research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1169-1173

Crystal structures of three (tri­chloro­methyl)(carbamoyl)disulfanes

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: barany@umn.edu

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 8 August 2015; accepted 25 August 2015; online 12 September 2015)

The present paper reports crystallographic studies on three related compounds that were of inter­est as precursors for synthetic and mechanistic work in organosulfur chemistry, as well as to model nitro­gen-protecting groups: (N-methyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C3H4Cl3NOS2, (1), (N-benzyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C9H8Cl3NOS2, (2), and (N-methyl-N-phenyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C9H8Cl3NOS2, (3). Their mol­ecular structures, with similar bond lengths and angles for the CCl3SS(C=O)N moieties, are confirmed. Compounds (1) and (3) both crystallized with two independent mol­ecules in the asymmetric unit. Classical hydrogen bonding, as well as chlorine-dense regions, are evident in the crystal packing for (1) and (2). In the crystal of (1), mol­ecules are linked via N—H⋯O hydrogen bonds forming chains along [110], which are linked by short Cl⋯Cl and S⋯O contacts forming sheets parallel to (001). In the crystal of (2), mol­ecules are linked via N—H⋯O hydrogen bonds forming chains along [001], which in turn are linked by pairs of short O⋯Cl contacts forming ribbons along the c-axis direction. In the crystal of (3), there are no classical hydrogen bonds present and the chlorine-dense regions observed in (1) and (2) are lacking.

1. Chemical context

Carbamoyl disulfanes were first reported by Harris (1960[Harris, J. F. Jr (1960). J. Am. Chem. Soc. 82, 155-158.]). This family of compounds has served as useful model compounds for synthetic and mechanistic work in organosulfur chemistry and nitro­gen-protecting-group development (Barany & Merrifield, 1977[Barany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363-7365.]; Barany et al., 1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]; Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]; Barany et al., 2005[Barany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508-509.]; Schrader et al., 2011[Schrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882-7892.]). The tri­chloro­methyl derivatives reported here, (tri­chloro­meth­yl)(N-methyl­carbamo­yl)disulfane, (1) (Fig. 1[link]), (tri­chloro­meth­yl)(N-benz­yl­carbamo­yl)disulfane, (2) (Fig. 2[link]), and (tri­chloro­meth­yl)(N-methyl-N-phenyl­carbamo­yl)disulfane, (3) (Fig. 3[link]), are partic­ularly stable. All three compounds have been stored under ambient conditions for periods in the range of two to four decades, with no evidence of decomposition based on unchanged 1H NMR spectra and melting points.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (1) showing the atom-labelling scheme, with two mol­ecules (Z′ = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (2) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (3) showing the atom-labelling scheme, with two mol­ecules (Z′ = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The three (tri­chloro­meth­yl)(carbamo­yl)disulfanes differ in the substituents on the carbamoyl nitro­gen, but the bond lengths and angles of the common CCl3SS(C=O)N moieties of each are markedly similar for the two mol­ecules in the asymmetric units of (1) and (3), as well as for the single conformation of (2) (Tables 1[link] and 2[link]). The corresponding structural features of (3) are also similar to the bond lengths and torsion angles of other carbamoyl disulfanes that include an SS(C=O)N(Me)Ph chain, including, for example, bis­(N-methyl-N-phenyl­carbamo­yl)disulfane (ZAQWUL, formula [Ph(Me)N(C=O)S]2) (Schroll et al., 2012[Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.]) and (N-methyl-N-phenyl­carbamo­yl)(N-methyl-N-phenyl­amino)­disulfane [formula Ph(Me)N(C=O)SSN(Me)Ph] (Henley et al., 2015[Henley, M. J., Schroll, A. L., Young Jr, V. G. & Barany, G. (2015). Acta Cryst. E71. Submitted [ZS2342].]).

Table 1
Selected bond lengths (Å) and angles (°) for CCl3SS(C=O)N moieties

  (1a) (1b) (2) (3a) (3b)
S1—C1 1.8242 (18) 1.8261 (18) 1.826 (3) 1.824 (2) 1.822 (2)
S1—S2 2.0100 (7) 2.0126 (6) 2.0099 (11) 2.0202 (7) 2.0160 (7)
S2—C2 1.8367 (17) 1.8426 (17) 1.842 (3) 1.856 (2) 1.842 (2)
O1—C2 1.214 (2) 1.212 (2) 1.213 (4) 1.208 (2) 1.211 (2)
N1—C2 1.322 (2) 1.324 (2) 1.319 (4) 1.345 (3) 1.346 (3)
N1—C3 1.458 (2) 1.460 (2) 1.475 (4) 1.467 (3) 1.460 (3)
N1—C4 1.440 (3) 1.447 (3)
           
C1—S1—S2 103.09 (6) 103.10 (6) 103.68 (11) 102.38 (7) 104.40 (7)
C2—S2—S1 102.20 (6) 101.43 (6) 101.40 (10) 99.96 (7) 101.59 (7)
C2—N1—C3 121.71 (15) 120.35 (14) 121.8 (3) 118.95 (18) 119.49 (18)
O1—C2—N1 126.31 (16) 126.23 (16) 126.4 (3) 125.9 (2) 126.4 (2)
O1—C2—S2 123.02 (13) 122.17 (13) 122.4 (2) 122.09 (16) 122.96 (16)
N1—C2—S2 110.67 (12) 111.58 (12) 111.2 (2) 111.99 (15) 110.65 (14)

Table 2
Comparison of selected torsion angles (°)

  (1a) (1b) (2) (3a) (3b)
C1—S1—S2—C2 93.63 (8) 93.49 (8) 96.54 (14) 92.91 (10) −95.23 (10)
C3—N1—C2—O1 3.3 (3) 1.6 (3) −1.3 (5) 0.3 (3) −0.8 (3)
C3—N1—C2—S2 −176.22 (14) −176.67 (12) −178.2 (3) −179.98 (15) 179.73 (16)
S1—S2—C2—O1 2.87 (16) −0.66 (15) −2.5 (3) 10.32 (19) 6.32 (19)
S1—S2—C2—N1 −177.64 (11) 177.64 (11) 174.6 (2) −169.40 (14) −174.23 (13)
C2—N1—C4—C9 −72.9 (3) 93.8 (2)
C2—N1—C4—C5 109.7 (2) −86.4 (3)
C3—N1—C4—C9 104.1 (2) −78.0 (3)
C3—N1—C4—C5 −73.3 (3) 101.8 (2)

3. Supra­molecular features

The three compounds arrange in three distinct packing configurations. The two nearly superimposable mol­ecular structures of (1) are alternately hydrogen-bonded (NH⋯O=C) in chains along [110] (Table 3[link]). Successive mol­ecules of each of two chains are linked by 3.162 (1) Å S1A⋯O1B contacts, 0.157 Å less than their van der Waals radii sum (Fig. 4[link]). Additional packing features result in a Z = 16 unit cell. A chlorine from each of four mol­ecules – in separate hydrogen-bonded chains – form a short-contact skew quadrilateral with inter­molecular contact distances of 3.4304 (8) Å (−0.070 Å less than their van der Waals radii sum) and 3.3463 (8) Å (−0.154 Å less than their van der Waals radii sum), Cl3B⋯Cl1A⋯Cl3B and Cl1A⋯Cl3B⋯Cl1A angles 73.40 (2) and 82.01 (2)°, and Cl3B⋯Cl1A⋯Cl3B⋯Cl1A and Cl1A⋯Cl3B⋯Cl1A⋯Cl3B torsion angles −50.45 (2) and 48.78 (2)°. These result in chlorine-dense regions of the crystal structure (Fig. 5[link]), and the formation of sheets parallel to (001). Halogen bonding involving tri­chloro­methyl groups in supra­molecular structures was described by Rybarczyk-Pirek et al. (2013[Rybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913-3924.]).

