metal-organic compounds
μ2-tetrabromophthalato-κ2O1:O2)bis[aqua(N,N,N′,N′-tetramethylethane-1,2-diamine-κ2N,N′)copper(II)]
of bis(aCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco, Km 14.5 CP 50200 Toluca, Estado de México, México
*Correspondence e-mail: adg@unam.mx
In the title complex, [Cu2(C8Br4O4)2(C6H16N2)2(H2O)2], the CuII cation is chelated by a tetramethylethane-1,2-diamine ligand and coordinated by a water molecule as well as bridged by two tetrabromophthalate anions in a distorted O3N2 trigonal–bipyramidal geometry. The two symmetry-related tetrabromophthalate anions bridge the two CuII cations, forming a centrosymmetric dinuclear complex in which the Cu⋯Cu separation is 5.054 (2) Å. Intramolecular classic O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds occur in the dinuclear molecule. In the crystal, the molecules are linked by weak C—H⋯Br and C—H⋯O interactions into supramolecular chains propagating along the b-axis direction.
Keywords: crystal structure; copper(II) complex; tetramethylethane-1,2-diamine; tetrabromophthalate anion; hydrogen bonding.
CCDC reference: 1418832
1. Related literature
For the crystal structures of related copper(II) complexes with tetramethylethylen-1,2-diamine and carboxylate ligands; see: Ene et al. (2009); Dorazco-González et al. (2013); Liang et al. (2004). For the synthesis of coordination compounds with one-dimensional polymeric structures, see: Hong & You (2004); Colacio et al. (2009); Rodpun et al. (2015); Yang et al. (2002). For their magnetic properties, see: Ene et al. (2009); Kozlevčar et al. (2004). For supramolecular see: Dorazco-González et al. (2013); Stibrany et al. (2009); Aakeröy et al. (2003); Valdés-Martínez et al. (1993); Julve et al. (1984). For molecular recognition and sensing; see: Dorazco-González & Yatsimirsky (2010); Mendy et al. (2010).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2012); cell SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1418832
https://doi.org/10.1107/S2056989015015194/xu5866sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015015194/xu5866Isup2.hkl
The self-assembly of metal complexes with benzene-multicarboxylate ligands remains an active area in coordination chemistry especially with copper due to the very wide structural diversity and interesting properties in magnetism, host-guest systems, porous material (Ene et al., 2009; Dorazco-González et al., 2013; Liang et al., 2004). Dinuclear copper(II) compounds have been used in magnetism, as biomimetic active sites in bioinorganic chemistry and in the design and synthesis of metallic networks (Lu et al., 2004). Herein we present a dinuclear copper complex synthesised by self-assembly between copper perchlorate, a aliphatic diamine (tmen) and a bulky benzendicarboxylate (tetrabromophthalate). The tittle compound represents the first example of copper complex with tetrabromophthalate.
Compound. Cu(ClO4)2.6H2O (0.1 mmol, 0.037 g) was added directly to a solution of tmen (0.1 mmol) in metanol-water solution 1:1 (8 mL). Then the dianion of tetrabromophthalic acid (0.1 mmol, 0.055 g) in methanol-water solution 1:1 again (12 mL) was slowly added with stirring at room temperature, and a slight warming at 50 °C for 3 minutes.
Blue deep suitable crystals for diffraction X-ray were grown directly from solution by slow evaporation during 5 days. IR(KBr pellet), 3012 (w), 2971 (w), 2947 (w), 1741 (s), 1606 (m), 1396 (m), 1504 (w), 1459 (w), 1371 (s), 1315 (m), 1213 (m), 1096 (w), 1018 (w), 951 (w), 867 (w), 805 (w), 765 (w), 733 (w), 558 (w), 525 (w).
Water H atoms were placed in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.98–0.99 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C) for methylene H atoms and 1.5Ueq(C) for methyl H atoms.
The reaction between the aqua-complex [Cu(tmen)(H2O)x](ClO4)2 and potassium salt of tetrabromophthalate in mixture ethanol gives the title compound in good yield (>94 %) as blue suitable crystals for X ray diffraction. The single-crystal X-ray analysis reveals that the compound is a neutral dinuclear centro-symmetric copper (II) complex which crystallizes in monoclinic τ = (difference between two largest angles/60 for five-coordinated metal centers allows the distinction between trigonal-bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0). In this context, the coordination geometry of complex is distorted trigonal-bypiramide, τ = 0.68. The distance Cu ··· Cu is 5.054 (2) Å and a macrocycle is formed by 14 atoms containing two TBr-phthalate-bridge ligands. The combination of copper(II) with multi-carboxylic acids has formed one of the largest subgroups in metal-organic compounds and despite this there are few examples of coordination complex with 1,2,3,4,-tetrahalogenated benzenes among these only with tetrachlorophthalate have been reported (Hong & You, 2004; Yang et al., 2002). The present compound represents the first example with tetrabromophthalate.
P21/n (Figure 1). The contains a five-coordinate copper atom [Cu(N2O3)] with two sites occupied by diamine and three sites by oxygen atoms from two carboxylate groups and one molecule of water. The Addison tau-parameter has been used to describe the distortion around coordination geometry,The self-assembly of metal complexes with benzene-multicarboxylate ligands remains an active area in coordination chemistry especially with copper due to the very wide structural diversity and interesting properties in magnetism, host-guest systems, porous material (Ene et al., 2009; Dorazco-González et al., 2013; Liang et al., 2004). Dinuclear copper(II) compounds have been used in magnetism, as biomimetic active sites in bioinorganic chemistry and in the design and synthesis of metallic networks (Lu et al., 2004). Herein we present a dinuclear copper complex synthesised by self-assembly between copper perchlorate, a aliphatic diamine (tmen) and a bulky benzendicarboxylate (tetrabromophthalate). The tittle compound represents the first example of copper complex with tetrabromophthalate.
Compound. Cu(ClO4)2.6H2O (0.1 mmol, 0.037 g) was added directly to a solution of tmen (0.1 mmol) in metanol-water solution 1:1 (8 mL). Then the dianion of tetrabromophthalic acid (0.1 mmol, 0.055 g) in methanol-water solution 1:1 again (12 mL) was slowly added with stirring at room temperature, and a slight warming at 50 °C for 3 minutes.
The reaction between the aqua-complex [Cu(tmen)(H2O)x](ClO4)2 and potassium salt of tetrabromophthalate in mixture ethanol gives the title compound in good yield (>94 %) as blue suitable crystals for X ray diffraction. The single-crystal X-ray analysis reveals that the compound is a neutral dinuclear centro-symmetric copper (II) complex which crystallizes in monoclinic τ = (difference between two largest angles/60 for five-coordinated metal centers allows the distinction between trigonal-bipyramidal (ideally τ = 1) and square-pyramidal (ideally τ = 0). In this context, the coordination geometry of complex is distorted trigonal-bypiramide, τ = 0.68. The distance Cu ··· Cu is 5.054 (2) Å and a macrocycle is formed by 14 atoms containing two TBr-phthalate-bridge ligands. The combination of copper(II) with multi-carboxylic acids has formed one of the largest subgroups in metal-organic compounds and despite this there are few examples of coordination complex with 1,2,3,4,-tetrahalogenated benzenes among these only with tetrachlorophthalate have been reported (Hong & You, 2004; Yang et al., 2002). The present compound represents the first example with tetrabromophthalate.
P21/n (Figure 1). The contains a five-coordinate copper atom [Cu(N2O3)] with two sites occupied by diamine and three sites by oxygen atoms from two carboxylate groups and one molecule of water. The Addison tau-parameter has been used to describe the distortion around coordination geometry,For the crystal structures of related copper(II) complexes with tetramethylethylene and carboxylate ligands; see: Ene et al. (2009); Dorazco-González et al. (2013); Liang et al. (2004). For the synthesis of one-dimensional coordination polymers, see: Hong & You (2004); Colacio et al. (2009); Rodpun et al. (2015); Yang et al. (2002). For their magnetic properties, see: Ene et al. (2009); Kozlevčar et al. (2004). For supramolecular
see: Dorazco-González et al. (2013); Stibrany et al. (2009); Aakeröy et al. (2003); Valdés-Martínez et al. (1993); Julve et al. (1984). For molecular recognition and sensing; see: Dorazco-González & Yatsimirsky (2010); Mendy et al. (2010).Blue deep suitable crystals for diffraction X-ray were grown directly from solution by slow evaporation during 5 days. IR(KBr pellet), 3012 (w), 2971 (w), 2947 (w), 1741 (s), 1606 (m), 1396 (m), 1504 (w), 1459 (w), 1371 (s), 1315 (m), 1213 (m), 1096 (w), 1018 (w), 951 (w), 867 (w), 805 (w), 765 (w), 733 (w), 558 (w), 525 (w).
detailsWater H atoms were placed in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.98–0.99 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C) for methylene H atoms and 1.5Ueq(C) for methyl H atoms.
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. | |
Fig. 2. View of interactions in the crystal. |
[Cu2(C8Br4O4)2(C6H16N2)2(H2O)2] | F(000) = 1300 |
Mr = 1354.97 | Dx = 2.207 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0961 (2) Å | Cell parameters from 9880 reflections |
b = 9.2281 (2) Å | θ = 2.4–25.7° |
c = 24.4026 (7) Å | µ = 8.94 mm−1 |
β = 95.4910 (6)° | T = 100 K |
V = 2038.95 (9) Å3 | Prism, blue |
Z = 2 | 0.25 × 0.15 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3739 independent reflections |
Radiation source: Incoatec ImuS | 3547 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.019 |
ω scans | θmax = 25.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −10→10 |
Tmin = 0.442, Tmax = 0.745 | k = −11→11 |
17394 measured reflections | l = −29→29 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.039 | w = 1/[σ2(Fo2) + (0.0162P)2 + 2.4857P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.002 |
3739 reflections | Δρmax = 0.80 e Å−3 |
245 parameters | Δρmin = −0.41 e Å−3 |
[Cu2(C8Br4O4)2(C6H16N2)2(H2O)2] | V = 2038.95 (9) Å3 |
Mr = 1354.97 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0961 (2) Å | µ = 8.94 mm−1 |
b = 9.2281 (2) Å | T = 100 K |
c = 24.4026 (7) Å | 0.25 × 0.15 × 0.08 mm |
β = 95.4910 (6)° |
Bruker APEXII CCD diffractometer | 3739 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | 3547 reflections with I > 2σ(I) |
Tmin = 0.442, Tmax = 0.745 | Rint = 0.019 |
17394 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 2 restraints |
wR(F2) = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.80 e Å−3 |
3739 reflections | Δρmin = −0.41 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.34950 (2) | 0.30336 (3) | 0.71377 (2) | 0.01607 (6) | |
Br2 | 0.62992 (3) | 0.47283 (3) | 0.78249 (2) | 0.02118 (6) | |
Br3 | 0.95418 (3) | 0.47738 (3) | 0.73268 (2) | 0.01934 (6) | |
Br4 | 1.00627 (2) | 0.27574 (3) | 0.62483 (2) | 0.01671 (6) | |
Cu1 | 0.32727 (3) | −0.12890 (3) | 0.55897 (2) | 0.01122 (6) | |
O1 | 0.45257 (16) | 0.02014 (16) | 0.59851 (6) | 0.0143 (3) | |
O2 | 0.32220 (16) | 0.22748 (16) | 0.58559 (6) | 0.0135 (3) | |
O3 | 0.65378 (16) | 0.19336 (16) | 0.52428 (6) | 0.0132 (3) | |
O4 | 0.79787 (17) | 0.02815 (16) | 0.57131 (6) | 0.0144 (3) | |
O5 | 0.17319 (17) | 0.01324 (17) | 0.53376 (6) | 0.0133 (3) | |
H5A | 0.205 (3) | 0.091 (2) | 0.5454 (10) | 0.016* | |
H5B | 0.179 (3) | 0.014 (3) | 0.5006 (7) | 0.016* | |
N1 | 0.4780 (2) | −0.2831 (2) | 0.58485 (7) | 0.0153 (4) | |
N2 | 0.1667 (2) | −0.2787 (2) | 0.57861 (8) | 0.0180 (4) | |
C1 | 0.5567 (2) | 0.2309 (2) | 0.63834 (8) | 0.0102 (4) | |
C2 | 0.5382 (2) | 0.3046 (2) | 0.68693 (8) | 0.0108 (4) | |
C3 | 0.6563 (2) | 0.3755 (2) | 0.71631 (8) | 0.0119 (4) | |
C4 | 0.7951 (2) | 0.3723 (2) | 0.69622 (8) | 0.0123 (4) | |
C5 | 0.8155 (2) | 0.2926 (2) | 0.64905 (8) | 0.0114 (4) | |
C6 | 0.6979 (2) | 0.2221 (2) | 0.62005 (8) | 0.0101 (4) | |
C7 | 0.4303 (2) | 0.1547 (2) | 0.60456 (8) | 0.0104 (4) | |
C8 | 0.7190 (2) | 0.1388 (2) | 0.56745 (8) | 0.0112 (4) | |
C9 | 0.3941 (3) | −0.4200 (2) | 0.57551 (10) | 0.0206 (5) | |
H9A | 0.4525 | −0.5017 | 0.5925 | 0.025* | |
H9B | 0.3757 | −0.4388 | 0.5355 | 0.025* | |
C10 | 0.2483 (3) | −0.4091 (3) | 0.60056 (11) | 0.0267 (6) | |
H10A | 0.1885 | −0.4970 | 0.5915 | 0.032* | |
H10B | 0.2665 | −0.4022 | 0.6411 | 0.032* | |
C11 | 0.6075 (3) | −0.2849 (3) | 0.55284 (11) | 0.0221 (5) | |
H11A | 0.5747 | −0.2979 | 0.5137 | 0.033* | |
H11B | 0.6728 | −0.3651 | 0.5655 | 0.033* | |
H11C | 0.6611 | −0.1931 | 0.5581 | 0.033* | |
C12 | 0.5316 (3) | −0.2652 (3) | 0.64386 (10) | 0.0295 (6) | |
H12A | 0.5925 | −0.1776 | 0.6485 | 0.044* | |
H12B | 0.5908 | −0.3497 | 0.6564 | 0.044* | |
H12C | 0.4470 | −0.2564 | 0.6657 | 0.044* | |
C13 | 0.0750 (3) | −0.2171 (3) | 0.61946 (10) | 0.0270 (6) | |
H13A | 0.0211 | −0.1327 | 0.6036 | 0.040* | |
H13B | 0.1384 | −0.1874 | 0.6523 | 0.040* | |
H13C | 0.0045 | −0.2903 | 0.6297 | 0.040* | |
C14 | 0.0693 (3) | −0.3163 (3) | 0.52836 (10) | 0.0244 (5) | |
H14A | 0.0251 | −0.2277 | 0.5119 | 0.037* | |
H14B | −0.0091 | −0.3815 | 0.5381 | 0.037* | |
H14C | 0.1275 | −0.3644 | 0.5019 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01284 (11) | 0.02352 (12) | 0.01199 (11) | 0.00231 (9) | 0.00185 (8) | −0.00263 (9) |
Br2 | 0.02459 (13) | 0.02531 (13) | 0.01399 (11) | −0.00390 (10) | 0.00359 (9) | −0.01160 (9) |
Br3 | 0.02013 (12) | 0.02323 (13) | 0.01411 (11) | −0.01075 (9) | −0.00115 (8) | −0.00597 (9) |
Br4 | 0.01220 (11) | 0.02355 (13) | 0.01461 (11) | −0.00571 (9) | 0.00253 (8) | −0.00292 (9) |
Cu1 | 0.01308 (13) | 0.00842 (13) | 0.01167 (13) | −0.00056 (10) | −0.00133 (10) | −0.00121 (10) |
O1 | 0.0144 (8) | 0.0097 (8) | 0.0178 (8) | −0.0008 (6) | −0.0039 (6) | −0.0018 (6) |
O2 | 0.0123 (8) | 0.0125 (8) | 0.0151 (8) | 0.0011 (6) | −0.0019 (6) | −0.0023 (6) |
O3 | 0.0172 (8) | 0.0142 (8) | 0.0080 (7) | 0.0012 (6) | 0.0002 (6) | −0.0017 (6) |
O4 | 0.0168 (8) | 0.0129 (8) | 0.0130 (7) | 0.0032 (6) | −0.0005 (6) | −0.0012 (6) |
O5 | 0.0160 (8) | 0.0127 (8) | 0.0109 (7) | −0.0013 (6) | −0.0006 (6) | −0.0043 (6) |
N1 | 0.0210 (10) | 0.0108 (9) | 0.0136 (9) | −0.0004 (8) | −0.0011 (7) | 0.0003 (7) |
N2 | 0.0196 (10) | 0.0167 (10) | 0.0185 (10) | −0.0029 (8) | 0.0052 (8) | 0.0036 (8) |
C1 | 0.0138 (10) | 0.0060 (10) | 0.0103 (10) | 0.0006 (8) | −0.0015 (8) | 0.0030 (8) |
C2 | 0.0125 (10) | 0.0084 (10) | 0.0116 (10) | 0.0017 (8) | 0.0023 (8) | 0.0020 (8) |
C3 | 0.0190 (11) | 0.0095 (10) | 0.0070 (10) | 0.0005 (9) | 0.0003 (8) | −0.0012 (8) |
C4 | 0.0160 (11) | 0.0100 (10) | 0.0100 (10) | −0.0037 (9) | −0.0040 (8) | 0.0007 (8) |
C5 | 0.0131 (10) | 0.0115 (10) | 0.0100 (10) | −0.0017 (8) | 0.0032 (8) | 0.0027 (8) |
C6 | 0.0148 (11) | 0.0084 (10) | 0.0069 (10) | 0.0001 (8) | −0.0003 (8) | 0.0031 (8) |
C7 | 0.0122 (10) | 0.0117 (11) | 0.0074 (9) | −0.0017 (8) | 0.0022 (8) | −0.0004 (8) |
C8 | 0.0104 (10) | 0.0117 (11) | 0.0116 (10) | −0.0047 (9) | 0.0025 (8) | −0.0009 (8) |
C9 | 0.0255 (13) | 0.0097 (11) | 0.0260 (13) | −0.0008 (10) | 0.0003 (10) | 0.0021 (9) |
C10 | 0.0288 (14) | 0.0165 (12) | 0.0357 (15) | −0.0019 (11) | 0.0077 (11) | 0.0117 (11) |
C11 | 0.0169 (12) | 0.0180 (12) | 0.0311 (14) | 0.0039 (10) | 0.0009 (10) | 0.0069 (10) |
C12 | 0.0426 (16) | 0.0238 (14) | 0.0194 (13) | 0.0077 (12) | −0.0113 (11) | 0.0013 (10) |
C13 | 0.0276 (14) | 0.0328 (15) | 0.0228 (13) | 0.0022 (12) | 0.0140 (11) | 0.0060 (11) |
C14 | 0.0196 (12) | 0.0228 (13) | 0.0307 (14) | −0.0104 (10) | 0.0010 (10) | −0.0042 (11) |
Br1—C2 | 1.895 (2) | N1—C9 | 1.482 (3) |
Br2—C3 | 1.883 (2) | N1—C12 | 1.485 (3) |
Br3—C4 | 1.892 (2) | N2—C13 | 1.473 (3) |
Br4—C5 | 1.893 (2) | N2—C14 | 1.484 (3) |
Cu1—O5 | 1.9744 (16) | N2—C10 | 1.487 (3) |
Cu1—O1 | 1.9776 (15) | C1—C2 | 1.391 (3) |
Cu1—N1 | 2.0340 (19) | C1—C6 | 1.402 (3) |
Cu1—N2 | 2.0995 (19) | C1—C7 | 1.521 (3) |
Cu1—O3i | 2.1396 (14) | C2—C3 | 1.396 (3) |
O1—C7 | 1.269 (3) | C3—C4 | 1.398 (3) |
O2—C7 | 1.243 (3) | C4—C5 | 1.393 (3) |
O3—C8 | 1.263 (3) | C5—C6 | 1.387 (3) |
O3—Cu1i | 2.1396 (14) | C6—C8 | 1.524 (3) |
O4—C8 | 1.246 (3) | C9—C10 | 1.516 (3) |
N1—C11 | 1.475 (3) | ||
O5—Cu1—O1 | 92.80 (6) | C2—C1—C7 | 122.73 (19) |
O5—Cu1—N1 | 177.14 (7) | C6—C1—C7 | 117.98 (18) |
O1—Cu1—N1 | 89.71 (7) | C1—C2—C3 | 121.13 (19) |
O5—Cu1—N2 | 91.13 (7) | C1—C2—Br1 | 118.64 (16) |
O1—Cu1—N2 | 136.68 (7) | C3—C2—Br1 | 120.21 (16) |
N1—Cu1—N2 | 86.10 (8) | C2—C3—C4 | 119.12 (19) |
O5—Cu1—O3i | 90.46 (6) | C2—C3—Br2 | 120.61 (16) |
O1—Cu1—O3i | 124.17 (6) | C4—C3—Br2 | 120.27 (15) |
N1—Cu1—O3i | 89.26 (7) | C5—C4—C3 | 119.80 (19) |
N2—Cu1—O3i | 98.90 (7) | C5—C4—Br3 | 120.18 (16) |
C7—O1—Cu1 | 130.25 (14) | C3—C4—Br3 | 120.02 (15) |
C8—O3—Cu1i | 127.37 (14) | C6—C5—C4 | 120.80 (19) |
C11—N1—C9 | 109.53 (18) | C6—C5—Br4 | 119.17 (16) |
C11—N1—C12 | 108.07 (19) | C4—C5—Br4 | 120.01 (16) |
C9—N1—C12 | 111.12 (19) | C5—C6—C1 | 119.73 (19) |
C11—N1—Cu1 | 113.14 (14) | C5—C6—C8 | 120.89 (19) |
C9—N1—Cu1 | 103.09 (14) | C1—C6—C8 | 119.35 (18) |
C12—N1—Cu1 | 111.86 (15) | O2—C7—O1 | 127.93 (19) |
C13—N2—C14 | 108.52 (19) | O2—C7—C1 | 118.85 (18) |
C13—N2—C10 | 111.32 (19) | O1—C7—C1 | 113.20 (18) |
C14—N2—C10 | 110.3 (2) | O4—C8—O3 | 127.65 (19) |
C13—N2—Cu1 | 110.61 (15) | O4—C8—C6 | 117.88 (18) |
C14—N2—Cu1 | 109.81 (14) | O3—C8—C6 | 114.47 (18) |
C10—N2—Cu1 | 106.31 (14) | N1—C9—C10 | 109.8 (2) |
C2—C1—C6 | 119.26 (19) | N2—C10—C9 | 109.52 (19) |
C6—C1—C2—C3 | 3.0 (3) | C2—C1—C6—C8 | 178.75 (18) |
C7—C1—C2—C3 | −178.78 (19) | C7—C1—C6—C8 | 0.5 (3) |
C6—C1—C2—Br1 | −175.50 (15) | Cu1—O1—C7—O2 | −1.5 (3) |
C7—C1—C2—Br1 | 2.7 (3) | Cu1—O1—C7—C1 | −179.92 (13) |
C1—C2—C3—C4 | 0.2 (3) | C2—C1—C7—O2 | 60.4 (3) |
Br1—C2—C3—C4 | 178.71 (15) | C6—C1—C7—O2 | −121.4 (2) |
C1—C2—C3—Br2 | −179.24 (15) | C2—C1—C7—O1 | −121.0 (2) |
Br1—C2—C3—Br2 | −0.7 (2) | C6—C1—C7—O1 | 57.2 (2) |
C2—C3—C4—C5 | −3.3 (3) | Cu1i—O3—C8—O4 | −6.9 (3) |
Br2—C3—C4—C5 | 176.09 (16) | Cu1i—O3—C8—C6 | 172.16 (13) |
C2—C3—C4—Br3 | 176.10 (15) | C5—C6—C8—O4 | 66.3 (3) |
Br2—C3—C4—Br3 | −4.5 (2) | C1—C6—C8—O4 | −115.6 (2) |
C3—C4—C5—C6 | 3.3 (3) | C5—C6—C8—O3 | −112.8 (2) |
Br3—C4—C5—C6 | −176.16 (16) | C1—C6—C8—O3 | 65.3 (3) |
C3—C4—C5—Br4 | −175.18 (16) | C11—N1—C9—C10 | −170.79 (19) |
Br3—C4—C5—Br4 | 5.4 (2) | C12—N1—C9—C10 | 69.9 (2) |
C4—C5—C6—C1 | 0.0 (3) | Cu1—N1—C9—C10 | −50.1 (2) |
Br4—C5—C6—C1 | 178.46 (15) | C13—N2—C10—C9 | −148.7 (2) |
C4—C5—C6—C8 | 178.09 (19) | C14—N2—C10—C9 | 90.8 (2) |
Br4—C5—C6—C8 | −3.4 (3) | Cu1—N2—C10—C9 | −28.2 (2) |
C2—C1—C6—C5 | −3.1 (3) | N1—C9—C10—N2 | 54.4 (3) |
C7—C1—C6—C5 | 178.62 (18) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2 | 0.81 (2) | 1.87 (2) | 2.649 (2) | 161 (2) |
O5—H5B···O4i | 0.82 (2) | 1.83 (2) | 2.630 (2) | 167 (3) |
C10—H10A···Br4ii | 0.99 | 2.84 | 3.729 (3) | 150 |
C11—H11C···O4 | 0.98 | 2.40 | 3.376 (3) | 179 |
C13—H13A···O4iii | 0.98 | 2.58 | 3.506 (3) | 158 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y−1, z; (iii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O2 | 0.81 (2) | 1.87 (2) | 2.649 (2) | 161 (2) |
O5—H5B···O4i | 0.816 (18) | 1.829 (18) | 2.630 (2) | 167 (3) |
C10—H10A···Br4ii | 0.99 | 2.84 | 3.729 (3) | 150 |
C11—H11C···O4 | 0.98 | 2.40 | 3.376 (3) | 179 |
C13—H13A···O4iii | 0.98 | 2.58 | 3.506 (3) | 158 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y−1, z; (iii) x−1, y, z. |
Acknowledgements
We thank MSc Lizbeth Triana Cruz for technical assistence. The financial support of this research by CONACyT (CB239648) is gratefully acknowledged.
References
Aakeröy, C. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064. Web of Science CSD CrossRef CAS Google Scholar
Dorazco-González, A., Martínez-Vargas, S., Hernández-Ortega, S. & Valdés-Martínez, J. (2013). CrystEngComm, 15, 5961–5968. Google Scholar
Dorazco-González, A. & Yatsimirsky, A. K. (2010). Inorg. Chim. Acta, 363, 270–274. Google Scholar
Ene, C. D., Madalan, A. M., Maxim, C., Jurca, B., Avarvari, N. & Andruh, M. (2009). J. Am. Chem. Soc. 131, 4586–4587. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hong, C. S. & You, Y. S. (2004). Polyhedron, 23, 3043–3050. Web of Science CSD CrossRef CAS Google Scholar
Julve, M., Faus, J., Verdaguer, M. & Gleizes, A. (1984). J. Am. Chem. Soc. 106, 8306–8308. CSD CrossRef CAS Web of Science Google Scholar
Kozlevčar, B., Leban, I., Petrič, M., Petriček, S., Roubeau, O., Reedijk, J. & Šegedin, P. (2004). Inorg. Chim. Acta, 357, 4220–4230. Google Scholar
Liang, M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004). Inorg. Chem. Commun. 7, 173–175. CSD CrossRef CAS Google Scholar
Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R. & Hossain, A. (2010). Inorg. Chem. 49, 7223–7225. CSD CrossRef CAS PubMed Google Scholar
Rodpun, K., Blackman, A. G., Gardiner, M. G., Tan, E. W., Meledandri, C. J. & Lucas, N. T. (2015). CrystEngComm, 17, 2974–2988. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T. (2009). J. Chem. Crystallogr. 39, 719–722. Web of Science CSD CrossRef CAS Google Scholar
Valdés-Martínez, J., Cervantes-Lee, F. & ter Haar, L. W. (1993). J. Appl. Phys. 74, 1918–1921. CrossRef Web of Science Google Scholar
Yang, S.-Y., Long, L.-S., Wu, Z.-Y., Zhan, M.-X., Huang, R.-B. & Zheng, L.-S. (2002). Transition Met. Chem. 27, 546–549. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.