research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­(2-{[2-(phenyl­car­bamo­thioyl)hydrazin-1-yl­idene](pyridin-2-yl)methyl}pyridin-1-ium)gold(I) chloride sesqui­hydrate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Inorganic Synthesis and Crystallography, University of Brasília, IQ, Campus Universitário Darcy Ribeiro, CEP 70904970, PO Box 4478, Brasília - DF, Brazil
*Correspondence e-mail: ccgatto@gmail.com

Edited by M. Zeller, Youngstown State University, USA (Received 5 August 2015; accepted 18 August 2015; online 26 August 2015)

The title complex, [AuCl(C18H16N5S)]Cl·1.5H2O, may be considered as a gold(I) compound with the corresponding metal site coordinated by a thio­semicarbazone ligand through the S atom. The ligand adopts an E conformation and the gold(I) atom displays the expected linear geometry with a Cl atom also bonded to the metal ion [Cl—Au—S = 174.23 (5)°]. One of the pyridyl rings is protonated, giving the gold complex an overall positive charge. Two solvent water mol­ecules, one of which is located on a twofold rotation axis, and a non-coordinating chloride ion complete the structural assembly. The mol­ecular structure is stabilized by intra­molecular and inter­molecular N—H⋯Cl, N—H⋯N, O—H⋯Cl and O—H⋯O hydrogen bonding.

1. Chemical context

Thio­semicarbazones are generated from reactions of thio­semicarbazides with either an aldehyde or a ketone. They are compounds that can coordinate to transition metals and exhibit keto–enol tautomerism (Duan et al., 1996[Duan, C. Y., Wu, B. M. & Mak, T. C. W. (1996). J. Chem. Soc. Dalton Trans. pp. 3485-3490.]). Thio­semicarbazones are known to have diverse biological activity, including anti-malarial properties and anti­bacterial, anti­tubercular, anti­viral and anti­tumor activity (Beraldo & Gambino, 2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.], Casini et al., 2008[Casini, C., Hartinger, C., Gabbiani, C., Mini, C., Dyson, P., Keppler, B. & Messori, L. (2008). J. Inorg. Biochem. 102, 564-575.], Khanye et al., 2010[Khanye, S. D., Smith, G. S., Lategan, C., Smith, P. J., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). J. Inorg. Biochem. 104, 1079-1083.]). The study of gold compounds with thio­semicarbazones has great importance: the literature reports that some compounds of this type have been shown to exhibit biological activity and have potential applications (Casini et al., 2008[Casini, C., Hartinger, C., Gabbiani, C., Mini, C., Dyson, P., Keppler, B. & Messori, L. (2008). J. Inorg. Biochem. 102, 564-575.], Lessa et al., 2011[Lessa, J. A., Guerra, J. C., de Miranda, L. F., Romeiro, C. F. D., Da Silva, J. G., Mendes, I. C., Speziali, N. L., Souza-Fagundes, E. M. & Beraldo, H. (2011). J. Inorg. Biochem. 105, 1729-1739.]).

[Scheme 1]

2. Structural commentary

In the title complex (Fig. 1[link]), the di-2-pyridyl ketone phenyl­thio­semicarbazone ligand is protonated at the pyridine (py) nitro­gen and only the sulfur donor atom is used to bond to the central metal ion. The thio­semicarbazone adopts the E conformation in relation to the C6=N3 and N4—C12 bonds.

[Figure 1]
Figure 1
Perspective view of [AuCl(C18H16N5S)]Cl·1.5H2O with 30% probability ellipsoids and atom labeling.

The crystal structure data confirm reduction of gold(III) of the starting material [HPy][AuCl4] during the synthesis. Two solvent water mol­ecules and an non-coordinating chloride ion complete the structural assembly and are hydrogen bonded to the cationic complex.

The gold(I) atom displays the expected linear geometry, with a Cl—Au—S coordination angle of 174.23 (5)°, close to the ideal angle of 180° expected for sp hybridization of the metal.

The C12—S1 bond length reported for di-2-pyridyl ketone phenyl­thio­semicarbazone is 1.676 (2) Å and it is lengthened to 1.713 (4) Å on coordination to gold; this is typical of the ketone form with a concomitant shortening of the N3—N4 bond (Suni et al., 2006[Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Spectrochim. Acta Part A, 63, 174-181.]).