Table 3
Hydrogen-bond geometry (Å, °) for (1[link])

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1Bi 0.86 (1) 1.94 (1) 2.7825 (18) 164 (2)
N1B—H1BA⋯O1Aii 0.86 (1) 1.97 (1) 2.8231 (18) 175 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x, -y+1, -z+1.
[Figure 4]
Figure 4
Hydrogen-bonded chains of (1) are linked by S1A⋯O1B contacts. Only H atoms involved in N—H⋯O=C bonds are shown.
[Figure 5]
Figure 5
A chlorine from each of four mol­ecules of (1), in separate chains, form a short-contact skew quadrilateral. Only H atoms involved in N—H⋯O=C bonds are shown.

The unit cell of (2) consists of pairs of hydrogen-bonded dimers about an inversion center. The mol­ecules in each dimer are linked by NH⋯O=C hydrogen bonds (Table 4[link]), which extend into hydrogen-bonded mol­ecular chains along [001]. A network of linked chains is formed by O1⋯Cl3 contacts. Two O1⋯Cl3 contacts [3.028 (2) Å, 0.242 Å less than their van der Waals radii sum] form between each pair of mol­ecules in separate hydrogen-bonded chains, and the links extend throughout the chains in alternate mol­ecules. In this way, each hydrogen-bonded chain has extensive links to two other chains. The resulting structure features alternating layers of tri­chloro­methyl and benzyl groups (Fig. 6[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.87 (1) 2.02 (1) 2.887 (3) 174 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Packing structure of (2). Hydrogen-bonded chains are linked by pairs of O1⋯Cl3 contacts. H atoms are not shown unless they participate in hydrogen bonding.

Compound (3) has no available classical hydrogen bonding and lacks the chlorine-dense regions of (1) and (2). Of the two conformations available for (3), it is noteworthy that the four sulfurs of two adjacent mol­ecules of (3b) are positioned in a parallelogram [angles 80.65 (2) and 99.35 (2)°, torsion angle 0.00 (2)°] with inter­molecular contact distances of 3.5969 (8) Å, slightly less than the sum of their van der Waals radii; no such configuration is evident for mol­ecules of (3a). Fig. 7[link] shows a schematic view of the inter­molecular inter­actions. A pair of non-classical hydrogen bonds [C9A—H9AA⋯O1B and C9B—H9BA⋯O1A, with H⋯C contact distances 2.55 and 2.54 Å, C⋯O distances of 3.360 (3) and 3.432 (3) Å, and C—H⋯O angles of 143 and 157°] connect (3a) and (3b) mol­ecules. Two additional non-classical hydrogen bonds [C5A—H5AA⋯Cl1B and C3B—H3BA⋯Cl3A, with H⋯Cl contact distances 2.82 and 2.81 Å, C⋯Cl distances of 3.732 (2) and 3.649 (2) Å, and C—H⋯Cl angles of 161 and 144°] are shown.

[Figure 7]
Figure 7
Packing diagram for (3). H atoms are not shown unless they participate in hydrogen bonding. [Symmetry codes: (i) −x + 1, −y, −z; (ii) x, y + 1, z.]

4. Database survey

Crystal structures for two additional carbamoyl disulfanes have been reported: bis­(indolylcarbamo­yl)disulfane (BOWGAV, formula [C8H6N(C=O)S]2) (Bereman et al., 1983[Bereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25-30.]) and bis­(N,N-di­cyclo­hexyl­carbamo­yl)disulfane (UDALER, [cHex2N(C=O)S]2) (Li et al., 2006[Li, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417-m1418.]). Their mol­ecular structures are consistent with those of the three compounds reported here. Neither of these comparison structures contains halogen atoms or supra­molecular hydrogen bonds. The crystal structure of 1,7-bis­(tri­chloro­meth­yl)hepta­sulfane contains both short Cl⋯Cl contacts and a parallelogram (four sulfurs) formed from the tri­chloro­methyl-adjacent S–S bonds of two mol­ecules (REHKUK; Steudel et al., 1995[Steudel, R., Pridöhl, M., Buschmann, J. & Luger, P. (1995). Chem. Ber. 128, 725-728.]).

5. Synthesis and crystallization

Compounds (1) (Harris, 1960[Harris, J. F. Jr (1960). J. Am. Chem. Soc. 82, 155-158.]; Barany et al., 2005[Barany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508-509.]), (2) (Barany et al., 2005[Barany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508-509.]), and (3) (Barany et al., 1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]; Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]) were synthesized and crystallized as outlined in Fig. 8[link] and described in the referenced publications. The reaction of (4) plus (5), shown in the top pathway of Fig. 8[link], is termed the Harris reaction (Harris, 1960[Harris, J. F. Jr (1960). J. Am. Chem. Soc. 82, 155-158.]). For the alternative Harris pathway shown in the middle of Fig. 8[link], compound (6), a thio­carbamate salt, is typically made by reaction of carbonyl sulfide (COS) with a primary or secondary amine HNR1R2. Therefore B+ is usually the appropriate ammonium counter-ion H2N+R1R2. Finally, several variations of acyl­ation chemistry are summarized in the bottom pathway of Fig. 8[link], as originally worked out by Barany et al. (2005[Barany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508-509.]). When R3 = H, starting amine HNR1R2 is present in sufficient excess so that a second equivalent of amine can absorb the HCl co-product. When R1 and/or R3 = TMS, stoichiometric ratios can be used, since co-product TMS-Cl is neutral. Note that for some reactions, a TMS group attached to N becomes an H after aqueous workup.

[Figure 8]
Figure 8
Synthetic routes to (tri­chloro­meth­yl)(carbamo­yl)disulfanes, (1), (2) and (3). See text for further details.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. N—H hydrogen atoms were refined positionally, with restrained d(N—H) = 0.85 (1)Å. H atoms attached to C were idealized (C—H: 0.95 Å, C—H2: 0.99 Å, C—H3: 0.98 Å). In all cases, Uiso(H) = x × Ueq(Host), x = 1.2 except for methyl groups, where x = 1.5.

Table 5
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula C3H4Cl3NOS2 C9H8Cl3NOS2 C9H8Cl3NOS2
Mr 240.54 316.63 316.63
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 123 173 123
a, b, c (Å) 13.1141 (16), 13.9234 (17), 20.172 (3) 11.4247 (17), 13.548 (2), 8.5675 (12) 8.9231 (12), 10.1724 (13), 15.364 (2)
α, β, γ (°) 90, 98.969 (2), 90 90, 103.176 (2), 90 81.964 (2), 81.806 (2), 68.851 (2)
V3) 3638.3 (8) 1291.2 (3) 1281.5 (3)
Z 16 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.40 1.01 1.02
Crystal size (mm) 0.40 × 0.30 × 0.11 0.30 × 0.15 × 0.10 0.25 × 0.20 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Multi-scan SADABS, (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.646, 0.746 0.752, 0.906 0.676, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21324, 4168, 3556 12180, 2284, 2056 15282, 5790, 4557
Rint 0.030 0.041 0.034
(sin θ/λ)max−1) 0.650 0.596 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.03 0.042, 0.080, 1.00 0.030, 0.073, 0.97
No. of reflections 4168 2284 5790
No. of parameters 189 148 291
No. of restraints 2 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.63 0.33, −0.27 0.39, −0.27
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ACD/ChemBioDraw (ACD/Labs, 2014[ACD/Labs (2014). ACD/ChemBioDraw. Advanced Chemistry Development, Inc., Toronto, ON, Canada. www. acdlabs. com.]).

Supporting information


Chemical context top

Carbamoyl disulfanes were first reported by Harris (1960). This family of compounds has served as useful model compounds for synthetic and mechanistic work in organosulfur chemistry and nitro­gen-protecting-group development (Barany & Merrifield, 1977; Barany et al., 1983, 2005; Schroll & Barany, 1986; Schrader et al., 2011). The tri­chloro­methyl derivatives reported here, (N-methyl­carbamoyl)(tri­chloro­methyl)­disulfane, (1) (Fig. 1), (N-benzyl­carbamoyl)(tri­chloro­methyl)­disulfane, (2) (Fig. 2), and (N-methyl-N-phenyl­carbamoyl)(tri­chloro­methyl)­disulfane, (3) (Fig. 3), are particularly stable. All three compounds have been stored under ambient conditions for periods in the range of two to four decades, with no evidence of decomposition as evidenced by unchanged 1H NMR spectra and melting points.

Structural commentary top

The three (tri­chloro­methyl)(carbamoyl)disulfanes differ in the substituents on the carbamoyl nitro­gen, but the bond lengths and angles of the common CCl3SS(CO)N moieties of each are markedly similar for the two molecules in the asymmetric units of (1) and (3), as well as for the single conformation of (2) (Tables 1 and 2). The corresponding structural features of (3) are also similar to the bond lengths and torsion angles of other carbamoyl disulfanes that include an SS(C O)N(Me)Ph chain, including, for example, bis­(N-methyl-N-phenyl­carbamoyl)disulfane (ZAQWUL, formula [Ph(Me)N(CO)S]2) (Schroll et al., 2012) and (N-methyl-N-phenyl­carbamoyl)(N-methyl-N-phenyl­amino)­disulfane [formula Ph(Me)N(CO)SSN(Me)Ph] (Henley et al., 2015).

Supra­molecular features top

The three compounds arrange in three distinct packing configurations. The two nearly superimposable molecular structures of (1) are alternately hydrogen-bonded (NH···O=C) in chains (Table 3). Successive molecules of each of two chains are linked by 3.162 (1) Å S1A···O1B contacts, 0.157 Å less than their van der Waals radii sum (Fig. 4). Additional packing features result in a Z =16 unit cell. A chlorine from each of four molecules – in separate hydrogen-bonded chains – form a short contact skew quadrilateral with inter­molecular contact distances of 3.4304 (8) Å (-0.070 Å less than their van der Waals radii sum) and 3.3463 (8) Å (-0.154 Å less than their van der Waals radii sum), Cl3B···Cl1A···Cl3B and Cl1A···Cl3B···Cl1A angles 73.40 (2) and 82.01 (2), and Cl3B···Cl1A···Cl3B···Cl1A and Cl1A···Cl3B···Cl1A···Cl3B torsion angles -50.45 (2) and 48.78 (2)°. These result in chlorine-dense regions of the crystal structure (Fig. 5). Halogen bonding involving tri­chloro­methyl groups in supra­molecular structures was described by Rybarczyk-Pirek et al. (2013).

The unit cell of (2) consists of pairs of hydrogen-bonded dimers about an inversion center. The molecules in each dimer are linked by NH···OC hydrogen bonds (Table 4), which extend into hydrogen-bonded molecular chains. A network of linked chains is formed by O1···Cl3 contacts. Two O1···Cl3 contacts [3.028 (2) Å, 0.242 Å less than their van der Waals radii sum] form between each pair of molecules in separate hydrogen-bonded chains, and the links extend throughout the chains in alternate molecules. In this way, each hydrogen-bonded chain has extensive links to two other chains. The resulting structure features alternating layers of tri­chloro­methyl and benzyl groups (Fig. 6).

Compound (3) has no available classical hydrogen bonding and lacks the chlorine-dense regions of (1) and (2). Of the two conformations available for (3), it is noteworthy that the four sulfurs of two adjacent molecules of (3b) are positioned in a parallelogram [angles 80.65 (2) and 99.35 (2)°, torsion angle 0.00 (2)°] with inter­molecular contact distances of 3.5969 (8) Å, slightly less than the sum of their van der Waals radii; no such configuration is evident for molecules of (3a). Fig 8 shows a schematic view of the inter­molecular inter­actions. A pair of non-classical hydrogen bonds [C9A—H9AA···O1Bii and C9Bii—H9BAii···O1A, with H···C contact distances 2.55 and 2.54 Å, C···O distances of 3.360 (3) and 3.432 (3) Å, and C—H···O angles of 143 and 157°] connect (3a) and (3b) molecules. Two additional non-classical hydrogen bonds [C5A—H5AA···Cl1B and C3Bi—H3BAi···Cl3A, with H···C contact distances 2.82 and 2.81 Å, C···Cl distances of 3.732 (2) and 3.649 (2) Å, and C—H···Cl angles of 161 and 144°] are shown.

Database survey top

Crystal structures for two additional carbamoyl disulfanes have been reported: bis­(indolylcarbamoyl)disulfane (BOWGAV, formula [C8H6N(CO)S]2) (Bereman et al., 1983) and bis­(N,N-di­cyclo­hexyl­thio­carbamoyl)disulfane (UDALER, [cHex2N(CO)S]2) (Li et al., 2006). Their molecular structures are consistent with those of the three compounds reported here. Neither of these comparison structures contains halogen atoms or supra­molecular hydrogen bonds. The crystal structure of 1,7-bis­(tri­chloro­methyl)­heptasulfane contains both short Cl···Cl contacts and a parallelogram (four sulfurs) formed from the tri­chloro­methyl-adjacent S–S bonds of two molecules (REHKUK; Steudel et al., 1995).

Synthesis and crystallization top

Compounds (1) (Harris, 1960; Barany et al., 2005), (2) (Barany et al., 2005), and (3) (Barany et al., 1983; Schroll & Barany, 1986) were synthesized and crystallized as outlined in Fig. 8 and described in the referenced publications. The reaction of (4) plus (5), shown in the top pathway of Fig. 8, is termed the Harris reaction (Harris, 1960). For the alternative Harris pathway shown in the middle of Fig. 8, compound (6), a thio­carbamate salt, is typically made by reaction of carbonyl sulfide (COS) with a primary or secondary amine HNR1R2. Therefore B+ is usually the appropriate ammonium counter-ion H2N+R1R2. Finally, several variations of acyl­ation chemistry are summarized in the bottom pathway of Fig. 8, as originally worked out by Barany et al. (2005). When R3 = H, starting amine HNR1R2 is present in sufficient excess so that a second equivalent of amine can absorb the HCl co-product. When R1 and/or R3 = TMS, stoichiometric ratios can be used, since co-product TMS-Cl is neutral. Note that for some reactions, a TMS group attached to N becomes an H after aqueous workup.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 5. N—H hydrogen atoms were refined positionally, with restrained d(N—H) = 0.85 (1)Å. H atoms attached to C were idealized (C—H: 0.95 Å, C—H2: 0.99 Å, C—H3: 0.98 Å). In all cases, Uiso(H) = x × Ueq(Host), x = 1.2 except for methyl groups, where x = 1.5.

Related literature top

For related literature, see: Barany & Merrifield (1977); Barany et al. (1983, 2005); Bereman et al. (1983); Harris (1960); Henley et al. (2015); Li et al. (2006); Rybarczyk-Pirek, Chęcińska, Malecka & Wojtulewski (2013); Schrader et al. (2011); Schroll & Barany (1986); Schroll et al. (2012); Steudel et al. (1995).

Computing details top

For all compounds, data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), ACD/ChemBioDraw (ACD/Labs, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (1) showing the atom-labelling scheme, with two molecules (Z' = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (2) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (3) showing the atom-labelling scheme, with two molecules (Z' = 2) per asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. Hydrogen-bonded chains of (1) are linked by S1A···O1B contacts. Only H atoms involved in N—H···O=C bonds are shown.
[Figure 5] Fig. 5. A chlorine from each of four molecules of (1), in separate chains, form a short contact skew quadrilateral. Only H atoms involved in N—H···OC bonds are shown.
[Figure 6] Fig. 6. Packing structure of (2). Hydrogen-bonded chains are linked by pairs of O1···Cl3 contacts. H atoms are not shown unless they participate in hydrogen bonding.
[Figure 7] Fig. 7. Packing diagram for (3). H atoms are not shown unless they participate in hydrogen bonding. [Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y + 1, z]
[Figure 8] Fig. 8. Synthetic routes to (trichloromethyl)(carbamoyl)disulfanes, (1), (2) and (3).
(1) (N-Methylcarbamoyl)(trichloromethyl)disulfane top
Crystal data top
C3H4Cl3NOS2Dx = 1.757 Mg m3
Mr = 240.54Melting point = 352–353 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.1141 (16) ÅCell parameters from 2920 reflections
b = 13.9234 (17) Åθ = 2.5–27.5°
c = 20.172 (3) ŵ = 1.40 mm1
β = 98.969 (2)°T = 123 K
V = 3638.3 (8) Å3Plate, colorless
Z = 160.40 × 0.30 × 0.11 mm
F(000) = 1920
Data collection top
Bruker SMART CCD area detector
diffractometer
3556 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
phi and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1617
Tmin = 0.646, Tmax = 0.746k = 1817
21324 measured reflectionsl = 2626
4168 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0241P)2 + 4.8271P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4168 reflectionsΔρmax = 0.80 e Å3
189 parametersΔρmin = 0.63 e Å3
Crystal data top
C3H4Cl3NOS2V = 3638.3 (8) Å3
Mr = 240.54Z = 16
Monoclinic, C2/cMo Kα radiation
a = 13.1141 (16) ŵ = 1.40 mm1
b = 13.9234 (17) ÅT = 123 K
c = 20.172 (3) Å0.40 × 0.30 × 0.11 mm
β = 98.969 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3556 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.746Rint = 0.030
21324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.80 e Å3
4168 reflectionsΔρmin = 0.63 e Å3
189 parameters
Special details top

Experimental. Compound (1) (Harris, 1960; Barany et al., 2005) was synthesized and crystallized as outlined in the Scheme and described in the referenced publications.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.00541 (4)0.37732 (4)0.35962 (3)0.04712 (15)
Cl2A0.19373 (3)0.28755 (4)0.39682 (2)0.03390 (11)
Cl3A0.08631 (4)0.35934 (3)0.49989 (3)0.03684 (12)
S1A0.00492 (3)0.19396 (3)0.41765 (2)0.02805 (11)
S2A0.08261 (4)0.10871 (3)0.48401 (2)0.02537 (10)
O1A0.04393 (10)0.18404 (9)0.56382 (7)0.0302 (3)
N1A0.08133 (11)0.08323 (10)0.61229 (7)0.0239 (3)
H1AA0.1296 (12)0.0437 (12)0.6058 (10)0.029*
C1A0.07085 (13)0.30414 (13)0.42009 (9)0.0255 (4)
C2A0.02947 (13)0.13163 (11)0.56154 (9)0.0211 (3)
C3A0.05085 (16)0.08425 (15)0.67878 (9)0.0334 (4)
H3AA0.04410.01810.69420.050*
H3AB0.01550.11740.67670.050*
H3AC0.10340.11790.71020.050*
Cl1B0.27558 (4)0.53778 (4)0.16143 (2)0.03787 (12)
Cl2B0.08921 (4)0.64264 (4)0.17392 (3)0.04065 (13)
Cl3B0.15634 (4)0.48946 (4)0.26583 (2)0.03589 (12)
S1B0.28444 (4)0.66744 (3)0.27052 (2)0.02689 (10)
S2B0.19567 (4)0.71821 (3)0.33553 (2)0.02639 (10)
O1B0.29056 (10)0.57063 (9)0.40606 (6)0.0273 (3)
N1B0.18133 (11)0.65897 (10)0.45778 (7)0.0222 (3)
H1BA0.1388 (12)0.7061 (11)0.4536 (10)0.027*
C1B0.19848 (14)0.58421 (13)0.21883 (8)0.0254 (4)
C2B0.22943 (12)0.63574 (11)0.40702 (8)0.0195 (3)
C3B0.20171 (14)0.60575 (13)0.52084 (9)0.0262 (4)
H3BA0.17350.64120.55580.039*
H3BB0.27640.59790.53410.039*
H3BC0.16900.54240.51490.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0370 (3)0.0591 (3)0.0472 (3)0.0132 (2)0.0127 (2)0.0337 (3)
Cl2A0.0227 (2)0.0413 (3)0.0390 (3)0.00235 (18)0.00915 (18)0.0030 (2)
Cl3A0.0477 (3)0.0276 (2)0.0371 (3)0.0091 (2)0.0123 (2)0.00656 (19)
S1A0.0242 (2)0.0362 (3)0.0220 (2)0.00899 (18)0.00211 (17)0.00193 (18)
S2A0.0311 (2)0.0216 (2)0.0251 (2)0.00138 (17)0.00954 (17)0.00147 (16)
O1A0.0276 (7)0.0306 (7)0.0346 (7)0.0138 (5)0.0115 (5)0.0094 (6)
N1A0.0233 (7)0.0235 (7)0.0258 (7)0.0083 (6)0.0063 (6)0.0027 (6)
C1A0.0236 (8)0.0281 (9)0.0250 (9)0.0008 (7)0.0044 (7)0.0071 (7)
C2A0.0216 (8)0.0180 (8)0.0250 (8)0.0005 (6)0.0072 (7)0.0001 (6)
C3A0.0377 (11)0.0366 (10)0.0276 (10)0.0080 (9)0.0101 (8)0.0080 (8)
Cl1B0.0494 (3)0.0412 (3)0.0250 (2)0.0009 (2)0.0121 (2)0.00839 (19)
Cl2B0.0380 (3)0.0494 (3)0.0303 (2)0.0055 (2)0.0078 (2)0.0003 (2)
Cl3B0.0457 (3)0.0362 (3)0.0246 (2)0.0184 (2)0.00170 (19)0.00053 (18)
S1B0.0291 (2)0.0312 (2)0.0211 (2)0.00846 (18)0.00602 (17)0.00414 (17)
S2B0.0358 (2)0.0232 (2)0.0198 (2)0.00546 (18)0.00314 (17)0.00014 (16)
O1B0.0289 (6)0.0262 (6)0.0270 (6)0.0102 (5)0.0051 (5)0.0037 (5)
N1B0.0237 (7)0.0207 (7)0.0227 (7)0.0074 (6)0.0047 (6)0.0002 (6)
C1B0.0307 (9)0.0288 (9)0.0163 (8)0.0028 (7)0.0023 (7)0.0016 (7)
C2B0.0197 (8)0.0184 (8)0.0193 (8)0.0001 (6)0.0003 (6)0.0023 (6)
C3B0.0308 (9)0.0258 (9)0.0228 (9)0.0012 (7)0.0065 (7)0.0021 (7)
Geometric parameters (Å, º) top
Cl1A—C1A1.7736 (18)Cl1B—C1B1.7736 (18)
Cl2A—C1A1.7625 (18)Cl2B—C1B1.7696 (19)
Cl3A—C1A1.7667 (19)Cl3B—C1B1.7629 (18)
S1A—C1A1.8242 (18)S1B—C1B1.8261 (18)
S1A—S2A2.0100 (7)S1B—S2B2.0126 (6)
S2A—C2A1.8367 (17)S2B—C2B1.8426 (17)
O1A—C2A1.214 (2)O1B—C2B1.212 (2)
N1A—C2A1.322 (2)N1B—C2B1.324 (2)
N1A—C3A1.458 (2)N1B—C3B1.460 (2)
N1A—H1AA0.864 (9)N1B—H1BA0.857 (9)
C3A—H3AA0.9800C3B—H3BA0.9800
C3A—H3AB0.9800C3B—H3BB0.9800
C3A—H3AC0.9800C3B—H3BC0.9800
C1A—S1A—S2A103.09 (6)C1B—S1B—S2B103.10 (6)
C2A—S2A—S1A102.20 (6)C2B—S2B—S1B101.43 (6)
C2A—N1A—C3A121.71 (15)C2B—N1B—C3B120.35 (14)
C2A—N1A—H1AA120.5 (14)C2B—N1B—H1BA119.5 (14)
C3A—N1A—H1AA117.3 (14)C3B—N1B—H1BA120.2 (14)
Cl2A—C1A—Cl3A108.65 (10)Cl3B—C1B—Cl2B108.82 (10)
Cl2A—C1A—Cl1A109.45 (9)Cl3B—C1B—Cl1B109.68 (10)
Cl3A—C1A—Cl1A110.43 (10)Cl2B—C1B—Cl1B109.38 (9)
Cl2A—C1A—S1A113.54 (10)Cl3B—C1B—S1B112.65 (9)
Cl3A—C1A—S1A112.03 (9)Cl2B—C1B—S1B112.28 (10)
Cl1A—C1A—S1A102.60 (9)Cl1B—C1B—S1B103.90 (9)
O1A—C2A—N1A126.31 (16)O1B—C2B—N1B126.23 (16)
O1A—C2A—S2A123.02 (13)O1B—C2B—S2B122.17 (13)
N1A—C2A—S2A110.67 (12)N1B—C2B—S2B111.58 (12)
N1A—C3A—H3AA109.5N1B—C3B—H3BA109.5
N1A—C3A—H3AB109.5N1B—C3B—H3BB109.5
H3AA—C3A—H3AB109.5H3BA—C3B—H3BB109.5
N1A—C3A—H3AC109.5N1B—C3B—H3BC109.5
H3AA—C3A—H3AC109.5H3BA—C3B—H3BC109.5
H3AB—C3A—H3AC109.5H3BB—C3B—H3BC109.5
C1A—S1A—S2A—C2A93.63 (8)C1B—S1B—S2B—C2B93.49 (8)
S2A—S1A—C1A—Cl2A60.37 (10)S2B—S1B—C1B—Cl3B60.94 (10)
S2A—S1A—C1A—Cl3A63.18 (10)S2B—S1B—C1B—Cl2B62.34 (9)
S2A—S1A—C1A—Cl1A178.38 (6)S2B—S1B—C1B—Cl1B179.58 (6)
C3A—N1A—C2A—O1A3.3 (3)C3B—N1B—C2B—O1B1.6 (3)
C3A—N1A—C2A—S2A176.22 (14)C3B—N1B—C2B—S2B176.67 (12)
S1A—S2A—C2A—O1A2.87 (16)S1B—S2B—C2B—O1B0.66 (15)
S1A—S2A—C2A—N1A177.64 (11)S1B—S2B—C2B—N1B177.64 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Bi0.86 (1)1.94 (1)2.7825 (18)164 (2)
N1B—H1BA···O1Aii0.86 (1)1.97 (1)2.8231 (18)175 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1.
(2) (N-Benzylcarbamoyl)(trichloromethyl)disulfane top
Crystal data top
C9H8Cl3NOS2Dx = 1.629 Mg m3
Mr = 316.63Melting point = 357–359 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4247 (17) ÅCell parameters from 2312 reflections
b = 13.548 (2) Åθ = 2.4–24.9°
c = 8.5675 (12) ŵ = 1.01 mm1
β = 103.176 (2)°T = 173 K
V = 1291.2 (3) Å3Rod, white
Z = 40.30 × 0.15 × 0.10 mm
F(000) = 640
Data collection top
Bruker SMART CCD area detector
diffractometer
2056 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.041
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
SADABS, (Sheldrick, 2008)
h = 1313
Tmin = 0.752, Tmax = 0.906k = 1616
12180 measured reflectionsl = 1010
2284 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0157P)2 + 3.520P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2284 reflectionsΔρmax = 0.33 e Å3
148 parametersΔρmin = 0.27 e Å3
Crystal data top
C9H8Cl3NOS2V = 1291.2 (3) Å3
Mr = 316.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4247 (17) ŵ = 1.01 mm1
b = 13.548 (2) ÅT = 173 K
c = 8.5675 (12) Å0.30 × 0.15 × 0.10 mm
β = 103.176 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2284 independent reflections
Absorption correction: multi-scan
SADABS, (Sheldrick, 2008)
2056 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.906Rint = 0.041
12180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.33 e Å3
2284 reflectionsΔρmin = 0.27 e Å3
148 parameters
Special details top

Experimental. Compound (2) (Barany et al., 2005) was synthesized and crystallized as outlined in the Scheme and described in the referenced publication.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57223 (8)0.68834 (7)0.12990 (11)0.0399 (2)
Cl20.69283 (7)0.60896 (7)0.43579 (10)0.0320 (2)
Cl30.64826 (8)0.48462 (7)0.15317 (11)0.0385 (2)
S10.44925 (7)0.53104 (6)0.27940 (9)0.02193 (18)
S20.37502 (7)0.64387 (6)0.37478 (9)0.0249 (2)
O10.26774 (19)0.66377 (16)0.0620 (2)0.0250 (5)
N10.2069 (2)0.7676 (2)0.2344 (3)0.0247 (6)
H1A0.222 (3)0.785 (2)0.3348 (16)0.030*
C10.5911 (3)0.5817 (2)0.2514 (4)0.0249 (7)
C20.2734 (3)0.6962 (2)0.1955 (3)0.0207 (7)
C30.1156 (3)0.8196 (3)0.1127 (4)0.0327 (8)
H2A0.07780.77280.02720.039*
H2B0.15440.87280.06320.039*
C40.0210 (3)0.8631 (2)0.1889 (4)0.0258 (7)
C50.0178 (3)0.9637 (3)0.2167 (4)0.0319 (8)
H5A0.07371.00600.18330.038*
C60.0662 (3)1.0032 (3)0.2928 (5)0.0374 (9)
H6A0.06811.07240.31020.045*
C70.1466 (3)0.9429 (3)0.3430 (4)0.0347 (9)
H7A0.20290.97010.39740.042*
C80.1457 (3)0.8434 (3)0.3145 (4)0.0377 (9)
H8A0.20230.80190.34810.045*
C90.0627 (3)0.8028 (3)0.2371 (4)0.0333 (8)
H9A0.06320.73380.21710.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (5)0.0426 (5)0.0407 (5)0.0039 (4)0.0055 (4)0.0208 (4)
Cl20.0283 (4)0.0376 (5)0.0262 (4)0.0033 (4)0.0021 (3)0.0023 (4)
Cl30.0296 (5)0.0506 (6)0.0360 (5)0.0088 (4)0.0088 (4)0.0132 (4)
S10.0225 (4)0.0209 (4)0.0225 (4)0.0011 (3)0.0054 (3)0.0005 (3)
S20.0263 (4)0.0321 (5)0.0159 (4)0.0072 (4)0.0036 (3)0.0006 (3)
O10.0283 (12)0.0321 (13)0.0143 (11)0.0036 (10)0.0043 (9)0.0007 (9)
N10.0275 (15)0.0317 (15)0.0137 (13)0.0101 (12)0.0020 (11)0.0024 (11)
C10.0216 (16)0.0311 (18)0.0216 (16)0.0023 (14)0.0038 (13)0.0012 (14)
C20.0210 (16)0.0242 (17)0.0176 (16)0.0015 (13)0.0059 (12)0.0018 (13)
C30.0319 (19)0.041 (2)0.0228 (17)0.0146 (17)0.0023 (14)0.0023 (16)
C40.0239 (17)0.0323 (19)0.0188 (16)0.0067 (14)0.0004 (13)0.0013 (14)
C50.0242 (18)0.0318 (19)0.038 (2)0.0007 (15)0.0032 (15)0.0032 (16)
C60.030 (2)0.0291 (19)0.052 (2)0.0074 (16)0.0059 (17)0.0070 (17)
C70.0199 (17)0.048 (2)0.035 (2)0.0112 (16)0.0039 (15)0.0053 (17)
C80.0246 (18)0.051 (2)0.037 (2)0.0034 (17)0.0051 (16)0.0099 (18)
C90.0334 (19)0.0282 (19)0.0344 (19)0.0018 (16)0.0006 (16)0.0005 (15)
Geometric parameters (Å, º) top
Cl1—C11.764 (3)C3—H2B0.9900
Cl2—C11.773 (3)C4—C51.386 (5)
Cl3—C11.766 (3)C4—C91.391 (5)
S1—C11.826 (3)C5—C61.385 (5)
S1—S22.0099 (11)C5—H5A0.9500
S2—C21.842 (3)C6—C71.369 (5)
O1—C21.213 (4)C6—H6A0.9500
N1—C21.319 (4)C7—C81.370 (5)
N1—C31.475 (4)C7—H7A0.9500
N1—H1A0.870 (10)C8—C91.389 (5)
C3—C41.504 (4)C8—H8A0.9500
C3—H2A0.9900C9—H9A0.9500
C1—S1—S2103.68 (11)H2A—C3—H2B108.2
C2—S2—S1101.40 (10)C5—C4—C9118.7 (3)
C2—N1—C3121.8 (3)C5—C4—C3120.7 (3)
C2—N1—H1A117 (2)C9—C4—C3120.6 (3)
C3—N1—H1A121 (2)C6—C5—C4120.6 (3)
Cl1—C1—Cl3109.72 (17)C6—C5—H5A119.7
Cl1—C1—Cl2108.81 (18)C4—C5—H5A119.7
Cl3—C1—Cl2109.94 (17)C7—C6—C5120.3 (3)
Cl1—C1—S1113.13 (17)C7—C6—H6A119.9
Cl3—C1—S1102.59 (17)C5—C6—H6A119.9
Cl2—C1—S1112.48 (17)C6—C7—C8119.9 (3)
O1—C2—N1126.4 (3)C6—C7—H7A120.1
O1—C2—S2122.4 (2)C8—C7—H7A120.1
N1—C2—S2111.2 (2)C7—C8—C9120.6 (3)
N1—C3—C4110.0 (3)C7—C8—H8A119.7
N1—C3—H2A109.7C9—C8—H8A119.7
C4—C3—H2A109.7C8—C9—C4119.9 (3)
N1—C3—H2B109.7C8—C9—H9A120.0
C4—C3—H2B109.7C4—C9—H9A120.0
C1—S1—S2—C296.54 (14)N1—C3—C4—C972.6 (4)
S2—S1—C1—Cl157.38 (18)C9—C4—C5—C60.8 (5)
S2—S1—C1—Cl3175.51 (11)C3—C4—C5—C6177.4 (3)
S2—S1—C1—Cl266.42 (17)C4—C5—C6—C70.7 (5)
C3—N1—C2—O11.3 (5)C5—C6—C7—C81.5 (5)
C3—N1—C2—S2178.2 (3)C6—C7—C8—C90.9 (5)
S1—S2—C2—O12.5 (3)C7—C8—C9—C40.5 (5)
S1—S2—C2—N1174.6 (2)C5—C4—C9—C81.4 (5)
C2—N1—C3—C4155.8 (3)C3—C4—C9—C8176.8 (3)
N1—C3—C4—C5105.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.87 (1)2.02 (1)2.887 (3)174 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
(3) (N-Methyl-N-phenylcarbamoyl)(trichloromethyl)disulfane top
Crystal data top
C9H8Cl3NOS2F(000) = 640
Mr = 316.63Dx = 1.641 Mg m3
Triclinic, P1Melting point = 327–328 K
a = 8.9231 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1724 (13) ÅCell parameters from 2932 reflections
c = 15.364 (2) Åθ = 2.5–27.4°
α = 81.964 (2)°µ = 1.02 mm1
β = 81.806 (2)°T = 123 K
γ = 68.851 (2)°Plate, colourless
V = 1281.5 (3) Å30.25 × 0.20 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
4557 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.034
phi and ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1111
Tmin = 0.676, Tmax = 0.746k = 1312
15282 measured reflectionsl = 1919
5790 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.677P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
5790 reflectionsΔρmax = 0.39 e Å3
291 parametersΔρmin = 0.27 e Å3
Crystal data top
C9H8Cl3NOS2γ = 68.851 (2)°
Mr = 316.63V = 1281.5 (3) Å3
Triclinic, P1Z = 4
a = 8.9231 (12) ÅMo Kα radiation
b = 10.1724 (13) ŵ = 1.02 mm1
c = 15.364 (2) ÅT = 123 K
α = 81.964 (2)°0.25 × 0.20 × 0.09 mm
β = 81.806 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4557 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.746Rint = 0.034
15282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.39 e Å3
5790 reflectionsΔρmin = 0.27 e Å3
291 parameters
Special details top

Experimental. Compound (3) (Barany et al., 1983; Schroll & Barany, 1986) was synthesized and crystallized as outlined in the Scheme and described in the reference publications.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.39735 (6)0.18646 (6)0.21843 (4)0.02947 (13)
Cl2A0.74662 (6)0.06953 (6)0.18508 (4)0.02861 (13)
Cl3A0.54721 (7)0.15353 (7)0.04057 (4)0.03453 (14)
S1A0.59372 (6)0.36579 (6)0.14069 (4)0.02254 (12)
S2A0.37780 (6)0.50367 (6)0.10688 (3)0.02229 (12)
O1A0.34261 (18)0.50799 (16)0.28397 (10)0.0278 (3)
N1A0.1137 (2)0.61782 (18)0.21527 (11)0.0216 (4)
C1A0.5668 (2)0.1953 (2)0.14591 (14)0.0222 (4)
C2A0.2724 (3)0.5449 (2)0.21823 (14)0.0216 (4)
C3A0.0124 (3)0.6590 (3)0.29789 (15)0.0330 (5)
H3AA0.08040.63120.34680.050*
H3AB0.06740.61150.30890.050*
H3AC0.04330.76180.29310.050*
C4A0.0386 (2)0.6638 (2)0.13409 (13)0.0202 (4)
C5A0.0647 (3)0.6002 (2)0.11406 (15)0.0264 (5)
H5AA0.08180.52420.15250.032*
C6A0.1425 (3)0.6478 (3)0.03785 (16)0.0300 (5)
H6AA0.21420.60520.02440.036*
C7A0.1160 (3)0.7568 (3)0.01833 (15)0.0307 (5)
H7AA0.16930.78890.07070.037*
C8A0.0124 (3)0.8198 (2)0.00094 (15)0.0301 (5)
H8AA0.00660.89400.03860.036*
C9A0.0643 (3)0.7748 (2)0.07821 (14)0.0255 (5)
H9AA0.13320.81950.09240.031*
Cl1B0.02011 (7)0.26039 (6)0.25446 (4)0.03331 (14)
Cl2B0.30856 (6)0.26958 (5)0.37202 (4)0.02562 (12)
Cl3B0.02396 (7)0.27511 (6)0.43942 (4)0.03100 (14)
S1B0.04426 (6)0.01403 (5)0.38013 (3)0.02037 (12)
S2B0.19477 (6)0.06161 (6)0.39221 (3)0.02144 (12)
O1B0.19752 (18)0.07526 (17)0.21777 (10)0.0290 (4)
N1B0.4406 (2)0.17006 (18)0.27509 (11)0.0220 (4)
C1B0.0950 (2)0.2053 (2)0.36108 (14)0.0213 (4)
C2B0.2795 (3)0.1046 (2)0.27890 (13)0.0205 (4)
C3B0.5317 (3)0.2140 (3)0.19095 (15)0.0352 (6)
H3BA0.46220.17150.14310.053*
H3BB0.56910.31740.19260.053*
H3BC0.62500.18260.18070.053*
C4B0.5250 (2)0.2155 (2)0.35376 (13)0.0191 (4)
C5B0.5752 (2)0.1230 (2)0.39013 (14)0.0213 (4)
H5BA0.55740.02980.36260.026*
C6B0.6515 (3)0.1679 (2)0.46693 (14)0.0241 (5)
H6BA0.68520.10480.49260.029*
C7B0.6789 (2)0.3044 (2)0.50636 (15)0.0243 (5)
H7BA0.72950.33440.55960.029*
C8B0.6322 (3)0.3973 (2)0.46799 (15)0.0269 (5)
H8BA0.65350.49170.49430.032*
C9B0.5547 (2)0.3531 (2)0.39146 (15)0.0245 (5)
H9BA0.52230.41660.36520.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0243 (3)0.0276 (3)0.0345 (3)0.0101 (2)0.0015 (2)0.0022 (2)
Cl2A0.0235 (3)0.0256 (3)0.0300 (3)0.0005 (2)0.0074 (2)0.0007 (2)
Cl3A0.0382 (3)0.0403 (3)0.0264 (3)0.0111 (3)0.0104 (2)0.0075 (2)
S1A0.0169 (3)0.0241 (3)0.0257 (3)0.0062 (2)0.0052 (2)0.0014 (2)
S2A0.0195 (3)0.0243 (3)0.0189 (3)0.0028 (2)0.0042 (2)0.0009 (2)
O1A0.0284 (8)0.0337 (9)0.0205 (8)0.0074 (7)0.0086 (7)0.0031 (7)
N1A0.0222 (9)0.0225 (9)0.0173 (9)0.0035 (7)0.0029 (7)0.0030 (7)
C1A0.0182 (10)0.0252 (11)0.0205 (11)0.0041 (9)0.0028 (8)0.0019 (9)
C2A0.0244 (11)0.0194 (10)0.0215 (11)0.0072 (9)0.0038 (9)0.0026 (8)
C3A0.0304 (13)0.0390 (14)0.0248 (12)0.0056 (11)0.0022 (10)0.0100 (10)
C4A0.0167 (10)0.0203 (10)0.0189 (10)0.0003 (8)0.0013 (8)0.0054 (8)
C5A0.0239 (11)0.0248 (11)0.0301 (12)0.0082 (9)0.0023 (9)0.0028 (9)
C6A0.0214 (11)0.0370 (13)0.0329 (13)0.0081 (10)0.0035 (10)0.0122 (11)
C7A0.0214 (11)0.0432 (14)0.0200 (11)0.0001 (10)0.0034 (9)0.0080 (10)
C8A0.0284 (12)0.0304 (12)0.0255 (12)0.0044 (10)0.0024 (10)0.0014 (10)
C9A0.0238 (11)0.0241 (11)0.0273 (12)0.0062 (9)0.0035 (9)0.0028 (9)
Cl1B0.0299 (3)0.0319 (3)0.0323 (3)0.0101 (2)0.0021 (2)0.0089 (2)
Cl2B0.0155 (2)0.0262 (3)0.0328 (3)0.0023 (2)0.0045 (2)0.0064 (2)
Cl3B0.0288 (3)0.0259 (3)0.0428 (3)0.0104 (2)0.0143 (2)0.0046 (2)
S1B0.0169 (2)0.0196 (3)0.0239 (3)0.0055 (2)0.0045 (2)0.0002 (2)
S2B0.0169 (2)0.0262 (3)0.0181 (3)0.0022 (2)0.0042 (2)0.0037 (2)
O1B0.0285 (8)0.0374 (9)0.0212 (8)0.0080 (7)0.0092 (7)0.0065 (7)
N1B0.0224 (9)0.0251 (9)0.0180 (9)0.0060 (7)0.0013 (7)0.0071 (7)
C1B0.0169 (10)0.0212 (11)0.0251 (11)0.0058 (8)0.0046 (8)0.0005 (9)
C2B0.0253 (11)0.0185 (10)0.0185 (10)0.0073 (9)0.0020 (9)0.0052 (8)
C3B0.0332 (13)0.0463 (15)0.0239 (12)0.0089 (11)0.0030 (10)0.0158 (11)
C4B0.0149 (10)0.0209 (10)0.0196 (10)0.0028 (8)0.0010 (8)0.0053 (8)
C5B0.0205 (10)0.0187 (10)0.0242 (11)0.0057 (8)0.0015 (8)0.0045 (8)
C6B0.0221 (11)0.0272 (11)0.0268 (12)0.0113 (9)0.0042 (9)0.0061 (9)
C7B0.0163 (10)0.0279 (11)0.0270 (12)0.0056 (9)0.0045 (9)0.0005 (9)
C8B0.0213 (11)0.0202 (11)0.0370 (13)0.0057 (9)0.0047 (10)0.0017 (10)
C9B0.0207 (11)0.0217 (11)0.0322 (12)0.0072 (9)0.0018 (9)0.0074 (9)
Geometric parameters (Å, º) top
Cl1A—C1A1.768 (2)Cl1B—C1B1.774 (2)
Cl2A—C1A1.776 (2)Cl2B—C1B1.768 (2)
Cl3A—C1A1.777 (2)Cl3B—C1B1.771 (2)
S1A—C1A1.824 (2)S1B—C1B1.822 (2)
S1A—S2A2.0202 (7)S1B—S2B2.0160 (7)
S2A—C2A1.856 (2)S2B—C2B1.842 (2)
O1A—C2A1.208 (2)O1B—C2B1.211 (2)
N1A—C2A1.345 (3)N1B—C2B1.346 (3)
N1A—C4A1.440 (3)N1B—C4B1.447 (3)
N1A—C3A1.467 (3)N1B—C3B1.460 (3)
C3A—H3AA0.9800C3B—H3BA0.9800
C3A—H3AB0.9800C3B—H3BB0.9800
C3A—H3AC0.9800C3B—H3BC0.9800
C4A—C9A1.387 (3)C4B—C9B1.384 (3)
C4A—C5A1.389 (3)C4B—C5B1.386 (3)
C5A—C6A1.385 (3)C5B—C6B1.385 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.376 (3)C6B—C7B1.385 (3)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—C8A1.383 (3)C7B—C8B1.387 (3)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.393 (3)C8B—C9B1.387 (3)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—H9AA0.9500C9B—H9BA0.9500
C1A—S1A—S2A102.38 (7)C1B—S1B—S2B104.40 (7)
C2A—S2A—S1A99.96 (7)C2B—S2B—S1B101.59 (7)
C2A—N1A—C4A123.13 (17)C2B—N1B—C4B122.00 (17)
C2A—N1A—C3A118.95 (18)C2B—N1B—C3B119.49 (18)
C4A—N1A—C3A117.85 (17)C4B—N1B—C3B118.00 (17)
Cl1A—C1A—Cl2A110.05 (11)Cl2B—C1B—Cl3B109.89 (11)
Cl1A—C1A—Cl3A108.33 (11)Cl2B—C1B—Cl1B110.25 (11)
Cl2A—C1A—Cl3A108.62 (11)Cl3B—C1B—Cl1B107.66 (11)
Cl1A—C1A—S1A112.54 (11)Cl2B—C1B—S1B103.07 (10)
Cl2A—C1A—S1A104.78 (11)Cl3B—C1B—S1B113.09 (11)
Cl3A—C1A—S1A112.43 (11)Cl1B—C1B—S1B112.83 (11)
O1A—C2A—N1A125.9 (2)O1B—C2B—N1B126.4 (2)
O1A—C2A—S2A122.09 (16)O1B—C2B—S2B122.96 (16)
N1A—C2A—S2A111.99 (15)N1B—C2B—S2B110.65 (14)
N1A—C3A—H3AA109.5N1B—C3B—H3BA109.5
N1A—C3A—H3AB109.5N1B—C3B—H3BB109.5
H3AA—C3A—H3AB109.5H3BA—C3B—H3BB109.5
N1A—C3A—H3AC109.5N1B—C3B—H3BC109.5
H3AA—C3A—H3AC109.5H3BA—C3B—H3BC109.5
H3AB—C3A—H3AC109.5H3BB—C3B—H3BC109.5
C9A—C4A—C5A120.4 (2)C9B—C4B—C5B120.95 (19)
C9A—C4A—N1A120.05 (19)C9B—C4B—N1B118.54 (18)
C5A—C4A—N1A119.51 (19)C5B—C4B—N1B120.51 (18)
C6A—C5A—C4A119.8 (2)C6B—C5B—C4B119.38 (19)
C6A—C5A—H5AA120.1C6B—C5B—H5BA120.3
C4A—C5A—H5AA120.1C4B—C5B—H5BA120.3
C7A—C6A—C5A120.0 (2)C7B—C6B—C5B120.23 (19)
C7A—C6A—H6AA120.0C7B—C6B—H6BA119.9
C5A—C6A—H6AA120.0C5B—C6B—H6BA119.9
C6A—C7A—C8A120.4 (2)C6B—C7B—C8B119.9 (2)
C6A—C7A—H7AA119.8C6B—C7B—H7BA120.1
C8A—C7A—H7AA119.8C8B—C7B—H7BA120.1
C7A—C8A—C9A120.2 (2)C9B—C8B—C7B120.3 (2)
C7A—C8A—H8AA119.9C9B—C8B—H8BA119.8
C9A—C8A—H8AA119.9C7B—C8B—H8BA119.8
C4A—C9A—C8A119.2 (2)C4B—C9B—C8B119.2 (2)
C4A—C9A—H9AA120.4C4B—C9B—H9BA120.4
C8A—C9A—H9AA120.4C8B—C9B—H9BA120.4
C1A—S1A—S2A—C2A92.91 (10)C1B—S1B—S2B—C2B95.23 (10)
S2A—S1A—C1A—Cl1A55.40 (11)S2B—S1B—C1B—Cl2B169.19 (7)
S2A—S1A—C1A—Cl2A174.96 (8)S2B—S1B—C1B—Cl3B50.59 (12)
S2A—S1A—C1A—Cl3A67.26 (11)S2B—S1B—C1B—Cl1B71.90 (11)
C4A—N1A—C2A—O1A177.3 (2)C4B—N1B—C2B—O1B172.5 (2)
C3A—N1A—C2A—O1A0.3 (3)C3B—N1B—C2B—O1B0.8 (3)
C4A—N1A—C2A—S2A3.0 (2)C4B—N1B—C2B—S2B8.1 (2)
C3A—N1A—C2A—S2A179.98 (15)C3B—N1B—C2B—S2B179.73 (16)
S1A—S2A—C2A—O1A10.32 (19)S1B—S2B—C2B—O1B6.32 (19)
S1A—S2A—C2A—N1A169.40 (14)S1B—S2B—C2B—N1B174.23 (13)
C2A—N1A—C4A—C9A72.9 (3)C2B—N1B—C4B—C9B93.8 (2)
C3A—N1A—C4A—C9A104.1 (2)C3B—N1B—C4B—C9B78.0 (3)
C2A—N1A—C4A—C5A109.7 (2)C2B—N1B—C4B—C5B86.4 (3)
C3A—N1A—C4A—C5A73.3 (3)C3B—N1B—C4B—C5B101.8 (2)
C9A—C4A—C5A—C6A0.0 (3)C9B—C4B—C5B—C6B2.1 (3)
N1A—C4A—C5A—C6A177.36 (19)N1B—C4B—C5B—C6B178.12 (19)
C4A—C5A—C6A—C7A0.8 (3)C4B—C5B—C6B—C7B0.7 (3)
C5A—C6A—C7A—C8A0.3 (3)C5B—C6B—C7B—C8B1.1 (3)
C6A—C7A—C8A—C9A1.0 (3)C6B—C7B—C8B—C9B1.6 (3)
C5A—C4A—C9A—C8A1.2 (3)C5B—C4B—C9B—C8B1.6 (3)
N1A—C4A—C9A—C8A178.58 (19)N1B—C4B—C9B—C8B178.57 (19)
C7A—C8A—C9A—C4A1.7 (3)C7B—C8B—C9B—C4B0.2 (3)
Selected bond lengths (Å) and angles (°) for CCl3SS(CO)N moieties top
(1a)(1b)(2)(3a)(3b)
S1—C11.8242 (18)1.8261 (18)1.826 (3)1.824 (2)1.822 (2)
S1—S22.0100 (7)2.0126 (6)2.0099 (11)2.0202 (7)2.0160 (7)
S2—C21.8367 (17)1.8426 (17)1.842 (3)1.856 (2)1.842 (2)
O1—C21.214 (2)1.212 (2)1.213 (4)1.208 (2)1.211 (2)
N1—C21.322 (2)1.324 (2)1.319 (4)1.345 (3)1.346 (3)
N1—C31.458 (2)1.460 (2)1.475 (4)1.467 (3)1.460 (3)
N1—C41.440 (3)1.447 (3)
C1—S1—S2103.09 (6)103.10 (6)103.68 (11)102.38 (7)104.40 (7)
C2—S2—S1102.20 (6)101.43 (6)101.40 (10)99.96 (7)101.59 (7)
C2—N1—C3121.71 (15)120.35 (14)121.8 (3)118.95 (18)119.49 (18)
O1—C2—N1126.31 (16)126.23 (16)126.4 (3)125.9 (2)126.4 (2)
O1—C2—S2123.02 (13)122.17 (13)122.4 (2)122.09 (16)122.96 (16)
N1—C2—S2110.67 (12)111.58 (12)111.2 (2)111.99 (15)110.65 (14)
Comparison of selected torsion angles (°) top
(1a)(1b)(2)(3a)(3b)
C1—S1—S2—C293.63 (8)93.49 (8)96.54 (14)92.91 (10)-95.23 (10)
C3—N1—C2—O13.3 (3)1.6 (3)-1.3 (5)0.3 (3)-0.8 (3)
C3—N1—C2—S2-176.22 (14)-176.67 (12)-178.2 (3)-179.98 (15)179.73 (16)
S1—S2—C2—O12.87 (16)-0.66 (15)-2.5 (3)10.32 (19)6.32 (19)
S1—S2—C2—N1-177.64 (11)177.64 (11)174.6 (2)-169.40 (14)-174.23 (13)
C2—N1—C4—C9-72.9 (3)93.8 (2)
C2—N1—C4—C5109.7 (2)-86.4 (3)
C3—N1—C4—C9104.1 (2)-78.0 (3)
C3—N1—C4—C5-73.3 (3)101.8 (2)
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1Bi0.864 (9)1.941 (11)2.7825 (18)164.4 (19)
N1B—H1BA···O1Aii0.857 (9)1.968 (10)2.8231 (18)175.1 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.870 (10)2.020 (11)2.887 (3)174 (3)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

(1)(2)(3)
Crystal data
Chemical formulaC3H4Cl3NOS2C9H8Cl3NOS2C9H8Cl3NOS2
Mr240.54316.63316.63
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cTriclinic, P1
Temperature (K)123173123
a, b, c (Å)13.1141 (16), 13.9234 (17), 20.172 (3)11.4247 (17), 13.548 (2), 8.5675 (12)8.9231 (12), 10.1724 (13), 15.364 (2)
α, β, γ (°)90, 98.969 (2), 9090, 103.176 (2), 9081.964 (2), 81.806 (2), 68.851 (2)
V3)3638.3 (8)1291.2 (3)1281.5 (3)
Z1644
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.401.011.02
Crystal size (mm)0.40 × 0.30 × 0.110.30 × 0.15 × 0.100.25 × 0.20 × 0.09
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Bruker SMART CCD area detector
diffractometer
Bruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
SADABS, (Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.646, 0.7460.752, 0.9060.676, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21324, 4168, 3556 12180, 2284, 2056 15282, 5790, 4557
Rint0.0300.0410.034
(sin θ/λ)max1)0.6500.5960.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.03 0.042, 0.080, 1.00 0.030, 0.073, 0.97
No. of reflections416822845790
No. of parameters189148291
No. of restraints210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.630.33, 0.270.39, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), ACD/ChemBioDraw (ACD/Labs, 2014).

 

Acknowledgements

We thank Al-Mutassim Abu-Khdeir, Michael J. Barany, Charles S. Barrett, Megan M. Corey, Courtney Elm, David A. Halsrud, Michael C. Hanson, Matthew J. Henley, Isaac D. Mitchell, Ross A. Moretti, Alex M. Schrader, Matthew J. Turcotte and Xiaolu Zheng for preparing compounds used in this work, as well as studies on their chemistry, and Alayne L. Schroll for helpful discussions during the preparation of this manuscript.

References

First citationACD/Labs (2014). ACD/ChemBioDraw. Advanced Chemistry Development, Inc., Toronto, ON, Canada. www. acdlabs. com.  Google Scholar
First citationBarany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363–7365.  CrossRef CAS PubMed Google Scholar
First citationBarany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.  CrossRef CAS Web of Science Google Scholar
First citationBarany, M. J., Hammer, R. P., Merrifield, R. B. & Barany, G. (2005). J. Am. Chem. Soc. 127, 508–509.  CrossRef PubMed CAS Google Scholar
First citationBereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25–30.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarris, J. F. Jr (1960). J. Am. Chem. Soc. 82, 155–158.  CrossRef CAS Google Scholar
First citationHenley, M. J., Schroll, A. L., Young Jr, V. G. & Barany, G. (2015). Acta Cryst. E71. Submitted [ZS2342].  CrossRef IUCr Journals Google Scholar
First citationLi, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913–3924.  CAS Google Scholar
First citationSchrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882–7892.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866–1881.  CrossRef CAS Web of Science Google Scholar
First citationSchroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteudel, R., Pridöhl, M., Buschmann, J. & Luger, P. (1995). Chem. Ber. 128, 725–728.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1169-1173
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds