research communications
4,7]dodecane-5,11-dione
of 6,6,12,12-tetrachlorotricyclo[8.2.0.0aDepartment of Chemistry, Atatürk University, 25240, Erzurum, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The 12H12Cl4O2, contains two crystallographically independent molecules with almost identical conformations (r.m.s. overlay fit for the non-hydrogen atoms = 0.059 Å). In each molecule, the central eight-membered ring has a distorted boat configuration, and two non-planar four-membered rings are fused on either side of the eight-membered ring. A weak C—H⋯O hydrogen bond links the two independent molecules. In the crystal, weak C—H⋯O hydrogen bonds link the molecules into a two-dimensional network parallel to (001).
of the title compound, CKeywords: crystal structure; cyclooctadiene; fused ring system; hydrogen bonding.
CCDC reference: 1415865
1. Chemical context
The eight-membered-ring cyclic hydrocarbon, 1,5-cyclooctadiene (COD), attracts the attention of researchers because of its use as an intermediate product in the production of ; Zhang & Dowd, 1992; Mehta & Rao, 2006; Brady, 1981; Ghosez et al. 1971; Brady & Roe, 1971). COD serves as a useful precursor in the syntheses of other organic compounds and as a ligand in organometallic chemistry (Shriver & Atkins, 1999).
suberic acid (1,8-octanodioic acid), caprylolactam (8-aminooctanoic acid lactam) and related chemicals and polymers (Dowd & Zhang, 1991R and R′ groups (where R, R′ can be hydrogen), and formed cumulene enon systems are reactive compounds. The stability or reactivity of depends on the electronic structures of the R and R′ groups. providing electron-donating (+I or +M) R groups are stable, and their reactivity is low. Electron-attracting [containing (-I or -M) R groups] are less stable and behave in a more unstable manner in reactions.
containing2. Structural commentary
The ). Each molecule consists of a central non-planar eight-membered cyclooctadiene [B (C2–C5/C8–C11) and E (C14–C17/C20–C23)] ring system having two non-planar four-membered [A (C1/C2/C11/C12), C (C5–C8) and D (C13/C14/C23/C24), F (C17–C20)] rings fused on both sides. A weak C—H⋯O hydrogen bond (Table 1) links the two independent molecules.
of the title compound contains two crystallographically independent molecules (Fig. 1
|
The conformations of the cyclooctadiene rings can be clarified from the torsion angles of the rings bonds (Table 2). The total puckering amplitudes QT of the cyclooctadiene rings are 1.632 (3) Å (for ring B) and 1.631 (3) Å (for ring E). As can also be seen from the distribution of the torsion angles (Table 2), the asymmetry parameters indicate eight local pseudo twofold axes running along C2⋯C8, C3⋯C9, C4⋯C10, C5⋯C11, the midpoints of C2—C3 and C8—C9, the midpoints of C3—C4 and C9—C10, the midpoints of C4—C5 and C10—C11, the midpoints of C5—C8 and C2—C11 (for ring B) and C14⋯C20, C15⋯C21, C16⋯C22, C17⋯C23, the midpoints of C14—C15 and C20—C21, the midpoints of C15—C16 and C21—C22, the midpoints of C16—C17 and C22—C23, the midpoints of C17—C20 and C14—C23 (for ring E) (Nardelli, 1983). In the cyclooctadiene rings, the C—C bond distances vary from 1.514 (4) to 1.573 (4) Å (for ring B) and 1.508 (4) to 1.573 (4) Å (for ring E), while the C—C—C bond angles vary from 114.1 (2) to 121.8 (2)° (for ring B) and 114.5 (2) to 121.6 (3)° (for ring E). The mean ring C—C bond lengths and C—C—C bond angles are 1.537 (4) Å (for rings B and E) and 117.0 (4)° (for ring B) and 116.9 (3)° (for ring E).
|
In the non-planar four-membered rings (A, C and D, F), the (C1/C2/C11) and (C1/C11/C12), (C1/C2/C12) and (C2/C11/C12) (in ring A), (C5/C6/C7) and (C5/C7/C8), (C5/C6/C8) and (C6/C7/C8) (in ring C), (C13/C14/C23) and (C13/C23/C24), (C13/C14/C24) and (C14/C23/C24) (in ring D), (C17/C18/C19) and (C17/C19/C20), (C17/C18/C20) and (C18/C19/C20) (in ring F) fragments are oriented at dihedral angles of 155.2 (3), 155.7 (3)° (in ring A), 158.4 (3), 158.6 (3)° (in ring C), 157.2 (3), 157.5 (3)° (in ring D), 155.1 (3), 155.7 (3)° (in ring F).
3. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to (001) (Fig. 2).
4. Synthesis and crystallization
The title compound was synthesized according to a literature method (Bosmajian et al. 1964). For the preparation of the title compound, a mixture of COD (2.00 g, 18.5 mmol) and Zn powder (12.09 g, 184.9 mmol) in absolute ether (15 ml) was stirred for 15 min under a nitrogen atmosphere. Then, a solution of Cl3CCOCl (30.30 g, 64.7 mmol) in absolute ether (20 ml) was added to the mixture over 20 min, and stirred for 20 h under a nitrogen atmosphere. The reaction mixture was filtered, and the ZnCl2 salt was removed. The reaction mixture was extracted with water (3 × 10 ml). The organic phases were combined, and dried over MgSO4. The solvent was evaporated and the crude product was eluted in a silica gel (50.00 g) column, and was filtered using ethyl acetate/n-hexane (2:8). The obtained solid product (yield; 1.55 g, 25%) was crystallized from CH2Cl2/n-hexane (1:4) solution over two days (m.p. 472–474 K).
5. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically with C—H = 0.97 Å (for CH2) and 0.98 Å (for CH), and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1415865
https://doi.org/10.1107/S2056989015014383/xu5862sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014383/xu5862Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014383/xu5862Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C12H12Cl4O2 | F(000) = 1344 |
Mr = 330.02 | Dx = 1.564 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9888 reflections |
a = 10.9786 (3) Å | θ = 3.2–27.5° |
b = 10.9374 (3) Å | µ = 0.83 mm−1 |
c = 23.5429 (5) Å | T = 296 K |
β = 97.554 (2)° | Block, colorless |
V = 2802.43 (12) Å3 | 0.11 × 0.10 × 0.07 mm |
Z = 8 |
Bruker Kappa APEXII CCD area-detector diffractometer | 6994 independent reflections |
Radiation source: fine-focus sealed tube | 4542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
φ and ω scans | θmax = 28.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −14→13 |
Tmin = 0.901, Tmax = 0.933 | k = −14→14 |
64865 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0326P)2 + 3.8912P] where P = (Fo2 + 2Fc2)/3 |
6994 reflections | (Δ/σ)max = 0.001 |
325 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.93872 (9) | 0.43272 (9) | 0.66192 (5) | 0.0694 (3) | |
Cl2 | 0.74549 (9) | 0.35318 (9) | 0.72561 (4) | 0.0574 (3) | |
Cl3 | 1.22527 (7) | −0.11648 (9) | 0.60649 (4) | 0.0539 (2) | |
Cl4 | 1.03076 (9) | −0.25182 (8) | 0.53791 (4) | 0.0525 (2) | |
Cl5 | 0.72656 (8) | 0.66388 (9) | 0.59660 (6) | 0.0717 (3) | |
Cl6 | 0.53149 (10) | 0.80518 (9) | 0.53202 (4) | 0.0598 (3) | |
Cl7 | 0.44151 (9) | 0.11622 (9) | 0.64870 (6) | 0.0770 (4) | |
Cl8 | 0.25781 (10) | 0.19145 (10) | 0.71898 (4) | 0.0653 (3) | |
O1 | 0.6556 (2) | 0.3265 (2) | 0.58919 (10) | 0.0511 (6) | |
O2 | 1.0164 (2) | −0.2842 (2) | 0.67506 (11) | 0.0537 (6) | |
O3 | 0.5260 (3) | 0.8322 (2) | 0.66995 (11) | 0.0600 (7) | |
O4 | 0.1521 (2) | 0.2303 (3) | 0.58563 (12) | 0.0677 (8) | |
C1 | 0.8295 (3) | 0.3158 (3) | 0.66906 (14) | 0.0396 (7) | |
C2 | 0.8854 (3) | 0.1854 (3) | 0.66500 (12) | 0.0299 (6) | |
H2 | 0.9753 | 0.1858 | 0.6726 | 0.036* | |
C3 | 0.8287 (3) | 0.0903 (3) | 0.70038 (13) | 0.0370 (7) | |
H3A | 0.7401 | 0.0991 | 0.6936 | 0.044* | |
H3B | 0.8547 | 0.1071 | 0.7406 | 0.044* | |
C4 | 0.8614 (3) | −0.0435 (3) | 0.68815 (13) | 0.0351 (7) | |
H4A | 0.8672 | −0.0894 | 0.7237 | 0.042* | |
H4B | 0.7951 | −0.0786 | 0.6619 | 0.042* | |
C5 | 0.9808 (3) | −0.0583 (3) | 0.66279 (12) | 0.0299 (6) | |
H5 | 1.0465 | −0.0141 | 0.6865 | 0.036* | |
C6 | 1.0233 (3) | −0.1884 (3) | 0.65266 (13) | 0.0334 (7) | |
C7 | 1.0648 (3) | −0.1495 (3) | 0.59541 (13) | 0.0326 (7) | |
C8 | 0.9881 (2) | −0.0305 (3) | 0.59796 (11) | 0.0268 (6) | |
H8 | 1.0375 | 0.0425 | 0.5933 | 0.032* | |
C9 | 0.8675 (3) | −0.0282 (3) | 0.55768 (12) | 0.0319 (6) | |
H9A | 0.8264 | −0.1061 | 0.5605 | 0.038* | |
H9B | 0.8861 | −0.0204 | 0.5187 | 0.038* | |
C10 | 0.7780 (3) | 0.0745 (3) | 0.56886 (13) | 0.0359 (7) | |
H10A | 0.7336 | 0.1001 | 0.5324 | 0.043* | |
H10B | 0.7184 | 0.0417 | 0.5918 | 0.043* | |
C11 | 0.8375 (3) | 0.1859 (3) | 0.59901 (12) | 0.0309 (6) | |
H11 | 0.9022 | 0.2166 | 0.5778 | 0.037* | |
C12 | 0.7531 (3) | 0.2904 (3) | 0.61064 (13) | 0.0345 (7) | |
C13 | 0.5667 (3) | 0.6999 (3) | 0.58827 (14) | 0.0394 (7) | |
C14 | 0.4886 (2) | 0.5814 (3) | 0.59130 (12) | 0.0304 (6) | |
H14 | 0.5354 | 0.5079 | 0.5843 | 0.036* | |
C15 | 0.3647 (3) | 0.5847 (3) | 0.55390 (13) | 0.0384 (7) | |
H15A | 0.3783 | 0.5788 | 0.5141 | 0.046* | |
H15B | 0.3265 | 0.6632 | 0.5590 | 0.046* | |
C16 | 0.2746 (3) | 0.4827 (3) | 0.56630 (14) | 0.0408 (8) | |
H16A | 0.2204 | 0.5146 | 0.5921 | 0.049* | |
H16B | 0.2243 | 0.4610 | 0.5307 | 0.049* | |
C17 | 0.3358 (3) | 0.3679 (3) | 0.59241 (13) | 0.0343 (7) | |
H17 | 0.3964 | 0.3386 | 0.5685 | 0.041* | |
C18 | 0.2521 (3) | 0.2633 (3) | 0.60474 (15) | 0.0420 (8) | |
C19 | 0.3348 (3) | 0.2323 (3) | 0.66063 (15) | 0.0420 (8) | |
C20 | 0.3916 (3) | 0.3620 (3) | 0.65730 (13) | 0.0337 (7) | |
H20 | 0.4816 | 0.3600 | 0.6624 | 0.040* | |
C21 | 0.3421 (3) | 0.4551 (3) | 0.69642 (13) | 0.0408 (8) | |
H21A | 0.3726 | 0.4344 | 0.7358 | 0.049* | |
H21B | 0.2532 | 0.4481 | 0.6920 | 0.049* | |
C22 | 0.3756 (3) | 0.5896 (3) | 0.68587 (14) | 0.0430 (8) | |
H22A | 0.3070 | 0.6279 | 0.6623 | 0.052* | |
H22B | 0.3872 | 0.6320 | 0.7224 | 0.052* | |
C23 | 0.4896 (3) | 0.6061 (3) | 0.65719 (12) | 0.0331 (7) | |
H23 | 0.5577 | 0.5610 | 0.6787 | 0.040* | |
C24 | 0.5308 (3) | 0.7358 (3) | 0.64670 (14) | 0.0397 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0513 (5) | 0.0330 (5) | 0.1188 (9) | −0.0081 (4) | −0.0081 (5) | 0.0036 (5) |
Cl2 | 0.0661 (6) | 0.0528 (6) | 0.0511 (5) | 0.0209 (5) | −0.0012 (4) | −0.0169 (4) |
Cl3 | 0.0289 (4) | 0.0472 (5) | 0.0861 (7) | 0.0055 (4) | 0.0089 (4) | −0.0021 (5) |
Cl4 | 0.0624 (6) | 0.0450 (5) | 0.0501 (5) | 0.0064 (4) | 0.0079 (4) | −0.0147 (4) |
Cl5 | 0.0334 (5) | 0.0460 (6) | 0.1380 (10) | −0.0049 (4) | 0.0196 (5) | 0.0034 (6) |
Cl6 | 0.0738 (6) | 0.0465 (6) | 0.0594 (6) | −0.0112 (5) | 0.0106 (5) | 0.0138 (4) |
Cl7 | 0.0478 (5) | 0.0304 (5) | 0.1492 (11) | 0.0037 (4) | −0.0001 (6) | −0.0076 (6) |
Cl8 | 0.0705 (6) | 0.0599 (7) | 0.0636 (6) | −0.0214 (5) | 0.0013 (5) | 0.0226 (5) |
O1 | 0.0460 (14) | 0.0513 (16) | 0.0524 (14) | 0.0212 (12) | −0.0069 (11) | 0.0002 (12) |
O2 | 0.0708 (17) | 0.0295 (14) | 0.0590 (15) | −0.0002 (12) | 0.0019 (13) | 0.0135 (12) |
O3 | 0.0795 (19) | 0.0327 (15) | 0.0642 (16) | −0.0003 (13) | −0.0036 (14) | −0.0151 (13) |
O4 | 0.0529 (16) | 0.0673 (19) | 0.0757 (18) | −0.0307 (14) | −0.0185 (13) | 0.0128 (15) |
C1 | 0.0358 (17) | 0.0296 (18) | 0.0515 (19) | 0.0038 (13) | −0.0014 (14) | −0.0037 (15) |
C2 | 0.0259 (14) | 0.0229 (15) | 0.0402 (16) | 0.0026 (11) | 0.0007 (12) | −0.0015 (12) |
C3 | 0.0425 (17) | 0.041 (2) | 0.0286 (15) | 0.0015 (14) | 0.0076 (13) | −0.0013 (14) |
C4 | 0.0475 (18) | 0.0252 (17) | 0.0348 (16) | −0.0022 (13) | 0.0140 (13) | 0.0056 (13) |
C5 | 0.0351 (15) | 0.0250 (15) | 0.0283 (15) | −0.0009 (12) | −0.0005 (12) | 0.0021 (12) |
C6 | 0.0322 (15) | 0.0247 (17) | 0.0406 (17) | 0.0004 (12) | −0.0048 (13) | 0.0026 (13) |
C7 | 0.0311 (15) | 0.0248 (16) | 0.0423 (17) | 0.0025 (12) | 0.0059 (12) | −0.0032 (13) |
C8 | 0.0271 (14) | 0.0224 (15) | 0.0317 (15) | −0.0018 (11) | 0.0066 (11) | 0.0038 (12) |
C9 | 0.0345 (15) | 0.0339 (17) | 0.0270 (15) | 0.0018 (13) | 0.0028 (12) | −0.0005 (13) |
C10 | 0.0289 (15) | 0.044 (2) | 0.0331 (16) | 0.0055 (13) | −0.0025 (12) | −0.0001 (14) |
C11 | 0.0290 (15) | 0.0288 (16) | 0.0357 (16) | 0.0040 (12) | 0.0067 (12) | 0.0055 (13) |
C12 | 0.0353 (16) | 0.0272 (17) | 0.0406 (17) | 0.0023 (13) | 0.0039 (13) | 0.0070 (13) |
C13 | 0.0330 (16) | 0.0301 (18) | 0.056 (2) | −0.0012 (13) | 0.0068 (14) | 0.0015 (15) |
C14 | 0.0292 (14) | 0.0255 (16) | 0.0378 (16) | −0.0004 (12) | 0.0095 (12) | −0.0051 (13) |
C15 | 0.0413 (17) | 0.0403 (19) | 0.0329 (16) | −0.0035 (14) | 0.0017 (13) | 0.0029 (14) |
C16 | 0.0344 (17) | 0.046 (2) | 0.0399 (18) | −0.0084 (14) | −0.0054 (13) | 0.0028 (15) |
C17 | 0.0318 (15) | 0.0326 (17) | 0.0385 (17) | −0.0062 (13) | 0.0047 (12) | −0.0078 (13) |
C18 | 0.0371 (18) | 0.0345 (19) | 0.054 (2) | −0.0105 (14) | 0.0034 (15) | −0.0074 (15) |
C19 | 0.0318 (16) | 0.0288 (18) | 0.064 (2) | −0.0032 (13) | −0.0002 (15) | 0.0069 (16) |
C20 | 0.0275 (14) | 0.0285 (17) | 0.0441 (17) | −0.0005 (12) | 0.0016 (12) | −0.0006 (13) |
C21 | 0.052 (2) | 0.0332 (19) | 0.0382 (18) | −0.0039 (15) | 0.0111 (15) | 0.0043 (14) |
C22 | 0.061 (2) | 0.037 (2) | 0.0333 (17) | 0.0035 (16) | 0.0168 (15) | −0.0049 (14) |
C23 | 0.0384 (16) | 0.0235 (16) | 0.0352 (16) | −0.0007 (13) | −0.0032 (13) | −0.0040 (13) |
C24 | 0.0386 (17) | 0.0307 (19) | 0.0466 (19) | 0.0007 (14) | −0.0064 (14) | −0.0030 (15) |
Cl1—C1 | 1.776 (3) | C11—H11 | 0.9800 |
Cl2—C1 | 1.764 (3) | C12—O1 | 1.189 (3) |
Cl3—C7 | 1.783 (3) | C12—C1 | 1.539 (4) |
Cl4—C7 | 1.758 (3) | C12—C11 | 1.519 (4) |
Cl5—C13 | 1.784 (3) | C14—C13 | 1.561 (4) |
Cl6—C13 | 1.759 (3) | C14—C15 | 1.521 (4) |
Cl7—C19 | 1.775 (3) | C14—C23 | 1.573 (4) |
Cl8—C19 | 1.763 (4) | C14—H14 | 0.9800 |
C2—C1 | 1.561 (4) | C15—H15A | 0.9700 |
C2—C3 | 1.516 (4) | C15—H15B | 0.9700 |
C2—H2 | 0.9800 | C16—C15 | 1.544 (4) |
C3—C4 | 1.542 (4) | C16—H16A | 0.9700 |
C3—H3A | 0.9700 | C16—H16B | 0.9700 |
C3—H3B | 0.9700 | C17—C16 | 1.515 (4) |
C4—H4A | 0.9700 | C17—C18 | 1.519 (4) |
C4—H4B | 0.9700 | C17—H17 | 0.9800 |
C5—C4 | 1.519 (4) | C18—O4 | 1.187 (4) |
C5—H5 | 0.9800 | C18—C19 | 1.535 (5) |
C6—O2 | 1.180 (4) | C20—C17 | 1.571 (4) |
C6—C5 | 1.526 (4) | C20—C19 | 1.556 (4) |
C6—C7 | 1.538 (4) | C20—C21 | 1.520 (4) |
C8—C5 | 1.569 (4) | C20—H20 | 0.9800 |
C8—C7 | 1.557 (4) | C21—C22 | 1.544 (5) |
C8—C9 | 1.524 (4) | C21—H21A | 0.9700 |
C8—H8 | 0.9800 | C21—H21B | 0.9700 |
C9—C10 | 1.538 (4) | C22—H22A | 0.9700 |
C9—H9A | 0.9700 | C22—H22B | 0.9700 |
C9—H9B | 0.9700 | C23—C22 | 1.508 (4) |
C10—H10A | 0.9700 | C23—C24 | 1.520 (4) |
C10—H10B | 0.9700 | C23—H23 | 0.9800 |
C11—C2 | 1.573 (4) | C24—O3 | 1.192 (4) |
C11—C10 | 1.514 (4) | C24—C13 | 1.531 (5) |
Cl2—C1—Cl1 | 109.33 (18) | Cl6—C13—Cl5 | 110.07 (17) |
C2—C1—Cl1 | 112.2 (2) | C14—C13—Cl5 | 110.5 (2) |
C2—C1—Cl2 | 120.4 (2) | C14—C13—Cl6 | 120.7 (2) |
C12—C1—Cl1 | 109.9 (2) | C24—C13—Cl5 | 108.9 (2) |
C12—C1—Cl2 | 116.0 (2) | C24—C13—Cl6 | 116.8 (2) |
C12—C1—C2 | 87.3 (2) | C24—C13—C14 | 87.9 (2) |
C1—C2—C11 | 88.5 (2) | C13—C14—C23 | 88.3 (2) |
C1—C2—H2 | 112.2 | C13—C14—H14 | 111.8 |
C3—C2—C1 | 113.6 (2) | C15—C14—C13 | 114.2 (3) |
C3—C2—C11 | 115.9 (2) | C15—C14—C23 | 117.1 (2) |
C3—C2—H2 | 112.2 | C15—C14—H14 | 111.8 |
C11—C2—H2 | 112.2 | C23—C14—H14 | 111.8 |
C2—C3—C4 | 115.2 (2) | C14—C15—C16 | 114.8 (3) |
C2—C3—H3A | 108.5 | C14—C15—H15A | 108.6 |
C2—C3—H3B | 108.5 | C14—C15—H15B | 108.6 |
C4—C3—H3A | 108.5 | C16—C15—H15A | 108.6 |
C4—C3—H3B | 108.5 | C16—C15—H15B | 108.6 |
H3A—C3—H3B | 107.5 | H15A—C15—H15B | 107.5 |
C3—C4—H4A | 108.7 | C15—C16—H16A | 108.6 |
C3—C4—H4B | 108.7 | C15—C16—H16B | 108.6 |
C5—C4—C3 | 114.1 (2) | C17—C16—C15 | 114.5 (2) |
C5—C4—H4A | 108.7 | C17—C16—H16A | 108.6 |
C5—C4—H4B | 108.7 | C17—C16—H16B | 108.6 |
H4A—C4—H4B | 107.6 | H16A—C16—H16B | 107.6 |
C4—C5—C6 | 117.3 (2) | C16—C17—C18 | 117.0 (3) |
C4—C5—C8 | 121.3 (2) | C16—C17—C20 | 121.6 (3) |
C4—C5—H5 | 109.4 | C16—C17—H17 | 109.7 |
C6—C5—C8 | 88.5 (2) | C18—C17—C20 | 87.2 (2) |
C6—C5—H5 | 109.4 | C18—C17—H17 | 109.7 |
C8—C5—H5 | 109.4 | C20—C17—H17 | 109.7 |
O2—C6—C5 | 136.0 (3) | O4—C18—C17 | 135.2 (3) |
O2—C6—C7 | 132.9 (3) | O4—C18—C19 | 132.2 (3) |
C5—C6—C7 | 90.7 (2) | C17—C18—C19 | 91.5 (2) |
Cl4—C7—Cl3 | 110.34 (16) | Cl8—C19—Cl7 | 109.62 (18) |
C6—C7—Cl3 | 109.2 (2) | C18—C19—Cl7 | 110.5 (2) |
C6—C7—Cl4 | 116.2 (2) | C18—C19—Cl8 | 115.7 (2) |
C6—C7—C8 | 88.4 (2) | C18—C19—C20 | 87.2 (2) |
C8—C7—Cl3 | 110.7 (2) | C20—C19—Cl7 | 111.5 (2) |
C8—C7—Cl4 | 120.0 (2) | C20—C19—Cl8 | 120.5 (2) |
C5—C8—H8 | 111.5 | C17—C20—H20 | 112.2 |
C7—C8—C5 | 88.4 (2) | C19—C20—C17 | 88.8 (2) |
C7—C8—H8 | 111.5 | C19—C20—H20 | 112.2 |
C9—C8—C5 | 117.2 (2) | C21—C20—C17 | 115.9 (3) |
C9—C8—C7 | 114.8 (2) | C21—C20—C19 | 113.7 (3) |
C9—C8—H8 | 111.5 | C21—C20—H20 | 112.2 |
C8—C9—C10 | 115.3 (2) | C20—C21—C22 | 115.4 (3) |
C8—C9—H9A | 108.4 | C20—C21—H21A | 108.4 |
C8—C9—H9B | 108.4 | C22—C21—H21A | 108.4 |
C10—C9—H9A | 108.4 | C20—C21—H21B | 108.4 |
C10—C9—H9B | 108.4 | C22—C21—H21B | 108.4 |
H9A—C9—H9B | 107.5 | H21A—C21—H21B | 107.5 |
C9—C10—H10A | 108.5 | C21—C22—H22A | 108.6 |
C9—C10—H10B | 108.5 | C21—C22—H22B | 108.6 |
C11—C10—C9 | 115.0 (2) | C23—C22—C21 | 114.5 (3) |
C11—C10—H10A | 108.5 | C23—C22—H22A | 108.6 |
C11—C10—H10B | 108.5 | C23—C22—H22B | 108.6 |
H10A—C10—H10B | 107.5 | H22A—C22—H22B | 107.6 |
C2—C11—H11 | 109.5 | C14—C23—H23 | 109.3 |
C10—C11—C2 | 121.8 (2) | C22—C23—H23 | 109.3 |
C10—C11—C12 | 117.0 (2) | C22—C23—C14 | 121.5 (2) |
C10—C11—H11 | 109.5 | C22—C23—C24 | 117.8 (3) |
C12—C11—C2 | 87.5 (2) | C24—C23—C14 | 87.9 (2) |
C12—C11—H11 | 109.5 | C24—C23—H23 | 109.3 |
O1—C12—C1 | 132.4 (3) | O3—C24—C13 | 132.2 (3) |
O1—C12—C11 | 135.2 (3) | O3—C24—C23 | 136.0 (3) |
C11—C12—C1 | 91.3 (2) | C23—C24—C13 | 91.4 (2) |
C3—C2—C1—Cl1 | 148.8 (2) | C15—C14—C13—Cl5 | −147.1 (2) |
C3—C2—C1—Cl2 | 18.0 (3) | C15—C14—C13—Cl6 | −16.8 (4) |
C3—C2—C1—C12 | −100.8 (3) | C15—C14—C13—C24 | 103.5 (3) |
C11—C2—C1—Cl1 | −93.4 (2) | C23—C14—C13—Cl5 | 93.7 (2) |
C11—C2—C1—Cl2 | 135.7 (2) | C23—C14—C13—Cl6 | −135.9 (2) |
C11—C2—C1—C12 | 17.0 (2) | C23—C14—C13—C24 | −15.7 (2) |
C1—C2—C3—C4 | 168.0 (3) | C13—C14—C15—C16 | −166.8 (3) |
C11—C2—C3—C4 | 67.5 (3) | C23—C14—C15—C16 | −65.6 (4) |
C2—C3—C4—C5 | 24.0 (4) | C13—C14—C23—C22 | 137.5 (3) |
C6—C5—C4—C3 | 176.6 (3) | C13—C14—C23—C24 | 15.8 (2) |
C8—C5—C4—C3 | −77.3 (3) | C15—C14—C23—C22 | 21.1 (4) |
O2—C6—C5—C4 | −32.6 (5) | C15—C14—C23—C24 | −100.6 (3) |
O2—C6—C5—C8 | −157.4 (4) | C17—C16—C15—C14 | −25.8 (4) |
C7—C6—C5—C4 | 140.0 (3) | C18—C17—C16—C15 | −179.0 (3) |
C7—C6—C5—C8 | 15.2 (2) | C20—C17—C16—C15 | 76.5 (4) |
O2—C6—C7—Cl3 | −90.9 (4) | C16—C17—C18—O4 | 26.3 (6) |
O2—C6—C7—C8 | 157.7 (4) | C16—C17—C18—C19 | −141.8 (3) |
O2—C6—C7—Cl4 | 34.7 (4) | C20—C17—C18—O4 | 150.7 (4) |
C5—C6—C7—Cl3 | 96.1 (2) | C20—C17—C18—C19 | −17.4 (2) |
C5—C6—C7—Cl4 | −138.3 (2) | O4—C18—C19—Cl7 | 97.0 (4) |
C5—C6—C7—C8 | −15.3 (2) | O4—C18—C19—Cl8 | −28.4 (5) |
C7—C8—C5—C4 | −136.4 (3) | O4—C18—C19—C20 | −151.1 (4) |
C7—C8—C5—C6 | −15.0 (2) | C17—C18—C19—Cl7 | −94.4 (2) |
C9—C8—C5—C4 | −19.1 (4) | C17—C18—C19—Cl8 | 140.3 (2) |
C9—C8—C5—C6 | 102.2 (3) | C17—C18—C19—C20 | 17.6 (2) |
C5—C8—C7—Cl3 | −95.1 (2) | C19—C20—C17—C16 | 137.5 (3) |
C5—C8—C7—Cl4 | 134.5 (2) | C19—C20—C17—C18 | 17.2 (2) |
C5—C8—C7—C6 | 14.9 (2) | C21—C20—C17—C16 | 21.6 (4) |
C9—C8—C7—Cl3 | 145.5 (2) | C21—C20—C17—C18 | −98.7 (3) |
C9—C8—C7—Cl4 | 15.1 (3) | C17—C20—C19—Cl7 | 94.0 (2) |
C9—C8—C7—C6 | −104.5 (2) | C17—C20—C19—Cl8 | −135.4 (2) |
C7—C8—C9—C10 | 167.1 (2) | C17—C20—C19—C18 | −17.0 (2) |
C5—C8—C9—C10 | 65.3 (3) | C21—C20—C19—Cl7 | −148.1 (2) |
C8—C9—C10—C11 | 24.6 (4) | C21—C20—C19—Cl8 | −17.5 (4) |
C10—C11—C2—C1 | −137.8 (3) | C21—C20—C19—C18 | 100.9 (3) |
C10—C11—C2—C3 | −22.1 (4) | C17—C20—C21—C22 | −67.5 (4) |
C12—C11—C2—C1 | −17.2 (2) | C19—C20—C21—C22 | −168.3 (3) |
C12—C11—C2—C3 | 98.5 (3) | C20—C21—C22—C23 | −23.7 (4) |
C2—C11—C10—C9 | −75.4 (3) | C14—C23—C22—C21 | 75.6 (4) |
C12—C11—C10—C9 | 179.5 (2) | C24—C23—C22—C21 | −178.4 (3) |
O1—C12—C1—Cl1 | −96.0 (4) | C14—C23—C24—O3 | 156.3 (4) |
O1—C12—C1—Cl2 | 28.6 (5) | C14—C23—C24—C13 | −16.1 (2) |
O1—C12—C1—C2 | 151.4 (4) | C22—C23—C24—O3 | 31.4 (5) |
C11—C12—C1—Cl1 | 95.0 (2) | C22—C23—C24—C13 | −141.0 (3) |
C11—C12—C1—Cl2 | −140.4 (2) | O3—C24—C13—Cl5 | 92.4 (4) |
C11—C12—C1—C2 | −17.6 (2) | O3—C24—C13—Cl6 | −33.0 (5) |
O1—C12—C11—C2 | −151.0 (4) | O3—C24—C13—C14 | −156.6 (4) |
O1—C12—C11—C10 | −26.2 (5) | C23—C24—C13—Cl5 | −94.7 (2) |
C1—C12—C11—C2 | 17.5 (2) | C23—C24—C13—Cl6 | 139.9 (2) |
C1—C12—C11—C10 | 142.3 (3) | C23—C24—C13—C14 | 16.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O2i | 0.97 | 2.57 | 3.473 (4) | 154 |
C8—H8···O4ii | 0.98 | 2.43 | 3.406 (4) | 176 |
C14—H14···O1 | 0.98 | 2.38 | 3.342 (4) | 168 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x+1, y, z. |
Acknowledgements
The authors are grateful to Professor Arif Daştan (Atatürk University, Department of Chemistry, Erzurum, Turkey) for helpful discussions.
References
Bosmajian, G., Burks, R. E., Feazel, C. E. & Newcombe, J. (1964). Ind. Eng. Chem. Prod. Res. Dev. 3, 117–119. CrossRef CAS Web of Science Google Scholar
T. Brady, W. (1981). Tetrahedron, 37, 2949–2966. Google Scholar
Brady, W. T. & Roe, R. Jr (1971). J. Am. Chem. Soc. 93, 1662–1664. CrossRef CAS Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Dowd, P. & Zhang, W. (1991). J. Am. Chem. Soc. 113, 9875–9876. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosez, L., Montaigne, R., Roussel, A., Vanlierde, H. & Mollet, P. (1971). Tetrahedron, 27, 615–633. CrossRef CAS Web of Science Google Scholar
Mehta, G. & Rao, H. S. P. (2006). Synth. Commun. 15, 991–1000. CrossRef Web of Science Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shriver, D. & Atkins, P. (1999). Inorg. Chem. 3rd ed. Oxford University Press. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W. & Dowd, P. (1992). Tetrahedron Lett. 33, 3285–3288. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.