An intra­molecular N4—H4A⋯N2 hydrogen bond (Table 1[link]) is observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯Cl2 0.86 2.46 3.246 (4) 153
N4—H4A⋯N2 0.86 1.97 2.629 (5) 133
N1—H1A⋯Cl2 0.80 (4) 2.26 (4) 2.989 (4) 150 (4)
O1—H1W1⋯Cl1i 0.80 (2) 2.70 (5) 3.353 (4) 140 (6)
O1—H1W2⋯Cl2ii 0.81 (2) 2.39 (2) 3.206 (4) 177 (6)
O2—H2W2⋯O1 0.82 (2) 2.06 (3) 2.855 (5) 163 (7)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x, -y+1, z-{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, the chloride ion is linked to the complex mol­ecule by N—H⋯Cl hydrogen bonds. The mol­ecular structure is also stabilized by inter­molecular O—H⋯Cl and O—H⋯O hydrogen bonding involving the water mol­ecules. Therefore, upon protonation of the ligand, hydrogen-bond formation with the chloride ion results in a stabilization of the conformation of the cationic gold complex, and hydrogen bonding plays an important role in the crystallization of the compound (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
Perspective view of the compound showing the components connected by N—H⋯Cl and N—H⋯N hydrogen bonds (dashed lines), viewed along the c axis. Solvent water mol­ecules have been omitted for clarity.

4. Related studies

For the preparation of coordination compounds of thio­memicarbazones with gold, see: Castiñeiras et al. (2012[Castiñeiras, A., Fernández-Hermida, N., Fernández-Rodríguez, R. & García-Santos, I. (2012). Cryst. Growth Des. 12, 1432-1442.]); Khanye et al. (2010[Khanye, S. D., Smith, G. S., Lategan, C., Smith, P. J., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). J. Inorg. Biochem. 104, 1079-1083.]); Lessa et al. (2011[Lessa, J. A., Guerra, J. C., de Miranda, L. F., Romeiro, C. F. D., Da Silva, J. G., Mendes, I. C., Speziali, N. L., Souza-Fagundes, E. M. & Beraldo, H. (2011). J. Inorg. Biochem. 105, 1729-1739.]); Sreekanth et al. (2004[Sreekanth, A., Fun, H. K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250-1253.]). For the spectroscopic (FT–IR) properties of thio­semi­carbazones and the crystal structure of thio­semi­carbazones, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Duan et al. (1996[Duan, C. Y., Wu, B. M. & Mak, T. C. W. (1996). J. Chem. Soc. Dalton Trans. pp. 3485-3490.]); Pereiras-Gabián et al. (2004[Pereiras-Gabián, G., Vázquez-López, E. M. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1665-1670.]); Suni et al. (2006[Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Spectrochim. Acta Part A, 63, 174-181.]). For the crystal structures of di-2-pyridyl ketone phenyl­thio­semicarbazone and coordination compounds with this thio­semicarbazone, see: Bernhardt et al. (2009[Bernhardt, P. V., Sharpe, P. C., Islam, M., Lovejoy, D. B., Kalinowski, D. S. & Richardson, D. S. (2009). J. Med. Chem. 52, 407-415.]); Philip et al. (2005[Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2005). Polyhedron, 24, 1133-1142.]); Suni et al. (2006[Suni, V., Kurup, M. R. P. & Nethaji, M. (2006). Spectrochim. Acta Part A, 63, 174-181.], 2007[Suni, V., Kurup, M. R. P. & Nethaji, M. (2007). Polyhedron, 26, 3097-3102.]). For structure–activity studies of thio­semicarbazones, see: Bernhardt et al. (2009[Bernhardt, P. V., Sharpe, P. C., Islam, M., Lovejoy, D. B., Kalinowski, D. S. & Richardson, D. S. (2009). J. Med. Chem. 52, 407-415.]); Casini et al. (2008[Casini, C., Hartinger, C., Gabbiani, C., Mini, C., Dyson, P., Keppler, B. & Messori, L. (2008). J. Inorg. Biochem. 102, 564-575.]); Duan et al. (1996[Duan, C. Y., Wu, B. M. & Mak, T. C. W. (1996). J. Chem. Soc. Dalton Trans. pp. 3485-3490.]).

5. Synthesis and crystallization

Di-2-pyridyl ketone phenyl­thio­semicarbazone (1 mmol) was dissolved in about 5 ml of CH3CN and added to a solution of [HPy][AuCl4] (1 mmol) in 5 ml of CH3CN. A clear yellow solution was formed after heating the mixture to reflux for three h. Orange crystals deposited upon slow cooling of the solvent. Yield: 69%, m.p. 491 K. Elemental analysis, found: C, 33.71; H, 3.15; N, 10.04%; calculated for C36H38Au2Cl4N10O3S2: C, 33.87; H, 3.16; N, 10.97%. IR (νmax cm−1): 3421 (O—H), 3281 (N—H), 2927 (N—H+), 1694 (C=N), 1150 (N—N), 765 (C=S).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located in difference electron-density maps and their positional and isotropic displacement parameters were refined. Hydrogen atoms of water mol­ecules were refined with distance restraints, with an H⋯H separation of 1.38 (2) Å, the H—O distance restrained to 0.82 (2) Å and with Uiso = 1.5Ueq(O). Other H atoms were included in the refinement at calculated positions and treated as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [AuCl(C18H16N5S)]Cl·1.5H2O
Mr 629.31
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 31.0939 (7), 12.2704 (3), 11.8851 (3)
β (°) 110.174 (1)
V3) 4256.38 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 7.28
Crystal size (mm) 0.24 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker CCD SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.274, 0.429
No. of measured, independent and observed [I > 2σ(I)] reflections 15424, 4345, 3220
Rint 0.038
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 0.97
No. of reflections 4345
No. of parameters 271
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.97, −0.78
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), DIAMOND (Crystal Impact, 2014[Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Chlorido(2-{[2-(phenylcarbamothioyl)hydrazin-1-ylidene](pyridin-2-yl)methyl}pyridin-1-ium)gold(I) chloride sesquihydrate top
Crystal data top
[AuCl(C18H16N5S)]Cl·1.5H2ODx = 1.964 Mg m3
Mr = 629.31Melting point: 491 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.0939 (7) ÅCell parameters from 4811 reflections
b = 12.2704 (3) Åθ = 2.7–25.2°
c = 11.8851 (3) ŵ = 7.28 mm1
β = 110.174 (1)°T = 296 K
V = 4256.38 (18) Å3Block, red
Z = 80.24 × 0.22 × 0.14 mm
F(000) = 2424
Data collection top
Bruker CCD SMART APEXII
diffractometer
3220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
phi & ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3738
Tmin = 0.274, Tmax = 0.429k = 1415
15424 measured reflectionsl = 1414
4345 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
4345 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.97 e Å3
3 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.25092 (2)0.60284 (2)0.04569 (2)0.04892 (9)
S10.32514 (5)0.61867 (10)0.16165 (13)0.0581 (4)
Cl10.17486 (5)0.57863 (11)0.05533 (12)0.0610 (4)
C120.34886 (15)0.4928 (3)0.1607 (4)0.0388 (10)
N30.35315 (13)0.3345 (3)0.0578 (3)0.0370 (9)
N50.38617 (12)0.4607 (3)0.2458 (3)0.0424 (9)
H5A0.39530.39540.24030.051*
N40.32925 (13)0.4234 (3)0.0690 (3)0.0401 (9)
H4A0.30220.43550.01900.048*
C130.41343 (15)0.5235 (4)0.3473 (4)0.0410 (11)
C50.36773 (15)0.1810 (3)0.0344 (4)0.0355 (10)
C60.33459 (15)0.2653 (3)0.0268 (3)0.0342 (10)
C70.28703 (16)0.2612 (3)0.1109 (3)0.0376 (10)
C40.36887 (17)0.1356 (3)0.1392 (4)0.0431 (11)
H40.34690.15490.21210.052*
C10.43375 (18)0.0813 (3)0.0737 (5)0.0479 (12)
H10.45600.06420.14700.057*
C180.43406 (17)0.6200 (4)0.3336 (5)0.0472 (12)
H180.42920.64900.25790.057*
C150.45009 (18)0.5339 (4)0.5600 (4)0.0560 (14)
H150.45570.50490.63600.067*
C160.47070 (18)0.6300 (4)0.5471 (5)0.0585 (14)
H160.49030.66570.61420.070*
C140.42124 (16)0.4803 (4)0.4608 (4)0.0481 (12)
H140.40710.41580.46970.058*
C170.46232 (17)0.6725 (4)0.4362 (5)0.0553 (13)
H170.47580.73840.42860.066*
C30.40278 (18)0.0613 (4)0.1356 (4)0.0492 (12)
H30.40370.03040.20620.059*
C20.43484 (18)0.0335 (4)0.0286 (5)0.0536 (13)
H20.45730.01770.02540.064*
N20.26250 (14)0.3552 (3)0.1220 (3)0.0471 (10)
N10.40084 (13)0.1526 (3)0.0690 (3)0.0393 (9)
C90.22292 (19)0.1715 (5)0.2508 (5)0.0588 (14)
H90.20950.10950.29360.071*
C80.26759 (17)0.1682 (4)0.1724 (4)0.0486 (12)
H80.28440.10380.16120.058*
C110.21949 (19)0.3548 (5)0.1966 (4)0.0586 (14)
H110.20240.41810.20300.070*
C100.19855 (19)0.2663 (5)0.2653 (4)0.0592 (14)
H100.16880.27100.31970.071*
Cl20.42609 (4)0.21756 (9)0.32609 (9)0.0506 (3)
O10.42303 (14)0.7870 (4)0.0930 (3)0.0663 (10)
H1W10.3956 (7)0.787 (6)0.069 (6)0.099*
H1W20.424 (2)0.783 (5)0.025 (3)0.099*
O20.50000.9028 (5)0.25000.087 (2)
H2W20.4803 (19)0.859 (4)0.213 (6)0.130*
H1A0.3997 (14)0.186 (3)0.126 (4)0.033 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.04494 (14)0.05060 (13)0.04726 (13)0.01206 (9)0.01084 (10)0.00251 (9)
S10.0458 (8)0.0439 (7)0.0735 (9)0.0109 (6)0.0064 (7)0.0198 (6)
Cl10.0451 (8)0.0752 (9)0.0550 (8)0.0134 (6)0.0075 (7)0.0022 (6)
C120.042 (3)0.032 (2)0.043 (2)0.001 (2)0.014 (2)0.005 (2)
N30.041 (2)0.033 (2)0.0358 (19)0.0044 (16)0.0122 (18)0.0029 (16)
N50.043 (3)0.0311 (19)0.047 (2)0.0033 (16)0.008 (2)0.0065 (17)
N40.033 (2)0.037 (2)0.046 (2)0.0049 (16)0.0089 (19)0.0062 (17)
C130.036 (3)0.038 (2)0.047 (3)0.004 (2)0.012 (2)0.004 (2)
C50.040 (3)0.030 (2)0.036 (2)0.0010 (19)0.012 (2)0.0018 (19)
C60.038 (3)0.033 (2)0.033 (2)0.0017 (18)0.013 (2)0.0008 (19)
C70.041 (3)0.042 (2)0.032 (2)0.000 (2)0.016 (2)0.002 (2)
C40.052 (3)0.040 (2)0.037 (2)0.005 (2)0.015 (2)0.002 (2)
C10.050 (3)0.040 (3)0.047 (3)0.008 (2)0.007 (3)0.003 (2)
C180.046 (3)0.043 (3)0.050 (3)0.004 (2)0.014 (3)0.003 (2)
C150.056 (4)0.066 (3)0.044 (3)0.002 (3)0.015 (3)0.008 (3)
C160.040 (3)0.066 (3)0.060 (3)0.000 (3)0.006 (3)0.023 (3)
C140.045 (3)0.050 (3)0.052 (3)0.000 (2)0.019 (3)0.001 (2)
C170.046 (3)0.041 (3)0.075 (4)0.005 (2)0.016 (3)0.012 (3)
C30.056 (3)0.043 (3)0.050 (3)0.003 (2)0.020 (3)0.012 (2)
C20.053 (3)0.044 (3)0.069 (4)0.011 (2)0.027 (3)0.003 (3)
N20.043 (3)0.054 (2)0.040 (2)0.0091 (19)0.008 (2)0.0055 (18)
N10.044 (3)0.033 (2)0.037 (2)0.0027 (17)0.010 (2)0.0038 (18)
C90.045 (3)0.073 (4)0.054 (3)0.024 (3)0.012 (3)0.006 (3)
C80.045 (3)0.050 (3)0.051 (3)0.006 (2)0.016 (3)0.001 (2)
C110.048 (4)0.076 (4)0.047 (3)0.013 (3)0.009 (3)0.008 (3)
C100.041 (3)0.088 (4)0.044 (3)0.006 (3)0.009 (3)0.001 (3)
Cl20.0610 (9)0.0450 (6)0.0386 (6)0.0022 (6)0.0080 (6)0.0000 (5)
O10.065 (3)0.079 (2)0.051 (2)0.002 (2)0.015 (2)0.003 (2)
O20.077 (5)0.064 (4)0.092 (5)0.0000.004 (4)0.000
Geometric parameters (Å, º) top
Au1—S12.2515 (14)C18—H180.9300
Au1—Cl12.2725 (14)C15—C161.376 (7)
S1—C121.713 (4)C15—C141.377 (6)
C12—N51.309 (5)C15—H150.9300
C12—N41.351 (5)C16—C171.357 (7)
N3—C61.290 (5)C16—H160.9300
N3—N41.353 (5)C14—H140.9300
N5—C131.436 (5)C17—H170.9300
N5—H5A0.8600C3—C21.362 (7)
N4—H4A0.8600C3—H30.9300
C13—C181.383 (6)C2—H20.9300
C13—C141.391 (6)N2—C111.325 (6)
C5—N11.349 (5)N1—H1A0.80 (4)
C5—C41.375 (6)C9—C101.366 (7)
C5—C61.485 (6)C9—C81.381 (7)
C6—C71.473 (6)C9—H90.9300
C7—N21.364 (5)C8—H80.9300
C7—C81.378 (6)C11—C101.380 (7)
C4—C31.384 (6)C11—H110.9300
C4—H40.9300C10—H100.9300
C1—N11.332 (6)O1—H1W10.80 (2)
C1—C21.361 (7)O1—H1W20.813 (19)
C1—H10.9300O2—H2W20.82 (2)
C18—C171.390 (6)
S1—Au1—Cl1174.23 (5)C16—C15—H15119.9
C12—S1—Au1105.72 (16)C14—C15—H15119.9
N5—C12—N4117.8 (4)C17—C16—C15119.8 (5)
N5—C12—S1122.3 (3)C17—C16—H16120.1
N4—C12—S1119.8 (3)C15—C16—H16120.1
C6—N3—N4119.6 (4)C15—C14—C13119.5 (5)
C12—N5—C13126.6 (4)C15—C14—H14120.2
C12—N5—H5A116.7C13—C14—H14120.2
C13—N5—H5A116.7C16—C17—C18121.7 (5)
C12—N4—N3118.5 (4)C16—C17—H17119.2
C12—N4—H4A120.7C18—C17—H17119.2
N3—N4—H4A120.7C2—C3—C4119.9 (5)
C18—C13—C14120.5 (4)C2—C3—H3120.1
C18—C13—N5121.6 (4)C4—C3—H3120.1
C14—C13—N5117.7 (4)C1—C2—C3119.4 (5)
N1—C5—C4118.1 (4)C1—C2—H2120.3
N1—C5—C6116.9 (4)C3—C2—H2120.3
C4—C5—C6124.9 (4)C11—N2—C7117.6 (4)
N3—C6—C7128.7 (4)C1—N1—C5122.8 (4)
N3—C6—C5111.9 (4)C1—N1—H1A124 (3)
C7—C6—C5119.4 (4)C5—N1—H1A113 (3)
N2—C7—C8121.4 (4)C10—C9—C8119.7 (5)
N2—C7—C6115.7 (4)C10—C9—H9120.2
C8—C7—C6122.8 (4)C8—C9—H9120.2
C5—C4—C3119.7 (4)C7—C8—C9119.2 (5)
C5—C4—H4120.1C7—C8—H8120.4
C3—C4—H4120.1C9—C8—H8120.4
N1—C1—C2120.0 (5)N2—C11—C10124.1 (5)
N1—C1—H1120.0N2—C11—H11118.0
C2—C1—H1120.0C10—C11—H11118.0
C13—C18—C17118.2 (5)C9—C10—C11117.9 (5)
C13—C18—H18120.9C9—C10—H10121.1
C17—C18—H18120.9C11—C10—H10121.1
C16—C15—C14120.3 (5)H1W1—O1—H1W292 (6)
Au1—S1—C12—N5157.3 (4)N5—C13—C18—C17175.9 (4)
Au1—S1—C12—N423.6 (4)C14—C15—C16—C170.4 (8)
N4—C12—N5—C13176.7 (4)C16—C15—C14—C130.7 (8)
S1—C12—N5—C132.5 (7)C18—C13—C14—C150.6 (7)
N5—C12—N4—N312.1 (6)N5—C13—C14—C15175.0 (4)
S1—C12—N4—N3167.0 (3)C15—C16—C17—C181.6 (8)
C6—N3—N4—C12177.8 (4)C13—C18—C17—C161.6 (8)
C12—N5—C13—C1860.4 (7)C5—C4—C3—C20.1 (8)
C12—N5—C13—C14124.1 (5)N1—C1—C2—C31.7 (8)
N4—N3—C6—C77.3 (6)C4—C3—C2—C11.5 (8)
N4—N3—C6—C5173.0 (3)C8—C7—N2—C111.7 (6)
N1—C5—C6—N331.7 (5)C6—C7—N2—C11179.8 (4)
C4—C5—C6—N3143.8 (4)C2—C1—N1—C50.2 (7)
N1—C5—C6—C7148.1 (4)C4—C5—N1—C11.4 (7)
C4—C5—C6—C736.4 (6)C6—C5—N1—C1177.2 (4)
N3—C6—C7—N218.1 (6)N2—C7—C8—C92.8 (7)
C5—C6—C7—N2162.1 (4)C6—C7—C8—C9179.2 (4)
N3—C6—C7—C8160.0 (4)C10—C9—C8—C70.7 (7)
C5—C6—C7—C819.7 (6)C7—N2—C11—C101.6 (7)
N1—C5—C4—C31.5 (7)C8—C9—C10—C112.3 (8)
C6—C5—C4—C3176.9 (4)N2—C11—C10—C93.6 (8)
C14—C13—C18—C170.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl20.862.463.246 (4)153
N4—H4A···N20.861.972.629 (5)133
N1—H1A···Cl20.80 (4)2.26 (4)2.989 (4)150 (4)
O1—H1W1···Cl1i0.80 (2)2.70 (5)3.353 (4)140 (6)
O1—H1W2···Cl2ii0.81 (2)2.39 (2)3.206 (4)177 (6)
O2—H2W2···O10.82 (2)2.06 (3)2.855 (5)163 (7)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z1/2.
 

Acknowledgements

This work was supported by CNPq, FAPDF, Finatec and, DDP-UnB.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernhardt, P. V., Sharpe, P. C., Islam, M., Lovejoy, D. B., Kalinowski, D. S. & Richardson, D. S. (2009). J. Med. Chem. 52, 407–415.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasini, C., Hartinger, C., Gabbiani, C., Mini, C., Dyson, P., Keppler, B. & Messori, L. (2008). J. Inorg. Biochem. 102, 564–575.  CrossRef PubMed CAS Google Scholar
First citationCastiñeiras, A., Fernández-Hermida, N., Fernández-Rodríguez, R. & García-Santos, I. (2012). Cryst. Growth Des. 12, 1432–1442.  Google Scholar
First citationCrystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuan, C. Y., Wu, B. M. & Mak, T. C. W. (1996). J. Chem. Soc. Dalton Trans. pp. 3485–3490.  CSD CrossRef Web of Science Google Scholar
First citationKhanye, S. D., Smith, G. S., Lategan, C., Smith, P. J., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). J. Inorg. Biochem. 104, 1079–1083.  CrossRef CAS PubMed Google Scholar
First citationLessa, J. A., Guerra, J. C., de Miranda, L. F., Romeiro, C. F. D., Da Silva, J. G., Mendes, I. C., Speziali, N. L., Souza-Fagundes, E. M. & Beraldo, H. (2011). J. Inorg. Biochem. 105, 1729–1739.  CSD CrossRef CAS PubMed Google Scholar
First citationPereiras-Gabián, G., Vázquez-López, E. M. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1665–1670.  Google Scholar
First citationPhilip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2005). Polyhedron, 24, 1133–1142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Fun, H. K. & Kurup, M. R. P. (2004). Inorg. Chem. Commun. 7, 1250–1253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuni, V., Kurup, M. R. P. & Nethaji, M. (2007). Polyhedron, 26, 3097–3102.  CSD CrossRef CAS Google Scholar
First citationSuni, V., Kurup, M. R. P. & Nethaji, M. (2006). Spectrochim. Acta Part A, 63, 174–181.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds