angles of 155.2 (3), 155.7 (3)° (in ring A), 158.4 (3), 158.6 (3)° (in ring C), 157.2 (3), 157.5 (3)° (in ring D), 155.1 (3), 155.7 (3)° (in ring F).

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into a two-dimensional network parallel to (001) (Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal structure viewed down [001]. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized according to a literature method (Bosmajian et al. 1964[Bosmajian, G., Burks, R. E., Feazel, C. E. & Newcombe, J. (1964). Ind. Eng. Chem. Prod. Res. Dev. 3, 117-119.]). For the preparation of the title compound, a mixture of COD (2.00 g, 18.5 mmol) and Zn powder (12.09 g, 184.9 mmol) in absolute ether (15 ml) was stirred for 15 min under a nitro­gen atmosphere. Then, a solution of Cl3CCOCl (30.30 g, 64.7 mmol) in absolute ether (20 ml) was added to the mixture over 20 min, and stirred for 20 h under a nitro­gen atmosphere. The reaction mixture was filtered, and the ZnCl2 salt was removed. The reaction mixture was extracted with water (3 × 10 ml). The organic phases were combined, and dried over MgSO4. The solvent was evaporated and the crude product was eluted in a silica gel (50.00 g) column, and was filtered using ethyl acetate/n-hexane (2:8). The obtained solid product (yield; 1.55 g, 25%) was crystallized from CH2Cl2/n-hexane (1:4) solution over two days (m.p. 472–474 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned geometrically with C—H = 0.97 Å (for CH2) and 0.98 Å (for CH), and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C12H12Cl4O2
Mr 330.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.9786 (3), 10.9374 (3), 23.5429 (5)
β (°) 97.554 (2)
V3) 2802.43 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.11 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.901, 0.933
No. of measured, independent and observed [I > 2σ(I)] reflections 64865, 6994, 4542
Rint 0.069
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.131, 1.10
No. of reflections 6994
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

6,6,12,12-Tetrachlorotricyclo[8.2.0.04,7]dodecane-5,11-dione top
Crystal data top
C12H12Cl4O2F(000) = 1344
Mr = 330.02Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9888 reflections
a = 10.9786 (3) Åθ = 3.2–27.5°
b = 10.9374 (3) ŵ = 0.83 mm1
c = 23.5429 (5) ÅT = 296 K
β = 97.554 (2)°Block, colorless
V = 2802.43 (12) Å30.11 × 0.10 × 0.07 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6994 independent reflections
Radiation source: fine-focus sealed tube4542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1413
Tmin = 0.901, Tmax = 0.933k = 1414
64865 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0326P)2 + 3.8912P]
where P = (Fo2 + 2Fc2)/3
6994 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93872 (9)0.43272 (9)0.66192 (5)0.0694 (3)
Cl20.74549 (9)0.35318 (9)0.72561 (4)0.0574 (3)
Cl31.22527 (7)0.11648 (9)0.60649 (4)0.0539 (2)
Cl41.03076 (9)0.25182 (8)0.53791 (4)0.0525 (2)
Cl50.72656 (8)0.66388 (9)0.59660 (6)0.0717 (3)
Cl60.53149 (10)0.80518 (9)0.53202 (4)0.0598 (3)
Cl70.44151 (9)0.11622 (9)0.64870 (6)0.0770 (4)
Cl80.25781 (10)0.19145 (10)0.71898 (4)0.0653 (3)
O10.6556 (2)0.3265 (2)0.58919 (10)0.0511 (6)
O21.0164 (2)0.2842 (2)0.67506 (11)0.0537 (6)
O30.5260 (3)0.8322 (2)0.66995 (11)0.0600 (7)
O40.1521 (2)0.2303 (3)0.58563 (12)0.0677 (8)
C10.8295 (3)0.3158 (3)0.66906 (14)0.0396 (7)
C20.8854 (3)0.1854 (3)0.66500 (12)0.0299 (6)
H20.97530.18580.67260.036*
C30.8287 (3)0.0903 (3)0.70038 (13)0.0370 (7)
H3A0.74010.09910.69360.044*
H3B0.85470.10710.74060.044*
C40.8614 (3)0.0435 (3)0.68815 (13)0.0351 (7)
H4A0.86720.08940.72370.042*
H4B0.79510.07860.66190.042*
C50.9808 (3)0.0583 (3)0.66279 (12)0.0299 (6)
H51.04650.01410.68650.036*
C61.0233 (3)0.1884 (3)0.65266 (13)0.0334 (7)
C71.0648 (3)0.1495 (3)0.59541 (13)0.0326 (7)
C80.9881 (2)0.0305 (3)0.59796 (11)0.0268 (6)
H81.03750.04250.59330.032*
C90.8675 (3)0.0282 (3)0.55768 (12)0.0319 (6)
H9A0.82640.10610.56050.038*
H9B0.88610.02040.51870.038*
C100.7780 (3)0.0745 (3)0.56886 (13)0.0359 (7)
H10A0.73360.10010.53240.043*
H10B0.71840.04170.59180.043*
C110.8375 (3)0.1859 (3)0.59901 (12)0.0309 (6)
H110.90220.21660.57780.037*
C120.7531 (3)0.2904 (3)0.61064 (13)0.0345 (7)
C130.5667 (3)0.6999 (3)0.58827 (14)0.0394 (7)
C140.4886 (2)0.5814 (3)0.59130 (12)0.0304 (6)
H140.53540.50790.58430.036*
C150.3647 (3)0.5847 (3)0.55390 (13)0.0384 (7)
H15A0.37830.57880.51410.046*
H15B0.32650.66320.55900.046*
C160.2746 (3)0.4827 (3)0.56630 (14)0.0408 (8)
H16A0.22040.51460.59210.049*
H16B0.22430.46100.53070.049*
C170.3358 (3)0.3679 (3)0.59241 (13)0.0343 (7)
H170.39640.33860.56850.041*
C180.2521 (3)0.2633 (3)0.60474 (15)0.0420 (8)
C190.3348 (3)0.2323 (3)0.66063 (15)0.0420 (8)
C200.3916 (3)0.3620 (3)0.65730 (13)0.0337 (7)
H200.48160.36000.66240.040*
C210.3421 (3)0.4551 (3)0.69642 (13)0.0408 (8)
H21A0.37260.43440.73580.049*
H21B0.25320.44810.69200.049*
C220.3756 (3)0.5896 (3)0.68587 (14)0.0430 (8)
H22A0.30700.62790.66230.052*
H22B0.38720.63200.72240.052*
C230.4896 (3)0.6061 (3)0.65719 (12)0.0331 (7)
H230.55770.56100.67870.040*
C240.5308 (3)0.7358 (3)0.64670 (14)0.0397 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0513 (5)0.0330 (5)0.1188 (9)0.0081 (4)0.0081 (5)0.0036 (5)
Cl20.0661 (6)0.0528 (6)0.0511 (5)0.0209 (5)0.0012 (4)0.0169 (4)
Cl30.0289 (4)0.0472 (5)0.0861 (7)0.0055 (4)0.0089 (4)0.0021 (5)
Cl40.0624 (6)0.0450 (5)0.0501 (5)0.0064 (4)0.0079 (4)0.0147 (4)
Cl50.0334 (5)0.0460 (6)0.1380 (10)0.0049 (4)0.0196 (5)0.0034 (6)
Cl60.0738 (6)0.0465 (6)0.0594 (6)0.0112 (5)0.0106 (5)0.0138 (4)
Cl70.0478 (5)0.0304 (5)0.1492 (11)0.0037 (4)0.0001 (6)0.0076 (6)
Cl80.0705 (6)0.0599 (7)0.0636 (6)0.0214 (5)0.0013 (5)0.0226 (5)
O10.0460 (14)0.0513 (16)0.0524 (14)0.0212 (12)0.0069 (11)0.0002 (12)
O20.0708 (17)0.0295 (14)0.0590 (15)0.0002 (12)0.0019 (13)0.0135 (12)
O30.0795 (19)0.0327 (15)0.0642 (16)0.0003 (13)0.0036 (14)0.0151 (13)
O40.0529 (16)0.0673 (19)0.0757 (18)0.0307 (14)0.0185 (13)0.0128 (15)
C10.0358 (17)0.0296 (18)0.0515 (19)0.0038 (13)0.0014 (14)0.0037 (15)
C20.0259 (14)0.0229 (15)0.0402 (16)0.0026 (11)0.0007 (12)0.0015 (12)
C30.0425 (17)0.041 (2)0.0286 (15)0.0015 (14)0.0076 (13)0.0013 (14)
C40.0475 (18)0.0252 (17)0.0348 (16)0.0022 (13)0.0140 (13)0.0056 (13)
C50.0351 (15)0.0250 (15)0.0283 (15)0.0009 (12)0.0005 (12)0.0021 (12)
C60.0322 (15)0.0247 (17)0.0406 (17)0.0004 (12)0.0048 (13)0.0026 (13)
C70.0311 (15)0.0248 (16)0.0423 (17)0.0025 (12)0.0059 (12)0.0032 (13)
C80.0271 (14)0.0224 (15)0.0317 (15)0.0018 (11)0.0066 (11)0.0038 (12)
C90.0345 (15)0.0339 (17)0.0270 (15)0.0018 (13)0.0028 (12)0.0005 (13)
C100.0289 (15)0.044 (2)0.0331 (16)0.0055 (13)0.0025 (12)0.0001 (14)
C110.0290 (15)0.0288 (16)0.0357 (16)0.0040 (12)0.0067 (12)0.0055 (13)
C120.0353 (16)0.0272 (17)0.0406 (17)0.0023 (13)0.0039 (13)0.0070 (13)
C130.0330 (16)0.0301 (18)0.056 (2)0.0012 (13)0.0068 (14)0.0015 (15)
C140.0292 (14)0.0255 (16)0.0378 (16)0.0004 (12)0.0095 (12)0.0051 (13)
C150.0413 (17)0.0403 (19)0.0329 (16)0.0035 (14)0.0017 (13)0.0029 (14)
C160.0344 (17)0.046 (2)0.0399 (18)0.0084 (14)0.0054 (13)0.0028 (15)
C170.0318 (15)0.0326 (17)0.0385 (17)0.0062 (13)0.0047 (12)0.0078 (13)
C180.0371 (18)0.0345 (19)0.054 (2)0.0105 (14)0.0034 (15)0.0074 (15)
C190.0318 (16)0.0288 (18)0.064 (2)0.0032 (13)0.0002 (15)0.0069 (16)
C200.0275 (14)0.0285 (17)0.0441 (17)0.0005 (12)0.0016 (12)0.0006 (13)
C210.052 (2)0.0332 (19)0.0382 (18)0.0039 (15)0.0111 (15)0.0043 (14)
C220.061 (2)0.037 (2)0.0333 (17)0.0035 (16)0.0168 (15)0.0049 (14)
C230.0384 (16)0.0235 (16)0.0352 (16)0.0007 (13)0.0032 (13)0.0040 (13)
C240.0386 (17)0.0307 (19)0.0466 (19)0.0007 (14)0.0064 (14)0.0030 (15)
Geometric parameters (Å, º) top
Cl1—C11.776 (3)C11—H110.9800
Cl2—C11.764 (3)C12—O11.189 (3)
Cl3—C71.783 (3)C12—C11.539 (4)
Cl4—C71.758 (3)C12—C111.519 (4)
Cl5—C131.784 (3)C14—C131.561 (4)
Cl6—C131.759 (3)C14—C151.521 (4)
Cl7—C191.775 (3)C14—C231.573 (4)
Cl8—C191.763 (4)C14—H140.9800
C2—C11.561 (4)C15—H15A0.9700
C2—C31.516 (4)C15—H15B0.9700
C2—H20.9800C16—C151.544 (4)
C3—C41.542 (4)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700C17—C161.515 (4)
C4—H4A0.9700C17—C181.519 (4)
C4—H4B0.9700C17—H170.9800
C5—C41.519 (4)C18—O41.187 (4)
C5—H50.9800C18—C191.535 (5)
C6—O21.180 (4)C20—C171.571 (4)
C6—C51.526 (4)C20—C191.556 (4)
C6—C71.538 (4)C20—C211.520 (4)
C8—C51.569 (4)C20—H200.9800
C8—C71.557 (4)C21—C221.544 (5)
C8—C91.524 (4)C21—H21A0.9700
C8—H80.9800C21—H21B0.9700
C9—C101.538 (4)C22—H22A0.9700
C9—H9A0.9700C22—H22B0.9700
C9—H9B0.9700C23—C221.508 (4)
C10—H10A0.9700C23—C241.520 (4)
C10—H10B0.9700C23—H230.9800
C11—C21.573 (4)C24—O31.192 (4)
C11—C101.514 (4)C24—C131.531 (5)
Cl2—C1—Cl1109.33 (18)Cl6—C13—Cl5110.07 (17)
C2—C1—Cl1112.2 (2)C14—C13—Cl5110.5 (2)
C2—C1—Cl2120.4 (2)C14—C13—Cl6120.7 (2)
C12—C1—Cl1109.9 (2)C24—C13—Cl5108.9 (2)
C12—C1—Cl2116.0 (2)C24—C13—Cl6116.8 (2)
C12—C1—C287.3 (2)C24—C13—C1487.9 (2)
C1—C2—C1188.5 (2)C13—C14—C2388.3 (2)
C1—C2—H2112.2C13—C14—H14111.8
C3—C2—C1113.6 (2)C15—C14—C13114.2 (3)
C3—C2—C11115.9 (2)C15—C14—C23117.1 (2)
C3—C2—H2112.2C15—C14—H14111.8
C11—C2—H2112.2C23—C14—H14111.8
C2—C3—C4115.2 (2)C14—C15—C16114.8 (3)
C2—C3—H3A108.5C14—C15—H15A108.6
C2—C3—H3B108.5C14—C15—H15B108.6
C4—C3—H3A108.5C16—C15—H15A108.6
C4—C3—H3B108.5C16—C15—H15B108.6
H3A—C3—H3B107.5H15A—C15—H15B107.5
C3—C4—H4A108.7C15—C16—H16A108.6
C3—C4—H4B108.7C15—C16—H16B108.6
C5—C4—C3114.1 (2)C17—C16—C15114.5 (2)
C5—C4—H4A108.7C17—C16—H16A108.6
C5—C4—H4B108.7C17—C16—H16B108.6
H4A—C4—H4B107.6H16A—C16—H16B107.6
C4—C5—C6117.3 (2)C16—C17—C18117.0 (3)
C4—C5—C8121.3 (2)C16—C17—C20121.6 (3)
C4—C5—H5109.4C16—C17—H17109.7
C6—C5—C888.5 (2)C18—C17—C2087.2 (2)
C6—C5—H5109.4C18—C17—H17109.7
C8—C5—H5109.4C20—C17—H17109.7
O2—C6—C5136.0 (3)O4—C18—C17135.2 (3)
O2—C6—C7132.9 (3)O4—C18—C19132.2 (3)
C5—C6—C790.7 (2)C17—C18—C1991.5 (2)
Cl4—C7—Cl3110.34 (16)Cl8—C19—Cl7109.62 (18)
C6—C7—Cl3109.2 (2)C18—C19—Cl7110.5 (2)
C6—C7—Cl4116.2 (2)C18—C19—Cl8115.7 (2)
C6—C7—C888.4 (2)C18—C19—C2087.2 (2)
C8—C7—Cl3110.7 (2)C20—C19—Cl7111.5 (2)
C8—C7—Cl4120.0 (2)C20—C19—Cl8120.5 (2)
C5—C8—H8111.5C17—C20—H20112.2
C7—C8—C588.4 (2)C19—C20—C1788.8 (2)
C7—C8—H8111.5C19—C20—H20112.2
C9—C8—C5117.2 (2)C21—C20—C17115.9 (3)
C9—C8—C7114.8 (2)C21—C20—C19113.7 (3)
C9—C8—H8111.5C21—C20—H20112.2
C8—C9—C10115.3 (2)C20—C21—C22115.4 (3)
C8—C9—H9A108.4C20—C21—H21A108.4
C8—C9—H9B108.4C22—C21—H21A108.4
C10—C9—H9A108.4C20—C21—H21B108.4
C10—C9—H9B108.4C22—C21—H21B108.4
H9A—C9—H9B107.5H21A—C21—H21B107.5
C9—C10—H10A108.5C21—C22—H22A108.6
C9—C10—H10B108.5C21—C22—H22B108.6
C11—C10—C9115.0 (2)C23—C22—C21114.5 (3)
C11—C10—H10A108.5C23—C22—H22A108.6
C11—C10—H10B108.5C23—C22—H22B108.6
H10A—C10—H10B107.5H22A—C22—H22B107.6
C2—C11—H11109.5C14—C23—H23109.3
C10—C11—C2121.8 (2)C22—C23—H23109.3
C10—C11—C12117.0 (2)C22—C23—C14121.5 (2)
C10—C11—H11109.5C22—C23—C24117.8 (3)
C12—C11—C287.5 (2)C24—C23—C1487.9 (2)
C12—C11—H11109.5C24—C23—H23109.3
O1—C12—C1132.4 (3)O3—C24—C13132.2 (3)
O1—C12—C11135.2 (3)O3—C24—C23136.0 (3)
C11—C12—C191.3 (2)C23—C24—C1391.4 (2)
C3—C2—C1—Cl1148.8 (2)C15—C14—C13—Cl5147.1 (2)
C3—C2—C1—Cl218.0 (3)C15—C14—C13—Cl616.8 (4)
C3—C2—C1—C12100.8 (3)C15—C14—C13—C24103.5 (3)
C11—C2—C1—Cl193.4 (2)C23—C14—C13—Cl593.7 (2)
C11—C2—C1—Cl2135.7 (2)C23—C14—C13—Cl6135.9 (2)
C11—C2—C1—C1217.0 (2)C23—C14—C13—C2415.7 (2)
C1—C2—C3—C4168.0 (3)C13—C14—C15—C16166.8 (3)
C11—C2—C3—C467.5 (3)C23—C14—C15—C1665.6 (4)
C2—C3—C4—C524.0 (4)C13—C14—C23—C22137.5 (3)
C6—C5—C4—C3176.6 (3)C13—C14—C23—C2415.8 (2)
C8—C5—C4—C377.3 (3)C15—C14—C23—C2221.1 (4)
O2—C6—C5—C432.6 (5)C15—C14—C23—C24100.6 (3)
O2—C6—C5—C8157.4 (4)C17—C16—C15—C1425.8 (4)
C7—C6—C5—C4140.0 (3)C18—C17—C16—C15179.0 (3)
C7—C6—C5—C815.2 (2)C20—C17—C16—C1576.5 (4)
O2—C6—C7—Cl390.9 (4)C16—C17—C18—O426.3 (6)
O2—C6—C7—C8157.7 (4)C16—C17—C18—C19141.8 (3)
O2—C6—C7—Cl434.7 (4)C20—C17—C18—O4150.7 (4)
C5—C6—C7—Cl396.1 (2)C20—C17—C18—C1917.4 (2)
C5—C6—C7—Cl4138.3 (2)O4—C18—C19—Cl797.0 (4)
C5—C6—C7—C815.3 (2)O4—C18—C19—Cl828.4 (5)
C7—C8—C5—C4136.4 (3)O4—C18—C19—C20151.1 (4)
C7—C8—C5—C615.0 (2)C17—C18—C19—Cl794.4 (2)
C9—C8—C5—C419.1 (4)C17—C18—C19—Cl8140.3 (2)
C9—C8—C5—C6102.2 (3)C17—C18—C19—C2017.6 (2)
C5—C8—C7—Cl395.1 (2)C19—C20—C17—C16137.5 (3)
C5—C8—C7—Cl4134.5 (2)C19—C20—C17—C1817.2 (2)
C5—C8—C7—C614.9 (2)C21—C20—C17—C1621.6 (4)
C9—C8—C7—Cl3145.5 (2)C21—C20—C17—C1898.7 (3)
C9—C8—C7—Cl415.1 (3)C17—C20—C19—Cl794.0 (2)
C9—C8—C7—C6104.5 (2)C17—C20—C19—Cl8135.4 (2)
C7—C8—C9—C10167.1 (2)C17—C20—C19—C1817.0 (2)
C5—C8—C9—C1065.3 (3)C21—C20—C19—Cl7148.1 (2)
C8—C9—C10—C1124.6 (4)C21—C20—C19—Cl817.5 (4)
C10—C11—C2—C1137.8 (3)C21—C20—C19—C18100.9 (3)
C10—C11—C2—C322.1 (4)C17—C20—C21—C2267.5 (4)
C12—C11—C2—C117.2 (2)C19—C20—C21—C22168.3 (3)
C12—C11—C2—C398.5 (3)C20—C21—C22—C2323.7 (4)
C2—C11—C10—C975.4 (3)C14—C23—C22—C2175.6 (4)
C12—C11—C10—C9179.5 (2)C24—C23—C22—C21178.4 (3)
O1—C12—C1—Cl196.0 (4)C14—C23—C24—O3156.3 (4)
O1—C12—C1—Cl228.6 (5)C14—C23—C24—C1316.1 (2)
O1—C12—C1—C2151.4 (4)C22—C23—C24—O331.4 (5)
C11—C12—C1—Cl195.0 (2)C22—C23—C24—C13141.0 (3)
C11—C12—C1—Cl2140.4 (2)O3—C24—C13—Cl592.4 (4)
C11—C12—C1—C217.6 (2)O3—C24—C13—Cl633.0 (5)
O1—C12—C11—C2151.0 (4)O3—C24—C13—C14156.6 (4)
O1—C12—C11—C1026.2 (5)C23—C24—C13—Cl594.7 (2)
C1—C12—C11—C217.5 (2)C23—C24—C13—Cl6139.9 (2)
C1—C12—C11—C10142.3 (3)C23—C24—C13—C1416.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.573.473 (4)154
C8—H8···O4ii0.982.433.406 (4)176
C14—H14···O10.982.383.342 (4)168
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to Professor Arif Daştan (Atatürk University, Department of Chemistry, Erzurum, Turkey) for helpful discussions.

References

First citationBosmajian, G., Burks, R. E., Feazel, C. E. & Newcombe, J. (1964). Ind. Eng. Chem. Prod. Res. Dev. 3, 117–119.  CrossRef CAS Web of Science Google Scholar
First citationT. Brady, W. (1981). Tetrahedron, 37, 2949–2966.  Google Scholar
First citationBrady, W. T. & Roe, R. Jr (1971). J. Am. Chem. Soc. 93, 1662–1664.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDowd, P. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 9875–9876.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosez, L., Montaigne, R., Roussel, A., Vanlierde, H. & Mollet, P. (1971). Tetrahedron, 27, 615–633.  CrossRef CAS Web of Science Google Scholar
First citationMehta, G. & Rao, H. S. P. (2006). Synth. Commun. 15, 991–1000.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriver, D. & Atkins, P. (1999). Inorg. Chem. 3rd ed. Oxford University Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W. & Dowd, P. (1992). Tetrahedron Lett. 33, 3285–3288.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds