metal-organic compounds
κ3O4,N5,O6)aqua(1,10-phenanthroline-κ2N,N′)zinc trihydrate
of (2-amino-7-methyl-4-oxidopteridine-6-carboxylato-aDepartment of Chemistry, University of North Bengal, Siliguri 734 013, India
*Correspondence e-mail: psrnbu@gmail.com
In the title compound, [Zn(C8H5N5O3)(C12H8N2)(H2O)]·3H2O, a tridentate 2-amino-7-methyl-4-oxidopteridine-6-carboxylate ligand, a bidentate ancillary 1,10-phenanthroline (phen) ligand and a water molecule complete a distorted octahedral coordination geometry around the ZnII atom. The pterin ligand forms two chelate rings. The phen and pterin ring systems are nearly perpendicular [dihedral angle = 85.16 (5)°]. Classical N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the complex molecules and lattice water molecules into a three-dimensional network. π–π stacking contacts are observed as well, with centroid-to-centroid distances of 3.5679 (14), 3.7004 (14), 3.6641 (15), 3.6974 (13) and 3.3412 (12) Å.
Keywords: crystal structure; phenanthroline; zinc complex; hydrogen bonding; pteridine; π–π stacking.
CCDC reference: 1416736
1. Related literature
For the importance of pterin in metalloenzymes, see: Basu & Burgmayer (2011); Burgmayer (1998); Fitzpatrick (2003); Fukuzumi & Kojima (2008). For the biochemical importance of zinc–pterin interactions, see: Chreifi et al. (2014). For the structure of a related zinc complex, see: Mitsumi et al. (1995). For the electron-shuffling ability of the pterin unit, as well as its donor groups, and the effect on the geometric parameters of related complexes, see: Baisya & Roy (2014); Beddoes et al. (1993); Kohzuma et al. (1988); Miyazaki et al. (2008); Russell et al. (1992). For the synthesis of the pterin ligand, see: Wittle et al. (1947).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
CCDC reference: 1416736
https://doi.org/10.1107/S2056989015014619/xu5864sup1.cif
contains datablocks global, New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014619/xu5864Isup2.hkl
Pterins (2- amino -4- oxidopteridines) are present in a wide range of biological functions including a large number of metalloenzymes (Basu & Burgmayer, 2011; Burgmayer, 1998; Fitzpatrick, 2003; Fukuzumi & Kojima, 2008). Even the biochemical importance of zinc–pterin interaction has been established X-ray structurally (Chreifi et al., 2014). Literature survey revels the existence of only one x-ray structurally characterized zinc(II)–pterin complex (Mitsumi et al., 1995). The present effort is concerned with the title complex, possessing both a tridentate pterin ligand and a π-acceptor ancillary ligand like 1, 10—phenanthroline (phen). The six-coordinated ZnII atom exhibits departure from a regular octahedral geometry with respect to both bond lengths and angles (Fig. 1). The equatorial plane is formed by the two N atoms (N19, N26) of phen, the pyrazine ring N atom (N6) of the pterin ligand and the aqua O atom (O18). The axial positions are occupied by the two pterin O atoms (O2 and O16), with the latter one forming the longest axial bond [2.3724 (16) Å]. One important reason causing distortion from regular octahedral geometry is that this pterin ligand forms two five-membered chelate rings with small bite angles [76.28 (7) and 74.66 (6)°], instead of only one per pterin ligand for the earlier case (Mitsumi et al., 1995). A consideration of the charge balance of this complex indicates that this pterin ligand acts as a binegative tridentate ONO-donor. A near orthogonal disposition of the phen ligand and pterin chelate ring is observed, which affords minimum steric repulsion. Of the three axes, least deviation from linearity is observed in the O18—Zn1—N26 direction [173.36 (7)°].
The exocyclic bond length data of the pyrimidine ring, C15—O16 [1.257 (3) Å] and C13—N17 [1.335 (3) Å] merit attention. Participation by the pterin unit in the electron-shuffling process from the pyrazin ring N9 to the C15 carbonyl group is indicated, as suggested in the literature (Baisya & Roy, 2014; Beddoes et al., 1993; Kohzuma et al., 1988; Miyazaki et al., 2008; Russell et al., 1992). Formation of the Zn1—O16 bond assists this process.
In the crystal, the complex molecules and lattice water molecules are linked by intermolecular N—H ··· O, O—H ··· N and O—H ··· O hydrogen bonds (Table 1) into a three-dimensional network. The lattice water molecules play a decisive role in the crystal packing process (Fig. 2). Fig. 3 indicates π-π stacking interactions involving two parallel, inversion-related pterin rings within the same and showing face-to-face distance of 3.6974 (13) and 3.3412 (12) Å. Besides this, the nearly parallel phen rings of adjacent molecules also display π–π stacking interactions with centroid–centroid distance of 3.5678 (14), 3.7004 (14) and 3.6641 (15) Å.
2-Amino-4-hydroxy-7-methylpteridine-6-carboxylic acid sesquihydrate (C8H7N5O3.1.5H2O) was obtained by published procedure (Wittle et al. 1947). The title complex was prepared by the dropwise addition of a solution (15 ml) of ZnSO4. 7H2O (35.9 mg, 0.125 mmol) containing 1,10-phenanthroline monohydrate (25 mg, 0.125 mmol) to a warm (312 K) aqueous alkaline solution (NaOH: 11 mg, 0.275 mmol) of the pterin ligand (31 mg, 0.125 mmol). The pH value was maintained around 9.9–10.0 and the final volume was 60 ml. The reaction mixture was transferred to a 100 ml beaker and allowed to stand at room temperature. Light brown shining crystals suitable for single crystal X-ray diffraction appeared after 10 days (yield 30%).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Pterins (2- amino -4- oxidopteridines) are present in a wide range of biological functions including a large number of metalloenzymes (Basu & Burgmayer, 2011; Burgmayer, 1998; Fitzpatrick, 2003; Fukuzumi & Kojima, 2008). Even the biochemical importance of zinc–pterin interaction has been established X-ray structurally (Chreifi et al., 2014). Literature survey revels the existence of only one x-ray structurally characterized zinc(II)–pterin complex (Mitsumi et al., 1995). The present effort is concerned with the title complex, possessing both a tridentate pterin ligand and a π-acceptor ancillary ligand like 1, 10—phenanthroline (phen). The six-coordinated ZnII atom exhibits departure from a regular octahedral geometry with respect to both bond lengths and angles (Fig. 1). The equatorial plane is formed by the two N atoms (N19, N26) of phen, the pyrazine ring N atom (N6) of the pterin ligand and the aqua O atom (O18). The axial positions are occupied by the two pterin O atoms (O2 and O16), with the latter one forming the longest axial bond [2.3724 (16) Å]. One important reason causing distortion from regular octahedral geometry is that this pterin ligand forms two five-membered chelate rings with small bite angles [76.28 (7) and 74.66 (6)°], instead of only one per pterin ligand for the earlier case (Mitsumi et al., 1995). A consideration of the charge balance of this complex indicates that this pterin ligand acts as a binegative tridentate ONO-donor. A near orthogonal disposition of the phen ligand and pterin chelate ring is observed, which affords minimum steric repulsion. Of the three axes, least deviation from linearity is observed in the O18—Zn1—N26 direction [173.36 (7)°].
The exocyclic bond length data of the pyrimidine ring, C15—O16 [1.257 (3) Å] and C13—N17 [1.335 (3) Å] merit attention. Participation by the pterin unit in the electron-shuffling process from the pyrazin ring N9 to the C15 carbonyl group is indicated, as suggested in the literature (Baisya & Roy, 2014; Beddoes et al., 1993; Kohzuma et al., 1988; Miyazaki et al., 2008; Russell et al., 1992). Formation of the Zn1—O16 bond assists this process.
In the crystal, the complex molecules and lattice water molecules are linked by intermolecular N—H ··· O, O—H ··· N and O—H ··· O hydrogen bonds (Table 1) into a three-dimensional network. The lattice water molecules play a decisive role in the crystal packing process (Fig. 2). Fig. 3 indicates π-π stacking interactions involving two parallel, inversion-related pterin rings within the same and showing face-to-face distance of 3.6974 (13) and 3.3412 (12) Å. Besides this, the nearly parallel phen rings of adjacent molecules also display π–π stacking interactions with centroid–centroid distance of 3.5678 (14), 3.7004 (14) and 3.6641 (15) Å.
2-Amino-4-hydroxy-7-methylpteridine-6-carboxylic acid sesquihydrate (C8H7N5O3.1.5H2O) was obtained by published procedure (Wittle et al. 1947). The title complex was prepared by the dropwise addition of a solution (15 ml) of ZnSO4. 7H2O (35.9 mg, 0.125 mmol) containing 1,10-phenanthroline monohydrate (25 mg, 0.125 mmol) to a warm (312 K) aqueous alkaline solution (NaOH: 11 mg, 0.275 mmol) of the pterin ligand (31 mg, 0.125 mmol). The pH value was maintained around 9.9–10.0 and the final volume was 60 ml. The reaction mixture was transferred to a 100 ml beaker and allowed to stand at room temperature. Light brown shining crystals suitable for single crystal X-ray diffraction appeared after 10 days (yield 30%).
For the importance of pterin in metalloenzymes, see: Basu & Burgmayer (2011); Burgmayer (1998); Fitzpatrick (2003); Fukuzumi & Kojima (2008). For the biochemical importance of zinc–pterin interactions, see: Chreifi et al. (2014). For the structure of a related zinc complex, see: Mitsumi et al. (1995). For the electron-shuffling ability of the pterin unit, as well as its donor groups, and the effect on the geometric parameters of related complexes, see: Baisya & Roy (2014); Beddoes et al. (1993); Kohzuma et al. (1988); Miyazaki et al. (2008); Russell et al. (1992). For the synthesis of the pterin ligand, see: Wittle et al. (1947).
detailsThe H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The crystal packing diagram of the title compound, viewed along the b axis. Dotted lines indicate hydrogen bonds. | |
Fig. 3. A molecular packing diagram highlighting π–π stacking interactions between two phen–phen and pterin–pterin rings, respectively. |
[Zn(C8H5N5O3)(C12H8N2(H2O)]·3H2O | Z = 2 |
Mr = 536.81 | F(000) = 552 |
Triclinic, P1 | Dx = 1.678 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4819 (7) Å | Cell parameters from 0 reflections |
b = 9.9573 (9) Å | θ = 0–0° |
c = 13.7257 (12) Å | µ = 1.22 mm−1 |
α = 97.667 (1)° | T = 293 K |
β = 95.243 (1)° | Plate, orange brown |
γ = 110.716 (1)° | 0.24 × 0.19 × 0.04 mm |
V = 1062.51 (16) Å3 |
Bruker Kappa APEXII diffractometer | 4456 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.018 |
φ & ω scans | θmax = 28.3°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.76, Tmax = 0.95 | k = −13→13 |
9149 measured reflections | l = −17→18 |
4794 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 57.7 96.4 59.4 25.6 6.16 |
S = 0.94 | (Δ/σ)max = 0.001 |
4794 reflections | Δρmax = 0.64 e Å−3 |
346 parameters | Δρmin = −0.33 e Å−3 |
12 restraints |
[Zn(C8H5N5O3)(C12H8N2(H2O)]·3H2O | γ = 110.716 (1)° |
Mr = 536.81 | V = 1062.51 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4819 (7) Å | Mo Kα radiation |
b = 9.9573 (9) Å | µ = 1.22 mm−1 |
c = 13.7257 (12) Å | T = 293 K |
α = 97.667 (1)° | 0.24 × 0.19 × 0.04 mm |
β = 95.243 (1)° |
Bruker Kappa APEXII diffractometer | 4794 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4456 reflections with I > 2.0σ(I) |
Tmin = 0.76, Tmax = 0.95 | Rint = 0.018 |
9149 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 12 restraints |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | Δρmax = 0.64 e Å−3 |
4794 reflections | Δρmin = −0.33 e Å−3 |
346 parameters |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.95623 (3) | 0.21520 (3) | 0.228578 (17) | 0.0166 | |
O2 | 0.70435 (19) | 0.06939 (16) | 0.23606 (11) | 0.0206 | |
C3 | 0.6217 (3) | 0.1186 (2) | 0.29541 (15) | 0.0182 | |
O4 | 0.47875 (19) | 0.04655 (17) | 0.31282 (12) | 0.0231 | |
C5 | 0.7109 (3) | 0.2776 (2) | 0.34528 (15) | 0.0164 | |
N6 | 0.8648 (2) | 0.33756 (18) | 0.32071 (12) | 0.0149 | |
C7 | 0.9604 (3) | 0.4752 (2) | 0.35603 (14) | 0.0155 | |
C8 | 0.9030 (3) | 0.5640 (2) | 0.41988 (15) | 0.0169 | |
N9 | 0.7480 (2) | 0.5050 (2) | 0.44879 (14) | 0.0198 | |
C10 | 0.6531 (3) | 0.3650 (2) | 0.41309 (16) | 0.0191 | |
C11 | 0.4848 (3) | 0.3041 (3) | 0.4490 (2) | 0.0308 | |
H111 | 0.3927 | 0.2783 | 0.3982 | 0.0483* | |
H113 | 0.4752 | 0.3721 | 0.4998 | 0.0481* | |
H112 | 0.4768 | 0.2178 | 0.4756 | 0.0485* | |
N12 | 0.9998 (2) | 0.70678 (19) | 0.45260 (13) | 0.0182 | |
C13 | 1.1515 (3) | 0.7547 (2) | 0.41752 (15) | 0.0180 | |
N14 | 1.2199 (2) | 0.67528 (19) | 0.35785 (13) | 0.0175 | |
C15 | 1.1294 (3) | 0.5323 (2) | 0.32689 (15) | 0.0168 | |
O16 | 1.17955 (19) | 0.44769 (16) | 0.27321 (11) | 0.0198 | |
N17 | 1.2464 (2) | 0.8967 (2) | 0.44431 (15) | 0.0227 | |
H172 | 1.213 (3) | 0.954 (2) | 0.481 (2) | 0.0276* | |
H171 | 1.334 (3) | 0.933 (2) | 0.4174 (19) | 0.0277* | |
O18 | 1.0532 (2) | 0.14070 (18) | 0.34889 (12) | 0.0218 | |
H181 | 0.989 (4) | 0.061 (2) | 0.355 (2) | 0.0355* | |
H182 | 1.063 (4) | 0.196 (3) | 0.4008 (17) | 0.0360* | |
N19 | 1.1061 (2) | 0.15973 (19) | 0.13227 (13) | 0.0168 | |
C20 | 1.2233 (3) | 0.1030 (2) | 0.15288 (16) | 0.0204 | |
C21 | 1.3255 (3) | 0.0777 (3) | 0.08353 (18) | 0.0250 | |
C22 | 1.3061 (3) | 0.1119 (3) | −0.00880 (17) | 0.0250 | |
C23 | 1.1848 (3) | 0.1743 (2) | −0.03259 (16) | 0.0200 | |
C24 | 1.0876 (3) | 0.1965 (2) | 0.04125 (15) | 0.0171 | |
C25 | 0.9617 (3) | 0.2597 (2) | 0.02089 (15) | 0.0165 | |
N26 | 0.8729 (2) | 0.27983 (19) | 0.09497 (13) | 0.0174 | |
C27 | 0.7551 (3) | 0.3368 (2) | 0.07879 (16) | 0.0211 | |
C28 | 0.7189 (3) | 0.3760 (3) | −0.01264 (18) | 0.0260 | |
C29 | 0.8072 (3) | 0.3552 (2) | −0.08843 (17) | 0.0247 | |
C30 | 0.9340 (3) | 0.2960 (2) | −0.07305 (16) | 0.0210 | |
C31 | 1.0338 (3) | 0.2694 (3) | −0.14734 (17) | 0.0280 | |
C32 | 1.1539 (3) | 0.2124 (3) | −0.12796 (17) | 0.0266 | |
H321 | 1.2157 | 0.1968 | −0.1756 | 0.0332* | |
H311 | 1.0138 | 0.2929 | −0.2093 | 0.0332* | |
H291 | 0.7852 | 0.3813 | −0.1476 | 0.0296* | |
H281 | 0.6360 | 0.4140 | −0.0213 | 0.0316* | |
H271 | 0.6959 | 0.3519 | 0.1296 | 0.0262* | |
H221 | 1.3708 | 0.0958 | −0.0549 | 0.0310* | |
H211 | 1.4043 | 0.0380 | 0.1006 | 0.0321* | |
H201 | 1.2367 | 0.0788 | 0.2153 | 0.0258* | |
O33 | 0.4935 (3) | 0.4716 (2) | 0.1913 (2) | 0.0499 | |
H331 | 0.407 (4) | 0.454 (5) | 0.216 (3) | 0.0756* | |
H332 | 0.535 (6) | 0.560 (2) | 0.211 (4) | 0.0757* | |
O34 | 0.5353 (2) | −0.23088 (17) | 0.28297 (13) | 0.0244 | |
H341 | 0.452 (3) | −0.257 (4) | 0.309 (2) | 0.0388* | |
H342 | 0.547 (4) | −0.156 (3) | 0.265 (2) | 0.0388* | |
O35 | 0.8383 (2) | −0.09668 (17) | 0.40775 (12) | 0.0225 | |
H351 | 0.747 (3) | −0.148 (3) | 0.375 (2) | 0.0346* | |
H352 | 0.874 (4) | −0.156 (3) | 0.426 (2) | 0.0349* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01928 (13) | 0.01775 (13) | 0.01479 (12) | 0.00892 (9) | 0.00487 (8) | 0.00239 (8) |
O2 | 0.0205 (7) | 0.0176 (7) | 0.0217 (7) | 0.0054 (6) | 0.0039 (6) | 0.0014 (6) |
C3 | 0.0189 (10) | 0.0180 (10) | 0.0177 (9) | 0.0069 (8) | −0.0001 (7) | 0.0047 (8) |
O4 | 0.0172 (7) | 0.0204 (8) | 0.0276 (8) | 0.0015 (6) | 0.0054 (6) | 0.0043 (6) |
C5 | 0.0157 (9) | 0.0164 (9) | 0.0174 (9) | 0.0058 (7) | 0.0024 (7) | 0.0045 (7) |
N6 | 0.0156 (8) | 0.0158 (8) | 0.0138 (7) | 0.0060 (6) | 0.0031 (6) | 0.0033 (6) |
C7 | 0.0172 (9) | 0.0174 (9) | 0.0122 (8) | 0.0062 (7) | 0.0025 (7) | 0.0036 (7) |
C8 | 0.0184 (9) | 0.0176 (9) | 0.0164 (9) | 0.0082 (8) | 0.0031 (7) | 0.0039 (7) |
N9 | 0.0184 (8) | 0.0188 (8) | 0.0239 (9) | 0.0083 (7) | 0.0070 (7) | 0.0031 (7) |
C10 | 0.0163 (9) | 0.0209 (10) | 0.0218 (10) | 0.0078 (8) | 0.0061 (8) | 0.0043 (8) |
C11 | 0.0196 (11) | 0.0247 (11) | 0.0435 (14) | 0.0035 (9) | 0.0146 (10) | −0.0026 (10) |
N12 | 0.0199 (8) | 0.0163 (8) | 0.0188 (8) | 0.0073 (7) | 0.0040 (7) | 0.0023 (7) |
C13 | 0.0191 (9) | 0.0185 (10) | 0.0172 (9) | 0.0079 (8) | 0.0015 (7) | 0.0041 (8) |
N14 | 0.0180 (8) | 0.0149 (8) | 0.0188 (8) | 0.0050 (7) | 0.0048 (6) | 0.0023 (6) |
C15 | 0.0182 (9) | 0.0177 (9) | 0.0158 (9) | 0.0071 (7) | 0.0037 (7) | 0.0057 (7) |
O16 | 0.0197 (7) | 0.0164 (7) | 0.0229 (7) | 0.0057 (6) | 0.0088 (6) | 0.0011 (6) |
N17 | 0.0220 (9) | 0.0152 (8) | 0.0283 (10) | 0.0036 (7) | 0.0091 (8) | 0.0000 (7) |
O18 | 0.0228 (8) | 0.0211 (8) | 0.0204 (7) | 0.0060 (6) | 0.0029 (6) | 0.0065 (6) |
N19 | 0.0191 (8) | 0.0142 (8) | 0.0159 (8) | 0.0062 (6) | 0.0015 (6) | −0.0002 (6) |
C20 | 0.0201 (10) | 0.0187 (10) | 0.0205 (10) | 0.0071 (8) | −0.0013 (8) | −0.0001 (8) |
C21 | 0.0200 (10) | 0.0238 (11) | 0.0308 (12) | 0.0107 (9) | 0.0013 (9) | −0.0026 (9) |
C22 | 0.0207 (10) | 0.0257 (11) | 0.0259 (11) | 0.0081 (9) | 0.0079 (8) | −0.0065 (9) |
C23 | 0.0189 (10) | 0.0184 (9) | 0.0187 (9) | 0.0035 (8) | 0.0047 (8) | −0.0012 (8) |
C24 | 0.0170 (9) | 0.0153 (9) | 0.0155 (9) | 0.0034 (7) | 0.0017 (7) | −0.0010 (7) |
C25 | 0.0162 (9) | 0.0139 (9) | 0.0173 (9) | 0.0035 (7) | 0.0025 (7) | 0.0015 (7) |
N26 | 0.0178 (8) | 0.0183 (8) | 0.0160 (8) | 0.0063 (7) | 0.0031 (6) | 0.0032 (6) |
C27 | 0.0190 (10) | 0.0228 (10) | 0.0230 (10) | 0.0090 (8) | 0.0055 (8) | 0.0040 (8) |
C28 | 0.0233 (11) | 0.0261 (11) | 0.0307 (12) | 0.0107 (9) | 0.0004 (9) | 0.0100 (9) |
C29 | 0.0262 (11) | 0.0241 (11) | 0.0216 (10) | 0.0060 (9) | −0.0016 (9) | 0.0099 (9) |
C30 | 0.0225 (10) | 0.0178 (10) | 0.0188 (10) | 0.0025 (8) | 0.0015 (8) | 0.0047 (8) |
C31 | 0.0355 (13) | 0.0291 (12) | 0.0161 (10) | 0.0069 (10) | 0.0050 (9) | 0.0058 (9) |
C32 | 0.0296 (12) | 0.0292 (12) | 0.0187 (10) | 0.0076 (9) | 0.0098 (9) | 0.0017 (9) |
O33 | 0.0397 (12) | 0.0342 (11) | 0.0765 (16) | 0.0141 (9) | 0.0294 (11) | −0.0026 (11) |
O34 | 0.0200 (8) | 0.0188 (8) | 0.0328 (9) | 0.0042 (6) | 0.0082 (6) | 0.0043 (7) |
O35 | 0.0222 (8) | 0.0172 (7) | 0.0278 (8) | 0.0072 (6) | 0.0017 (6) | 0.0048 (6) |
Zn1—O2 | 2.1373 (15) | N19—C20 | 1.332 (3) |
Zn1—O16 | 2.3727 (15) | N19—C24 | 1.359 (3) |
Zn1—O18 | 2.1128 (16) | C20—C21 | 1.401 (3) |
Zn1—N6 | 2.0303 (17) | C20—H201 | 0.928 |
Zn1—N19 | 2.0684 (17) | C21—C22 | 1.366 (4) |
Zn1—N26 | 2.1627 (18) | C21—H211 | 0.917 |
O2—C3 | 1.279 (3) | C22—C23 | 1.413 (3) |
C3—O4 | 1.235 (3) | C22—H221 | 0.909 |
C3—C5 | 1.522 (3) | C23—C24 | 1.406 (3) |
C5—N6 | 1.325 (3) | C23—C32 | 1.437 (3) |
C5—C10 | 1.426 (3) | C24—C25 | 1.442 (3) |
N6—C7 | 1.317 (3) | C25—N26 | 1.355 (3) |
C7—C8 | 1.401 (3) | C25—C30 | 1.406 (3) |
C7—C15 | 1.459 (3) | N26—C27 | 1.327 (3) |
C8—N9 | 1.357 (3) | C27—C28 | 1.402 (3) |
C8—N12 | 1.354 (3) | C27—H271 | 0.923 |
N9—C10 | 1.335 (3) | C28—C29 | 1.372 (3) |
C10—C11 | 1.499 (3) | C28—H281 | 0.916 |
C11—H111 | 0.934 | C29—C30 | 1.410 (3) |
C11—H113 | 0.936 | C29—H291 | 0.909 |
C11—H112 | 0.960 | C30—C31 | 1.439 (3) |
N12—C13 | 1.362 (3) | C31—C32 | 1.353 (4) |
C13—N14 | 1.368 (3) | C31—H311 | 0.929 |
C13—N17 | 1.335 (3) | C32—H321 | 0.906 |
N14—C15 | 1.342 (3) | O33—H331 | 0.803 (19) |
C15—O16 | 1.257 (3) | O33—H332 | 0.816 (19) |
N17—H172 | 0.851 (17) | O34—H341 | 0.800 (18) |
N17—H171 | 0.848 (17) | O34—H342 | 0.795 (18) |
O18—H181 | 0.809 (17) | O35—H351 | 0.813 (17) |
O18—H182 | 0.817 (17) | O35—H352 | 0.803 (17) |
O2—Zn1—N6 | 76.37 (6) | C13—N17—H171 | 119.4 (14) |
O2—Zn1—O16 | 150.97 (6) | H172—N17—H171 | 119 (2) |
N6—Zn1—O16 | 74.60 (6) | Zn1—O18—H181 | 112 (2) |
O2—Zn1—O18 | 90.05 (6) | Zn1—O18—H182 | 110 (2) |
N6—Zn1—O18 | 91.77 (7) | H181—O18—H182 | 106 (3) |
O16—Zn1—O18 | 91.21 (6) | Zn1—N19—C20 | 127.00 (15) |
O2—Zn1—N19 | 121.85 (6) | Zn1—N19—C24 | 114.19 (14) |
N6—Zn1—N19 | 160.68 (7) | C20—N19—C24 | 118.63 (18) |
O16—Zn1—N19 | 86.96 (6) | N19—C20—C21 | 122.3 (2) |
O18—Zn1—N19 | 94.39 (7) | N19—C20—H201 | 118.6 |
O2—Zn1—N26 | 92.53 (6) | C21—C20—H201 | 119.1 |
N6—Zn1—N26 | 94.76 (7) | C20—C21—C22 | 119.6 (2) |
O16—Zn1—N26 | 89.49 (6) | C20—C21—H211 | 119.5 |
O18—Zn1—N26 | 173.38 (6) | C22—C21—H211 | 120.8 |
N19—Zn1—N26 | 79.07 (7) | C21—C22—C23 | 119.5 (2) |
Zn1—O2—C3 | 115.97 (13) | C21—C22—H221 | 120.8 |
O2—C3—O4 | 124.45 (19) | C23—C22—H221 | 119.6 |
O2—C3—C5 | 115.38 (18) | C22—C23—C24 | 117.3 (2) |
O4—C3—C5 | 120.17 (19) | C22—C23—C32 | 123.6 (2) |
C3—C5—N6 | 112.43 (17) | C24—C23—C32 | 119.1 (2) |
C3—C5—C10 | 129.33 (19) | C23—C24—N19 | 122.57 (19) |
N6—C5—C10 | 118.23 (18) | C23—C24—C25 | 119.65 (19) |
C5—N6—Zn1 | 119.65 (14) | N19—C24—C25 | 117.78 (18) |
C5—N6—C7 | 120.98 (18) | C24—C25—N26 | 117.17 (18) |
Zn1—N6—C7 | 119.37 (14) | C24—C25—C30 | 120.11 (19) |
N6—C7—C8 | 121.49 (19) | N26—C25—C30 | 122.71 (19) |
N6—C7—C15 | 117.67 (18) | Zn1—N26—C25 | 111.62 (13) |
C8—C7—C15 | 120.84 (18) | Zn1—N26—C27 | 129.44 (14) |
C7—C8—N9 | 119.03 (19) | C25—N26—C27 | 118.92 (18) |
C7—C8—N12 | 120.91 (19) | N26—C27—C28 | 122.2 (2) |
N9—C8—N12 | 120.06 (18) | N26—C27—H271 | 118.9 |
C8—N9—C10 | 118.80 (18) | C28—C27—H271 | 118.9 |
C5—C10—N9 | 121.40 (19) | C27—C28—C29 | 119.4 (2) |
C5—C10—C11 | 121.82 (19) | C27—C28—H281 | 119.8 |
N9—C10—C11 | 116.77 (19) | C29—C28—H281 | 120.8 |
C10—C11—H111 | 112.4 | C28—C29—C30 | 119.6 (2) |
C10—C11—H113 | 110.0 | C28—C29—H291 | 119.8 |
H111—C11—H113 | 109.1 | C30—C29—H291 | 120.6 |
C10—C11—H112 | 109.7 | C29—C30—C25 | 117.2 (2) |
H111—C11—H112 | 107.5 | C29—C30—C31 | 124.2 (2) |
H113—C11—H112 | 107.9 | C25—C30—C31 | 118.7 (2) |
C8—N12—C13 | 114.98 (17) | C30—C31—C32 | 121.4 (2) |
N12—C13—N14 | 128.05 (19) | C30—C31—H311 | 118.0 |
N12—C13—N17 | 116.57 (19) | C32—C31—H311 | 120.6 |
N14—C13—N17 | 115.38 (19) | C23—C32—C31 | 121.1 (2) |
C13—N14—C15 | 118.29 (18) | C23—C32—H321 | 118.9 |
C7—C15—N14 | 116.72 (18) | C31—C32—H321 | 120.1 |
C7—C15—O16 | 119.05 (18) | H331—O33—H332 | 99 (5) |
N14—C15—O16 | 124.20 (19) | H341—O34—H342 | 110 (3) |
Zn1—O16—C15 | 109.18 (13) | H351—O35—H352 | 102 (3) |
C13—N17—H172 | 121.5 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N17—H171···O4i | 0.85 (2) | 2.15 (2) | 2.942 (3) | 156 (2) |
N17—H172···O35ii | 0.85 (3) | 2.13 (3) | 2.967 (3) | 170 (2) |
O18—H181···O35 | 0.81 (2) | 1.92 (2) | 2.700 (2) | 163 (3) |
O18—H182···N12ii | 0.82 (2) | 2.30 (3) | 3.088 (2) | 160 (3) |
O33—H331···O16iii | 0.81 (4) | 2.13 (4) | 2.929 (3) | 169 (4) |
O33—H332···O34iv | 0.82 (3) | 2.18 (4) | 2.944 (3) | 155 (5) |
O34—H341···N14v | 0.80 (3) | 2.05 (3) | 2.842 (3) | 172 (3) |
O34—H342···O2 | 0.79 (3) | 2.28 (3) | 3.010 (2) | 154 (3) |
O34—H342···O4 | 0.79 (3) | 2.32 (3) | 2.950 (2) | 137 (3) |
O35—H351···O34 | 0.81 (3) | 1.94 (3) | 2.735 (2) | 167 (3) |
O35—H352···N12vi | 0.81 (3) | 2.06 (3) | 2.855 (3) | 168 (3) |
C20—H201···O4vii | 0.93 | 2.49 | 3.186 (3) | 132 |
C27—H271···O33 | 0.92 | 2.56 | 3.360 (4) | 146 |
C29—H291···O16viii | 0.91 | 2.55 | 3.394 (3) | 156 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z; (iv) x, y+1, z; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) x+1, y, z; (viii) −x+2, −y+1, −z. |
Zn1—O2 | 2.1373 (15) | Zn1—N6 | 2.0303 (17) |
Zn1—O16 | 2.3727 (15) | Zn1—N19 | 2.0684 (17) |
Zn1—O18 | 2.1128 (16) | Zn1—N26 | 2.1627 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N17—H171···O4i | 0.85 (2) | 2.15 (2) | 2.942 (3) | 156 (2) |
N17—H172···O35ii | 0.85 (3) | 2.13 (3) | 2.967 (3) | 170 (2) |
O18—H181···O35 | 0.81 (2) | 1.92 (2) | 2.700 (2) | 163 (3) |
O18—H182···N12ii | 0.82 (2) | 2.30 (3) | 3.088 (2) | 160 (3) |
O33—H331···O16iii | 0.81 (4) | 2.13 (4) | 2.929 (3) | 169 (4) |
O33—H332···O34iv | 0.82 (3) | 2.18 (4) | 2.944 (3) | 155 (5) |
O34—H341···N14v | 0.80 (3) | 2.05 (3) | 2.842 (3) | 172 (3) |
O34—H342···O2 | 0.79 (3) | 2.28 (3) | 3.010 (2) | 154 (3) |
O34—H342···O4 | 0.79 (3) | 2.32 (3) | 2.950 (2) | 137 (3) |
O35—H351···O34 | 0.81 (3) | 1.94 (3) | 2.735 (2) | 167 (3) |
O35—H352···N12vi | 0.81 (3) | 2.06 (3) | 2.855 (3) | 168 (3) |
C20—H201···O4vii | 0.93 | 2.49 | 3.186 (3) | 132 |
C27—H271···O33 | 0.92 | 2.56 | 3.360 (4) | 146 |
C29—H291···O16viii | 0.91 | 2.55 | 3.394 (3) | 156 |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z; (iv) x, y+1, z; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) x+1, y, z; (viii) −x+2, −y+1, −z. |
Acknowledgements
The authors express their gratitude to the UGC, New Delhi, for financial assistance (SAP–DRS program). Thanks are due to the CSMCRI, Bhavnagar, Gujrat, India, for the X-ray structural data and the University of North Bengal for infrastructure.
References
Baisya, S. S. & Roy, P. S. (2014). Acta Cryst. E70, 348–351. CSD CrossRef IUCr Journals Google Scholar
Basu, P. & Burgmayer, S. J. N. (2011). Coord. Chem. Rev. 255, 1016–1038. Web of Science CrossRef CAS PubMed Google Scholar
Beddoes, R. L., Russell, J. R., Garner, C. D. & Joule, J. A. (1993). Acta Cryst. C49, 1649–1652. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, USA. Google Scholar
Burgmayer, S. J. N. (1998). Struct. Bonding, 92, 67–119. CAS Google Scholar
Chreifi, G., Li, H., McInnes, C. R., Gibson, C. L., Suckling, C. J. & Poulos, T. L. (2014). Biochemistry, 53, 4216–4223. Web of Science CrossRef CAS PubMed Google Scholar
Fitzpatrick, P. F. (2003). Biochemistry, 42, 14083–14091. Web of Science CrossRef PubMed CAS Google Scholar
Fukuzumi, S. & Kojima, T. (2008). J. Biol. Inorg. Chem. 13, 321–333. Web of Science CrossRef PubMed CAS Google Scholar
Kohzuma, T., Odani, A., Morita, Y., Takani, M. & Yamauchi, O. (1988). Inorg. Chem. 27, 3854–3858. CrossRef CAS Web of Science Google Scholar
Mitsumi, M., Toyoda, J. & Nakasuji, K. (1995). Inorg. Chem. 34, 3367–3370. CSD CrossRef CAS Web of Science Google Scholar
Miyazaki, S., Kojima, T., Sakamoto, T., Matsumoto, T., Ohkubo, K. & Fukuzumi, S. (2008). Inorg. Chem. 47, 333–343. Web of Science CSD CrossRef PubMed CAS Google Scholar
Russell, J. R., Garner, C. D. & Joule, J. A. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1245–1249. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wittle, E. L., O'Dell, B. L., Vandenbelt, J. M. & Pfiffner, J. J. (1947). J. Am. Chem. Soc. 69, 1786–1792. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.