metal-organic compounds
cis,fac-{N,N-bis[(pyridin-2-yl)methyl]methylamine-κ3N,N′,N′′}dichlorido(dimethyl sulfoxide-κS)ruthenium(II)
ofaUniversity of Wyoming, 1000 E University Ave, Dept. 3838, Laramie, WY 82071, USA
*Correspondence e-mail: ehulley@uwyo.edu
The reaction of dichloridotetrakis(dimethyl sulfoxide)ruthenium(II) with N,N-bis[(pyridin-2-yl)methyl]methylamine affords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The contains a well-ordered complex molecule. The N,N-bis[(pyridin-2-yl)methyl]methylamine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d6 RuII is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octahedral coordination geometry of the RuII cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule.
Keywords: crystal structure; ruthenium(II) complex; S-bound dimethyl sulfoxide; distorted octahedral coordination geometry.
CCDC reference: 1417672
1. Related literature
For the synthesis of bpma, see: Astner et al. (2008). For the synthesis of RuCl2(dmso)4 (dmso is dimethyl sulfoxide), see: Evans et al. (1973). Ruthenium(II) complexes of pyridine-based ligands which also contain a dmso ligand act as catalytic initiators (Bressan & Morvillo, 1992; Carvalho et al., 2014; Ferrer et al., 2013). The ambidentate dmso ligand exhibits preferential binding through its S atom with low-spin d6 RuII cations and through its O atom with RuIII cations (Roeser et al., 2013; Smith et al., 2000). Ruthenium(II) complexes containing the labile dmso and chloride ligands are particularly attractive precursors for the synthesis of specifically designed catalysts. For the synthesis and structures of such complexes, see: Fischer et al. (2009); Mola et al. (2007). For complexes containing facially coordinated tridentate ligands, see: Dakkach et al. (2013); Fischer et al. (2009); Mishra et al. (2009); Matsuya et al. (2009); Mola et al. (2006, 2007, 2009); Rodriguez et al. (2001); Sala et al. (2008); Serrano et al. (2006); Shimizu et al. (2008); Suzuki et al. (2014)
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1417672
https://doi.org/10.1107/S2056989015014875/zq2232sup1.cif
contains datablocks New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015014875/zq2232Isup2.hkl
Structural commentary. DOI: https://doi.org/10.1107/S2056989015014875/zq2232sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989015014875/zq2232sup3.pdf
Ruthenium(II) complexes of pyridine-based ligands which also contain a dimethylsulfoxide (dmso) ligand act as catalytic initiators (Bressan & Morvillo, 1992; Carvalho et al., 2014; Ferrer et al., 2013). The ambidentate dmso appears to show preferential binding through its S atom with RuII centers, and its O atom with RuIII centers (Roeser et al., 2013; Smith et al., 2000). Ruthenium(II) complexes containing the labile dmso and chloride ligands are particularly attractive precursors for the synthesis of specifically-designed catalysts. Our research project is aimed at the catalytic reduction of stable anions such as perchlorates using RuII precatalysts. Multidentate ligands are expected to stabilize ruthenium(IV)–oxido intermediates suggested as intermediates in the catalytic oxidation of a variety of organic substrates in the presence of hypochlorite, perchlorate and other oxidizers (Bressan & Morvillo 1992). Here we report the X-ray crystal structural determination of a potential precursor ruthenium complex. The title compound, RuCl2(bpma)(dmso), is synthesized from the reaction of RuCl2(dmso)4 (Evans et al., 1973 ) with N,N-bis(pyridin-2-ylmethyl)methylamine (bpma) (Astner et al., 2008).
The
contains a well-ordered RuCl2(bpma)(dmso) molecule. The metal center is in a distorted octahedral geometry with the tridentate bpma ligand binding through its two pyridyl N atoms and aliphatic N atom in a facial mode, as shown in Fig. 1. The two chloride ligands occupy two adjacent sites, and the dmso ligand is present trans to one of the pyridyl N atoms. The tridentate ligand is folded to achieve facial coordination, and the extent of folding is reflected in the small dihedral angle of 64.55 (8)° between the mean planes passing through the two pyridine rings. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° are illustrative of the distorted octahedral geometry of the metal center. The complex can be represented as the cis,fac-isomer to indicate the cis-geometry of the dmso ligand to the aliphatic N atom and the facial coordination mode of bpma. A literature survey of RuII complexes of bpma and those of closely related bis(pyridin-2-ylmethyl)alkylamine ligands reveals that an overwhelming majority of the complexes contain facially coordinated tridentate ligands (Dakkach et al., 2013; Fischer et al., 2009; Mishra et al., 2009; Matsuya et al., 2009; Mola et al., 2006, 2007, 2009; Rodriguez et al., 2001; Sala et al., 2008; Serrano et al., 2006; Shimizu et al., 2008; Suzuki et al., 2014). cis,fac-isomer is the thermodynamically favored (Mola et al., 2007), and therefore the more frequent occurrence of this isomer is unsurprising. However, Shimuzu et al. suggest that the binding mode of the tridentate ligand depends on the nature of the other ligands with the hydroxo and methoxo ligands favoring meridional coordination mode for the tridentate ligands (Shimizu et al., 2008). The Ru—Npy distances in the present complex are unequal as they have either a chloride or dmso ligands in their respective trans positions. The Ru—dmso bond is unexceptional at 2.2207 (6) Å, and comparable to those found in cis,fac-RuCl2(bpma)(dmso) and trans,mer-RuCl2(bpea)(dmso) (Mola et al., 2007).Ruthenium(II) complexes of pyridine-based ligands which also contain a dimethylsulfoxide (dmso) ligand act as catalytic initiators (Bressan & Morvillo, 1992; Carvalho et al., 2014; Ferrer et al., 2013). The ambidentate dmso appears to show preferential binding through its S atom with RuII centers, and its O atom with RuIII centers (Roeser et al., 2013; Smith et al., 2000). Ruthenium(II) complexes containing the labile dmso and chloride ligands are particularly attractive precursors for the synthesis of specifically-designed catalysts. Our research project is aimed at the catalytic reduction of stable anions such as perchlorates using RuII precatalysts. Multidentate ligands are expected to stabilize ruthenium(IV)–oxido intermediates suggested as intermediates in the catalytic oxidation of a variety of organic substrates in the presence of hypochlorite, perchlorate and other oxidizers (Bressan & Morvillo 1992). Here we report the X-ray crystal structural determination of a potential precursor ruthenium complex. The title compound, RuCl2(bpma)(dmso), is synthesized from the reaction of RuCl2(dmso)4 (Evans et al., 1973 ) with N,N-bis(pyridin-2-ylmethyl)methylamine (bpma) (Astner et al., 2008).
The
contains a well-ordered RuCl2(bpma)(dmso) molecule. The metal center is in a distorted octahedral geometry with the tridentate bpma ligand binding through its two pyridyl N atoms and aliphatic N atom in a facial mode, as shown in Fig. 1. The two chloride ligands occupy two adjacent sites, and the dmso ligand is present trans to one of the pyridyl N atoms. The tridentate ligand is folded to achieve facial coordination, and the extent of folding is reflected in the small dihedral angle of 64.55 (8)° between the mean planes passing through the two pyridine rings. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° are illustrative of the distorted octahedral geometry of the metal center. The complex can be represented as the cis,fac-isomer to indicate the cis-geometry of the dmso ligand to the aliphatic N atom and the facial coordination mode of bpma. A literature survey of RuII complexes of bpma and those of closely related bis(pyridin-2-ylmethyl)alkylamine ligands reveals that an overwhelming majority of the complexes contain facially coordinated tridentate ligands (Dakkach et al., 2013; Fischer et al., 2009; Mishra et al., 2009; Matsuya et al., 2009; Mola et al., 2006, 2007, 2009; Rodriguez et al., 2001; Sala et al., 2008; Serrano et al., 2006; Shimizu et al., 2008; Suzuki et al., 2014). cis,fac-isomer is the thermodynamically favored (Mola et al., 2007), and therefore the more frequent occurrence of this isomer is unsurprising. However, Shimuzu et al. suggest that the binding mode of the tridentate ligand depends on the nature of the other ligands with the hydroxo and methoxo ligands favoring meridional coordination mode for the tridentate ligands (Shimizu et al., 2008). The Ru—Npy distances in the present complex are unequal as they have either a chloride or dmso ligands in their respective trans positions. The Ru—dmso bond is unexceptional at 2.2207 (6) Å, and comparable to those found in cis,fac-RuCl2(bpma)(dmso) and trans,mer-RuCl2(bpea)(dmso) (Mola et al., 2007).For the synthesis of bpma, see: Astner et al. (2008). For the synthesis of RuCl2(dmso)4 (dmso is dimethyl sulfoxide), see: Evans et al. (1973). Ruthenium(II) complexes of pyridine-based ligands which also contain a dmso ligand act as catalytic initiators (Bressan & Morvillo, 1992; Carvalho et al., 2014; Ferrer et al., 2013). The ambidentate dmso ligand exhibits preferential binding through its S atom with low-spin d6 RuII centers, and through its O atom with RuIII centers (Roeser et al., 2013; Smith et al., 2000). Ruthenium(II) complexes containing the labile dmso and chloride ligands are particularly attractive precursors for the synthesis of specifically designed catalysts. For the synthesis and structures of such complexes, see: Fischer et al. (2009); Mola et al. (2007). For complexes containing facially coordinated tridentate ligands, see: Dakkach et al. (2013); Fischer et al. (2009); Mishra et al. (2009); Matsuya et al. (2009); Mola et al. (2006, 2007, 2009); Rodriguez et al. (2001); Sala et al. (2008); Serrano et al. (2006); Shimizu et al. (2008); Suzuki et al. (2014)
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of RuCl2(dpma)(dmso). H atoms have been omitted and displacement parameters are drawn at the 50% probability level. |
[RuCl2(C13H15N3)(C2H6OS)] | F(000) = 1872 |
Mr = 463.38 | Dx = 1.692 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.6117 (3) Å | Cell parameters from 4846 reflections |
b = 9.3345 (2) Å | θ = 2.6–29.0° |
c = 27.3451 (7) Å | µ = 1.28 mm−1 |
β = 102.734 (1)° | T = 150 K |
V = 3637.94 (14) Å3 | Rectangular, yellow |
Z = 8 | 0.21 × 0.17 × 0.11 mm |
Bruker APEXII CCD diffractometer | 5265 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.068 |
Absorption correction: multi-scan (SAINT; Bruker, 2009) | θmax = 33.7°, θmin = 2.6° |
Tmin = 0.647, Tmax = 0.747 | h = −19→22 |
33234 measured reflections | k = −14→14 |
7273 independent reflections | l = −42→42 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | All H-atom parameters refined |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0338P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
7273 reflections | Δρmax = 1.13 e Å−3 |
292 parameters | Δρmin = −0.92 e Å−3 |
[RuCl2(C13H15N3)(C2H6OS)] | V = 3637.94 (14) Å3 |
Mr = 463.38 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.6117 (3) Å | µ = 1.28 mm−1 |
b = 9.3345 (2) Å | T = 150 K |
c = 27.3451 (7) Å | 0.21 × 0.17 × 0.11 mm |
β = 102.734 (1)° |
Bruker APEXII CCD diffractometer | 7273 independent reflections |
Absorption correction: multi-scan (SAINT; Bruker, 2009) | 5265 reflections with I > 2σ(I) |
Tmin = 0.647, Tmax = 0.747 | Rint = 0.068 |
33234 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.085 | All H-atom parameters refined |
S = 1.01 | Δρmax = 1.13 e Å−3 |
7273 reflections | Δρmin = −0.92 e Å−3 |
292 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.67345 (2) | 0.51144 (2) | 0.37644 (2) | 0.01639 (5) | |
Cl1 | 0.54447 (4) | 0.65278 (5) | 0.33000 (2) | 0.02026 (11) | |
Cl2 | 0.77049 (4) | 0.72523 (6) | 0.39465 (2) | 0.02641 (13) | |
N1 | 0.78992 (14) | 0.3807 (2) | 0.40882 (7) | 0.0224 (4) | |
N2 | 0.72321 (14) | 0.47141 (18) | 0.31136 (7) | 0.0169 (3) | |
N3 | 0.61032 (14) | 0.31637 (19) | 0.35845 (7) | 0.0195 (4) | |
S1 | 0.61157 (5) | 0.53018 (6) | 0.44340 (2) | 0.02421 (13) | |
O1 | 0.64939 (15) | 0.4440 (2) | 0.48897 (7) | 0.0394 (5) | |
C14 | 0.4890 (2) | 0.4893 (3) | 0.42722 (10) | 0.0321 (6) | |
H14A | 0.459 (3) | 0.515 (3) | 0.4517 (13) | 0.045 (10)* | |
H14B | 0.461 (2) | 0.541 (3) | 0.3971 (12) | 0.038 (8)* | |
H14C | 0.485 (2) | 0.388 (4) | 0.4213 (11) | 0.042 (9)* | |
C15 | 0.6052 (2) | 0.7116 (3) | 0.46376 (11) | 0.0346 (6) | |
H15A | 0.571 (2) | 0.713 (3) | 0.4902 (11) | 0.037 (8)* | |
H15B | 0.673 (3) | 0.748 (4) | 0.4742 (12) | 0.063 (11)* | |
H15C | 0.576 (2) | 0.775 (3) | 0.4363 (10) | 0.033 (8)* | |
C1 | 0.8474 (2) | 0.4251 (3) | 0.45892 (9) | 0.0308 (6) | |
H1A | 0.8987 (18) | 0.356 (3) | 0.4712 (9) | 0.018 (6)* | |
H1B | 0.873 (2) | 0.523 (3) | 0.4570 (11) | 0.033 (8)* | |
H1C | 0.805 (2) | 0.427 (3) | 0.4826 (10) | 0.028 (7)* | |
C2 | 0.85411 (17) | 0.3835 (3) | 0.37313 (8) | 0.0235 (5) | |
H2A | 0.8994 (19) | 0.303 (3) | 0.3795 (9) | 0.027 (7)* | |
H2B | 0.891 (2) | 0.477 (3) | 0.3815 (11) | 0.030 (8)* | |
C3 | 0.80268 (16) | 0.3934 (2) | 0.31945 (8) | 0.0181 (4) | |
C4 | 0.83608 (18) | 0.3340 (2) | 0.28026 (9) | 0.0221 (5) | |
H4 | 0.892 (2) | 0.283 (3) | 0.2870 (9) | 0.025 (7)* | |
C5 | 0.78772 (18) | 0.3565 (2) | 0.23159 (9) | 0.0230 (5) | |
H5 | 0.8051 (18) | 0.312 (3) | 0.2059 (9) | 0.022 (7)* | |
C6 | 0.70671 (17) | 0.4370 (3) | 0.22333 (8) | 0.0220 (5) | |
H6 | 0.6718 (19) | 0.455 (3) | 0.1914 (10) | 0.024 (7)* | |
C7 | 0.67585 (17) | 0.4919 (2) | 0.26393 (8) | 0.0189 (4) | |
H7 | 0.617 (2) | 0.545 (3) | 0.2603 (10) | 0.027 (7)* | |
C8 | 0.7522 (2) | 0.2349 (3) | 0.41426 (10) | 0.0293 (6) | |
H8A | 0.736 (2) | 0.230 (3) | 0.4470 (11) | 0.041 (9)* | |
H8B | 0.795 (2) | 0.167 (3) | 0.4131 (10) | 0.027 (7)* | |
C9 | 0.66441 (17) | 0.2018 (2) | 0.37632 (8) | 0.0231 (5) | |
C10 | 0.6356 (2) | 0.0633 (3) | 0.36206 (11) | 0.0315 (6) | |
H10 | 0.674 (2) | −0.012 (3) | 0.3745 (10) | 0.028 (8)* | |
C11 | 0.5508 (2) | 0.0411 (3) | 0.33028 (12) | 0.0355 (7) | |
H11 | 0.532 (2) | −0.043 (4) | 0.3154 (12) | 0.046 (9)* | |
C12 | 0.4947 (2) | 0.1582 (3) | 0.31229 (11) | 0.0318 (6) | |
H12 | 0.4356 (19) | 0.140 (3) | 0.2891 (10) | 0.024 (7)* | |
C13 | 0.52796 (18) | 0.2934 (3) | 0.32657 (9) | 0.0240 (5) | |
H13 | 0.499 (2) | 0.370 (3) | 0.3156 (10) | 0.029 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01879 (10) | 0.01715 (8) | 0.01358 (7) | 0.00499 (7) | 0.00432 (6) | 0.00194 (6) |
Cl1 | 0.0204 (3) | 0.0194 (2) | 0.0211 (2) | 0.0071 (2) | 0.0046 (2) | 0.00371 (18) |
Cl2 | 0.0289 (3) | 0.0227 (3) | 0.0249 (3) | −0.0001 (2) | 0.0002 (2) | −0.0007 (2) |
N1 | 0.0228 (11) | 0.0253 (9) | 0.0193 (8) | 0.0090 (8) | 0.0051 (7) | 0.0030 (7) |
N2 | 0.0187 (9) | 0.0165 (8) | 0.0160 (8) | 0.0026 (7) | 0.0049 (7) | 0.0007 (6) |
N3 | 0.0237 (10) | 0.0179 (8) | 0.0193 (8) | 0.0050 (7) | 0.0099 (7) | 0.0034 (7) |
S1 | 0.0300 (3) | 0.0280 (3) | 0.0163 (2) | 0.0123 (2) | 0.0088 (2) | 0.0041 (2) |
O1 | 0.0504 (13) | 0.0511 (12) | 0.0208 (8) | 0.0271 (10) | 0.0167 (8) | 0.0156 (8) |
C14 | 0.0352 (16) | 0.0393 (15) | 0.0273 (12) | 0.0084 (12) | 0.0185 (11) | 0.0049 (11) |
C15 | 0.0433 (18) | 0.0339 (14) | 0.0287 (13) | 0.0102 (13) | 0.0123 (13) | −0.0069 (11) |
C1 | 0.0302 (15) | 0.0411 (15) | 0.0178 (11) | 0.0101 (12) | −0.0017 (10) | 0.0010 (10) |
C2 | 0.0172 (12) | 0.0316 (12) | 0.0218 (10) | 0.0084 (10) | 0.0044 (9) | 0.0020 (9) |
C3 | 0.0181 (11) | 0.0184 (9) | 0.0179 (9) | 0.0012 (8) | 0.0038 (8) | 0.0018 (7) |
C4 | 0.0199 (12) | 0.0243 (11) | 0.0231 (10) | 0.0044 (9) | 0.0070 (9) | −0.0015 (8) |
C5 | 0.0240 (13) | 0.0254 (11) | 0.0217 (10) | 0.0001 (9) | 0.0093 (9) | −0.0050 (9) |
C6 | 0.0228 (12) | 0.0259 (11) | 0.0174 (10) | 0.0012 (9) | 0.0047 (9) | 0.0010 (8) |
C7 | 0.0193 (11) | 0.0217 (10) | 0.0156 (9) | 0.0013 (9) | 0.0038 (8) | 0.0004 (8) |
C8 | 0.0311 (15) | 0.0254 (11) | 0.0316 (13) | 0.0110 (11) | 0.0073 (11) | 0.0113 (10) |
C9 | 0.0269 (13) | 0.0197 (10) | 0.0251 (11) | 0.0058 (9) | 0.0113 (9) | 0.0058 (8) |
C10 | 0.0382 (16) | 0.0195 (11) | 0.0423 (15) | 0.0079 (11) | 0.0211 (13) | 0.0063 (10) |
C11 | 0.0410 (17) | 0.0200 (11) | 0.0512 (17) | −0.0061 (11) | 0.0224 (14) | −0.0047 (11) |
C12 | 0.0298 (15) | 0.0251 (12) | 0.0414 (15) | −0.0065 (11) | 0.0101 (12) | −0.0044 (10) |
C13 | 0.0236 (13) | 0.0223 (11) | 0.0276 (11) | 0.0025 (9) | 0.0087 (10) | 0.0021 (9) |
Ru1—N3 | 2.0515 (19) | C1—H1C | 0.99 (3) |
Ru1—N2 | 2.0989 (18) | C2—C3 | 1.497 (3) |
Ru1—N1 | 2.1224 (19) | C2—H2A | 0.99 (3) |
Ru1—S1 | 2.2207 (6) | C2—H2B | 1.02 (3) |
Ru1—Cl1 | 2.4187 (5) | C3—C4 | 1.387 (3) |
Ru1—Cl2 | 2.4352 (6) | C4—C5 | 1.378 (3) |
N1—C8 | 1.489 (3) | C4—H4 | 0.93 (3) |
N1—C2 | 1.495 (3) | C5—C6 | 1.378 (3) |
N1—C1 | 1.499 (3) | C5—H5 | 0.90 (2) |
N2—C7 | 1.342 (3) | C6—C7 | 1.385 (3) |
N2—C3 | 1.347 (3) | C6—H6 | 0.92 (3) |
N3—C13 | 1.339 (3) | C7—H7 | 0.97 (3) |
N3—C9 | 1.355 (3) | C8—C9 | 1.493 (4) |
S1—O1 | 1.4838 (18) | C8—H8A | 0.98 (3) |
S1—C14 | 1.788 (3) | C8—H8B | 0.89 (3) |
S1—C15 | 1.791 (3) | C9—C10 | 1.389 (3) |
C14—H14A | 0.91 (4) | C10—C11 | 1.364 (4) |
C14—H14B | 0.96 (3) | C10—H10 | 0.92 (3) |
C14—H14C | 0.96 (3) | C11—C12 | 1.390 (4) |
C15—H15A | 0.97 (3) | C11—H11 | 0.90 (3) |
C15—H15B | 1.03 (4) | C12—C13 | 1.378 (3) |
C15—H15C | 0.97 (3) | C12—H12 | 0.97 (3) |
C1—H1A | 0.99 (3) | C13—H13 | 0.85 (3) |
C1—H1B | 0.99 (3) | ||
N3—Ru1—N2 | 81.96 (7) | H1A—C1—H1B | 110 (2) |
N3—Ru1—N1 | 82.34 (8) | N1—C1—H1C | 107.1 (17) |
N2—Ru1—N1 | 81.70 (7) | H1A—C1—H1C | 109 (2) |
N3—Ru1—S1 | 91.40 (5) | H1B—C1—H1C | 109 (2) |
N2—Ru1—S1 | 173.35 (5) | N1—C2—C3 | 112.92 (19) |
N1—Ru1—S1 | 97.82 (5) | N1—C2—H2A | 111.3 (15) |
N3—Ru1—Cl1 | 95.80 (5) | C3—C2—H2A | 113.0 (15) |
N2—Ru1—Cl1 | 91.57 (5) | N1—C2—H2B | 104.0 (17) |
N1—Ru1—Cl1 | 173.20 (5) | C3—C2—H2B | 107.0 (17) |
S1—Ru1—Cl1 | 88.75 (2) | H2A—C2—H2B | 108 (2) |
N3—Ru1—Cl2 | 170.84 (6) | N2—C3—C4 | 121.8 (2) |
N2—Ru1—Cl2 | 91.40 (5) | N2—C3—C2 | 114.98 (19) |
N1—Ru1—Cl2 | 90.49 (6) | C4—C3—C2 | 123.2 (2) |
S1—Ru1—Cl2 | 95.24 (2) | C5—C4—C3 | 119.5 (2) |
Cl1—Ru1—Cl2 | 90.66 (2) | C5—C4—H4 | 120.7 (16) |
C8—N1—C2 | 112.4 (2) | C3—C4—H4 | 119.8 (16) |
C8—N1—C1 | 107.8 (2) | C6—C5—C4 | 118.7 (2) |
C2—N1—C1 | 106.6 (2) | C6—C5—H5 | 120.2 (17) |
C8—N1—Ru1 | 106.67 (15) | C4—C5—H5 | 120.8 (16) |
C2—N1—Ru1 | 106.15 (13) | C5—C6—C7 | 119.3 (2) |
C1—N1—Ru1 | 117.32 (15) | C5—C6—H6 | 122.0 (17) |
C7—N2—C3 | 118.54 (19) | C7—C6—H6 | 118.6 (17) |
C7—N2—Ru1 | 126.34 (16) | N2—C7—C6 | 122.2 (2) |
C3—N2—Ru1 | 113.84 (14) | N2—C7—H7 | 115.1 (16) |
C13—N3—C9 | 118.5 (2) | C6—C7—H7 | 122.7 (16) |
C13—N3—Ru1 | 126.20 (16) | N1—C8—C9 | 113.56 (19) |
C9—N3—Ru1 | 114.71 (16) | N1—C8—H8A | 108.0 (18) |
O1—S1—C14 | 105.03 (13) | C9—C8—H8A | 106.0 (18) |
O1—S1—C15 | 106.66 (13) | N1—C8—H8B | 111.6 (18) |
C14—S1—C15 | 99.25 (15) | C9—C8—H8B | 109.2 (18) |
O1—S1—Ru1 | 120.38 (8) | H8A—C8—H8B | 108 (2) |
C14—S1—Ru1 | 110.28 (9) | N3—C9—C10 | 121.1 (2) |
C15—S1—Ru1 | 112.91 (11) | N3—C9—C8 | 115.5 (2) |
S1—C14—H14A | 112 (2) | C10—C9—C8 | 123.2 (2) |
S1—C14—H14B | 108.9 (19) | C11—C10—C9 | 119.8 (2) |
H14A—C14—H14B | 108 (3) | C11—C10—H10 | 121.3 (18) |
S1—C14—H14C | 105.6 (19) | C9—C10—H10 | 118.9 (18) |
H14A—C14—H14C | 112 (3) | C10—C11—C12 | 119.3 (2) |
H14B—C14—H14C | 111 (3) | C10—C11—H11 | 124 (2) |
S1—C15—H15A | 108.2 (18) | C12—C11—H11 | 115 (2) |
S1—C15—H15B | 107 (2) | C13—C12—C11 | 118.4 (3) |
H15A—C15—H15B | 115 (3) | C13—C12—H12 | 123.9 (16) |
S1—C15—H15C | 112.1 (17) | C11—C12—H12 | 117.6 (16) |
H15A—C15—H15C | 111 (2) | N3—C13—C12 | 122.8 (2) |
H15B—C15—H15C | 104 (3) | N3—C13—H13 | 113 (2) |
N1—C1—H1A | 111.2 (14) | C12—C13—H13 | 124 (2) |
N1—C1—H1B | 110.4 (18) | ||
N1—C8—C9—N3 | −28.0 (3) | N1—C2—C3—N2 | 34.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O1i | 0.91 (4) | 2.54 (4) | 3.431 (3) | 169 (3) |
C4—H4···Cl1ii | 0.93 (3) | 2.58 (3) | 3.487 (2) | 165 (2) |
C1—H1C···O1 | 0.99 (3) | 2.32 (3) | 3.182 (4) | 145 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O1i | 0.91 (4) | 2.54 (4) | 3.431 (3) | 169 (3) |
C4—H4···Cl1ii | 0.93 (3) | 2.58 (3) | 3.487 (2) | 165 (2) |
C1—H1C···O1 | 0.99 (3) | 2.32 (3) | 3.182 (4) | 145 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y−1/2, z. |
Acknowledgements
We gratefully acknowledge the University of Wyoming (AN and EBH), the Wyoming NASA Space Grant Consortium (NASA grant No. NNX10AO95H) and the National Science Foundation REU Program (KT, CHE-1358498) for financial support.
References
Astner, J., Weitzer, M., Foxon, S. P., Schindler, S., Heinemann, F. W., Mukherjee, J., Gupta, R., Mahadevan, V. & Mukherjee, R. (2008). Inorg. Chim. Acta, 361, 279–292. Web of Science CSD CrossRef CAS Google Scholar
Bressan, M. & Morvillo, A. (1992). J. Mol. Catal. 71, 149–155. CrossRef CAS Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carvalho, V. P., Ferraz, C. P. & Lima-Neto, B. S. (2014). Inorg. Chim. Acta, 418, 1–7. CrossRef CAS Google Scholar
Dakkach, M., Atlamsani, A., Parella, T., Fontrodona, X., Romero, I. & Rodriguez, M. (2013). Inorg. Chem. 52, 5077–5087. CSD CrossRef CAS PubMed Google Scholar
Evans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204–209. CrossRef Web of Science Google Scholar
Ferrer, I., Rich, J., Fontrodona, X., Rodríguez, M. & Romero, I. (2013). Dalton Trans. 42, 13461–13469. CSD CrossRef CAS PubMed Google Scholar
Fischer, P. J., Minasian, S. G. & Arnold, J. (2009). Acta Cryst. E65, m1371–m1372. CSD CrossRef IUCr Journals Google Scholar
Matsuya, K., Fukui, S., Hoshino, Y. & Nagao, H. (2009). Dalton Trans. 38, 7876–7878. CSD CrossRef PubMed Google Scholar
Mishra, H., Patra, A. K. & Mukherjee, R. (2009). Inorg. Chim. Acta, 362, 483–490. CSD CrossRef CAS Google Scholar
Mola, J., Pujol, D., Rodriguez, M., Romero, I., Sala, X., Katz, N., Parella, T., Benet-Buchholz, J., Fontrodona, X. & Llobet, A. (2009). Aust. J. Chem. 62, 1675–1683. CSD CrossRef CAS Google Scholar
Mola, J., Rodriguez, M., Romero, I., Llobet, A., Parella, T., Poater, A., Duran, M., Sola, M. & Benet-Buchholz, J. (2006). Inorg. Chem. 45, 10520–10529. CSD CrossRef PubMed CAS Google Scholar
Mola, J., Romero, I., Rodríguez, M., Bozoglian, F., Poater, A., Solà, M., Parella, T., Benet-Buchholz, J., Fontrodona, X. & Llobet, A. (2007). Inorg. Chem. 46, 10707–10716. CSD CrossRef PubMed CAS Google Scholar
Rodriguez, M., Romero, I., Llobet, A., Deronzier, A., Biner, M., Parella, T. & Stoeckli-Evans, H. (2001). Inorg. Chem. 40, 4150–4156. PubMed CAS Google Scholar
Roeser, S., Maji, S., Benet-Buchholz, J., Pons, J. & Llobet, A. (2013). Eur. J. Inorg. Chem. pp. 232–240. CrossRef Google Scholar
Sala, X., Poater, A., von Zelewsky, A., Parella, T., Fontrodona, X., Romero, I., Sola, M., Rodriguez, M. & Llobet, A. (2008). Inorg. Chem. 47, 8016–8024. CSD CrossRef PubMed CAS Google Scholar
Serrano, I., Rodriguez, M., Romero, I., Llobet, A., Parella, T., Campelo, J. M., Luna, D., Marinas, J. M. & Benet-Buchholz, J. (2006). Inorg. Chem. 45, 2644–2651. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, Y., Fukui, S., Oi, T. & Nagao, H. (2008). Bull. Chem. Soc. Jpn, 81, 1285–1295. CSD CrossRef CAS Google Scholar
Smith, M. K., Gibson, J. A., Young, C. G., Broomhead, J. A., Junk, P. C. & Keene, F. R. (2000). Eur. J. Inorg. Chem. pp. 1365–1370. CrossRef Google Scholar
Suzuki, T., Matsuya, K., Kawamoto, T. & Nagao, H. (2014). Eur. J. Inorg. Chem. pp. 722–727. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.