organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o703-o704

Crystal structure of [4-(chloro­meth­yl)phen­yl](4-hy­dr­oxy­piperidin-1-yl)methanone

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, cSCRI, Anna hospital Campus, Chennai-106, Tamilnadu, India, and dAnna Siddha Medical College, Chennai-106, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 26 August 2015; accepted 28 August 2015; online 12 September 2015)

The title compound, C13H16ClNO2, crystallized with two independent mol­ecules in the asymmetric unit (A and B). The piperidinol ring in mol­ecule B is disordered over two positions with a site occupancy ratio of 0.667 (5):0.333 (5). In both mol­ecules these rings have a chair conformation, including the minor component in mol­ecule B. Their mean planes are inclined to the benzene ring by 45.57 (13)° in mol­ecule A, and by 50.5 (4)° for the major component of the piperidine ring in mol­ecule B. In the crystal, the individual mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains of A and B mol­ecules along the [100] direction. The chains are inter­linked by C—H⋯O hydrogen bonds, forming ribbons.

1. Related literature

For the synthesis see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]). For the biological activity of piperidine derivatives, see: Daly et al. (1986[Daly, J. W. & Spande, T. F. (1986). Alkaloids: Chemical and Biological Perspectives, Vol. 4, edited by S. W. Pelletier, pp. 1-274. New York: Wiley.]); Fodor et al. (1985[Fodor, G. B. & Colasanti, B. (1985). Alkaloids: Chemical and Biological Perspectives, Vol. 3, edited by S. W. Pelletier, pp. 1-91. New York: Wiley.]); Campfield et al. (1995[Campfield, L. A., Smith, F. J., Mackie, G., Tenenbaum, R., Sassano, M. L., Mullin, J. & Kierstead, R. W. (1995). Obes. Res. Clin. Pract. 3, 591S-603S.]); Kozikowski et al. (1998[Kozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962-1969.]); Brau et al. (2000[Bräu, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499-1505.]); Bolzani et al. (1995[Bolzani, V. da S., Gunatilaka, A. A. L. & Kingston, D. G. I. (1995). Tetrahedron, 51, 5929-5934.]); Gulluoglu et al. (2007[Gulluoglu, M. T., Erdogdu, Y. & Yurdakul, S. (2007). J. Mol. Struct. pp. 834-836.]). For related structures see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]); Prathebha et al. (2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H16ClNO2

  • Mr = 253.72

  • Triclinic, [P \overline 1]

  • a = 8.4131 (3) Å

  • b = 9.6211 (4) Å

  • c = 15.6780 (6) Å

  • α = 80.917 (3)°

  • β = 89.240 (2)°

  • γ = 88.395 (2)°

  • V = 1252.57 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.943

  • 28447 measured reflections

  • 4415 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.05

  • 4415 reflections

  • 371 parameters

  • 111 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 2.18 2.789 (2) 132
O4—H4⋯O3ii 0.82 2.13 2.793 (3) 138
C11—H11B⋯O3iii 0.97 2.60 3.522 (3) 160
C26—H26A⋯O2iv 0.97 2.59 3.494 (4) 154
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Many piperidine containing compounds possess remarkable biological and medicinal properties (Daly et al., (1986); Fodor et al., (1985)). Among their remarkable properties, they show appreciable effect on plasma glucose level (Campfield et al., (1995)), insulin normalization, therapeutics on cocaine abuse (Kozikowski et al., (1998)). Piperidine also participates in amny local anesthetics, such as mepivacaine, ropivacaine, and bupivacaine, extensively used in clinical practice (Brau et al., (2000); Bolzani et al., (1995)). Piperidine derivatives are found to exhibit pharmacological activity and form a vital part of the molecular structures of important drugs such as raloxifene and minoxidil. Selective inhibition of a number of enzymes has rendered piperidine alkaloids as important paraphernalia in the study of biochemical pathways (Gulluoglu et al., (2007).

The title compound, C13H16ClNO2, (I), crystallizes with two molecules in the asymmetric unit: A ( Fig1, left) and B (Fig 1, right) . Bond lengths and angles are comparable with literature values. C—N distances of the piperdine ring in molecule A C8—C12/N1 & in molecule B C21—C25/N2, are in the range 1.459 (3)- 1.462 (3) Å and are in good agreement with values of a similar reported structure (Revathi et al., (2015)). The C=O distances in molecules A & B are [1.235 (3) and 1.233 (3) Å], respectively, and is comparable with the previously reported value(Prathebha et al., (2015). In the molecule A, the dihedral angle between piperdine ring and the phenyl ring 47.22 (1)°, indicates the bisectional orientation of the phenylring. The bond angles around the N1 and N2 atoms [358.85 (2)° and 359.47 (2)°, respectively], shows sp2 hybridization of the atoms. The piperidine ring of the molecule A, adopts a chair conformation with puckering parameters of q2 = 0.019 (2) Å, φ2 = -58.74° q3 = -0.567 (3) Å, QT= 0.567 (3) Å and θ2 = 178.03 (2)°.

In the crystal packing the molecules form chains running along the diagonal of 'bc' plane through O—H···O type hydrogen bonds. These chains are further inter linked through C—H···O type hydrogen bonds to form molecular ribbons (Fig. 2).

Related literature top

For the synthesis see: Revathi et al. (2015). For the biological activity of piperidine derivatives, see: Daly et al. (1986); Fodor et al. (1985); Campfield et al. (1995); Kozikowski et al. (1998); Brau et al. (2000); Bolzani et al. (1995); Gulluoglu et al. (2007). For related structures see: Revathi et al. (2015); Prathebha et al. (2015).

Experimental top

The title compound was synthesized following a publish procedure (Revathi et al., (2015)). In a 250 ml roundbottomed flask 120 ml of ethylmethylketone was added to 4-hydroxypiperdine (0.02 mol) and stirred at room temperature. After 5 min triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. Then 4-chloromethyl benzoylchloride(0.04 mol) was added and the reaction mixture was stirred at room temperature for ca 2 h. A white precipitate of triethylammoniumchloride was formed. It was filtered and the filtrate was evaporated to give the crude product. It was recrystallized twice from ethylmethylketone (yield: 82%) giving colourless block-like crystals of the title compound.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distance of 0.93–0.98 Å, O—H distance of 0.82 Å with Uiso(H)= 1.5 Ueq(c-methyl),Uiso(H)= 1.5 Ueq(O) and Uiso(H)= 1.2Ueq(C) for other H atom. The piperidinol ring in one of the molecules is disordered over two positions with site occupancies in the ratio 67:33. The disorder was resolved by successive Fourier electron density maps and least squares refinements. Sum of the occupancies of the disordered components were restrained as 1 during refinement. The bond distances in the disordered groups were restrained using SADI or DFIX with an effective standard deviation of 0.01 Å and 0.02 Å respectively, wherever necessary. Rigid group restraint(RIGU) with e.s.d.'s 0.002 Å and 0.004 Å was also applied to get satisfactory model of the disorder.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (left: molecula A; right: molecule B), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
[4-(Chloromethyl)phenyl](4-hydroxypiperidin-1-yl)methanone top
Crystal data top
C13H16ClNO2Z = 4
Mr = 253.72F(000) = 536
Triclinic, P1Dx = 1.345 Mg m3
a = 8.4131 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6211 (4) ÅCell parameters from 9919 reflections
c = 15.6780 (6) Åθ = 2.3–28.1°
α = 80.917 (3)°µ = 0.29 mm1
β = 89.240 (2)°T = 293 K
γ = 88.395 (2)°Block, colourless
V = 1252.57 (8) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4415 independent reflections
Radiation source: fine-focus sealed tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.902, Tmax = 0.943k = 1111
28447 measured reflectionsl = 1818
Refinement top
Refinement on F2111 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.0906P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4415 reflectionsΔρmax = 0.45 e Å3
371 parametersΔρmin = 0.61 e Å3
Crystal data top
C13H16ClNO2γ = 88.395 (2)°
Mr = 253.72V = 1252.57 (8) Å3
Triclinic, P1Z = 4
a = 8.4131 (3) ÅMo Kα radiation
b = 9.6211 (4) ŵ = 0.29 mm1
c = 15.6780 (6) ÅT = 293 K
α = 80.917 (3)°0.35 × 0.30 × 0.25 mm
β = 89.240 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3411 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.943Rint = 0.027
28447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045111 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
4415 reflectionsΔρmin = 0.61 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1123 (3)0.3281 (3)0.11147 (15)0.0386 (5)
C21.0000 (3)0.2251 (3)0.10479 (15)0.0413 (6)
H20.96570.19370.15440.050*
C30.9381 (3)0.1683 (3)0.02565 (16)0.0408 (6)
H30.86000.10110.02230.049*
C40.9916 (2)0.2108 (2)0.04902 (15)0.0347 (5)
C51.1051 (3)0.3129 (3)0.04244 (16)0.0409 (6)
H51.14250.34210.09210.049*
C61.1633 (3)0.3716 (3)0.03693 (16)0.0449 (6)
H61.23810.44160.04050.054*
C70.9414 (3)0.1401 (2)0.13670 (15)0.0369 (5)
C80.6599 (3)0.2173 (3)0.10907 (17)0.0449 (6)
H8A0.70110.26480.05440.054*
H8B0.62320.28850.14270.054*
C90.5227 (3)0.1276 (3)0.09289 (17)0.0480 (6)
H9A0.55710.06240.05460.058*
H9B0.43770.18720.06470.058*
C100.4611 (3)0.0460 (3)0.17647 (17)0.0448 (6)
H100.42140.11300.21330.054*
C110.5957 (3)0.0414 (3)0.22218 (19)0.0545 (7)
H11A0.63220.11130.18760.065*
H11B0.55780.09040.27720.065*
C120.7328 (3)0.0503 (3)0.23722 (16)0.0538 (7)
H12A0.69930.11440.27630.065*
H12B0.82010.00840.26370.065*
C131.1795 (3)0.3886 (3)0.19750 (17)0.0512 (7)
H13A1.16000.32560.23850.061*
H13B1.29370.39630.19280.061*
C140.3857 (3)0.4916 (3)0.28225 (15)0.0401 (6)
C150.3397 (3)0.3530 (3)0.30142 (16)0.0449 (6)
H150.26630.31910.26650.054*
C160.4011 (3)0.2651 (3)0.37143 (16)0.0423 (6)
H160.36730.17280.38410.051*
C170.5127 (3)0.3125 (2)0.42329 (14)0.0348 (5)
C180.5592 (3)0.4505 (3)0.40463 (15)0.0412 (6)
H180.63430.48360.43900.049*
C190.4949 (3)0.5397 (3)0.33533 (16)0.0418 (6)
H190.52520.63300.32420.050*
C200.5672 (3)0.2185 (3)0.50338 (15)0.0376 (5)
C260.3178 (3)0.5885 (3)0.20677 (17)0.0529 (7)
H26A0.33220.68540.21460.063*
H26B0.20450.57380.20360.063*
O11.04414 (19)0.0877 (2)0.18842 (11)0.0515 (5)
N10.7862 (2)0.1306 (2)0.15550 (12)0.0401 (5)
O20.3366 (2)0.0447 (2)0.16381 (16)0.0681 (6)
H2A0.26260.00170.13920.102*
O30.4671 (2)0.1695 (2)0.55717 (12)0.0556 (5)
Cl11.09363 (11)0.55854 (9)0.23667 (5)0.0747 (3)
Cl20.41251 (10)0.55824 (10)0.10800 (5)0.0706 (3)
C210.8443 (13)0.2288 (15)0.4478 (7)0.0369 (19)0.667 (5)
H21A0.80040.29040.39830.044*0.667 (5)
H21B0.87640.14000.42990.044*0.667 (5)
C220.9860 (15)0.2956 (12)0.4818 (9)0.044 (2)0.667 (5)
H22A1.07030.30270.43860.053*0.667 (5)
H22B0.95580.39040.49070.053*0.667 (5)
C231.0491 (9)0.2147 (8)0.5655 (5)0.0479 (19)0.667 (5)
H231.08360.11910.55820.057*0.667 (5)
C240.9138 (13)0.2112 (15)0.6311 (9)0.049 (2)0.667 (5)
H24A0.95070.16680.68750.059*0.667 (5)
H24B0.87740.30640.63540.059*0.667 (5)
C250.7790 (15)0.1296 (10)0.6030 (5)0.043 (2)0.667 (5)
H25A0.81510.03470.59770.052*0.667 (5)
H25B0.69320.12400.64520.052*0.667 (5)
O41.1723 (3)0.2855 (3)0.5966 (2)0.0623 (11)0.667 (5)
H41.24930.28610.56390.093*0.667 (5)
N20.7232 (8)0.2047 (16)0.5184 (5)0.034 (2)0.667 (5)
C21'0.850 (3)0.210 (3)0.4530 (15)0.042 (5)0.333 (5)
H21C0.80690.24600.39660.051*0.333 (5)
H21D0.90950.12360.44830.051*0.333 (5)
C22'0.967 (3)0.318 (3)0.4775 (18)0.040 (4)0.333 (5)
H22C1.04820.33870.43330.048*0.333 (5)
H22D0.91050.40540.48430.048*0.333 (5)
C23'1.0410 (17)0.2493 (16)0.5636 (10)0.044 (3)0.333 (5)
H23'1.10000.31960.58830.053*0.333 (5)
C24'0.915 (3)0.184 (3)0.6302 (19)0.044 (4)0.333 (5)
H24C0.96850.11850.67510.053*0.333 (5)
H24D0.86460.25760.65710.053*0.333 (5)
C25'0.787 (3)0.105 (2)0.5893 (10)0.036 (3)0.333 (5)
H25C0.83260.01580.57810.043*0.333 (5)
H25D0.70110.08430.63070.043*0.333 (5)
O4'1.1380 (7)0.1335 (6)0.5593 (4)0.0532 (19)0.333 (5)
H4'1.13970.11630.50970.080*0.333 (5)
N2'0.7230 (17)0.178 (3)0.5116 (12)0.034 (4)0.333 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (12)0.0437 (14)0.0382 (13)0.0044 (10)0.0024 (10)0.0000 (10)
C20.0428 (14)0.0448 (14)0.0359 (13)0.0018 (11)0.0064 (10)0.0049 (11)
C30.0367 (13)0.0384 (13)0.0454 (14)0.0061 (10)0.0063 (10)0.0013 (11)
C40.0264 (11)0.0372 (12)0.0381 (12)0.0032 (9)0.0023 (9)0.0006 (10)
C50.0358 (13)0.0497 (15)0.0375 (13)0.0078 (11)0.0008 (10)0.0066 (11)
C60.0377 (13)0.0499 (15)0.0468 (14)0.0137 (11)0.0038 (11)0.0047 (12)
C70.0300 (12)0.0394 (13)0.0391 (13)0.0008 (10)0.0044 (10)0.0003 (10)
C80.0323 (13)0.0430 (14)0.0540 (15)0.0056 (10)0.0027 (11)0.0084 (12)
C90.0319 (13)0.0584 (17)0.0506 (15)0.0033 (11)0.0103 (11)0.0008 (12)
C100.0298 (12)0.0462 (15)0.0581 (16)0.0023 (10)0.0036 (11)0.0075 (12)
C110.0359 (14)0.0597 (17)0.0589 (17)0.0007 (12)0.0089 (12)0.0180 (14)
C120.0344 (13)0.082 (2)0.0379 (14)0.0010 (13)0.0006 (11)0.0131 (13)
C130.0474 (15)0.0620 (18)0.0423 (14)0.0006 (13)0.0078 (12)0.0031 (13)
C140.0346 (12)0.0452 (14)0.0391 (13)0.0069 (10)0.0037 (10)0.0038 (11)
C150.0391 (13)0.0524 (16)0.0441 (14)0.0019 (11)0.0103 (11)0.0096 (12)
C160.0398 (13)0.0411 (14)0.0455 (14)0.0081 (11)0.0041 (11)0.0031 (11)
C170.0282 (11)0.0429 (13)0.0326 (12)0.0039 (10)0.0034 (9)0.0037 (10)
C180.0366 (13)0.0478 (15)0.0402 (13)0.0089 (11)0.0007 (10)0.0085 (11)
C190.0419 (13)0.0362 (13)0.0458 (14)0.0024 (10)0.0060 (11)0.0025 (11)
C200.0337 (12)0.0430 (14)0.0355 (12)0.0081 (10)0.0015 (10)0.0027 (10)
C260.0471 (15)0.0555 (17)0.0517 (16)0.0108 (13)0.0020 (12)0.0031 (13)
O10.0293 (9)0.0739 (13)0.0442 (10)0.0017 (8)0.0065 (7)0.0121 (9)
N10.0266 (10)0.0491 (12)0.0393 (11)0.0000 (8)0.0023 (8)0.0093 (9)
O20.0403 (11)0.0565 (12)0.1079 (18)0.0095 (9)0.0029 (11)0.0127 (12)
O30.0340 (9)0.0783 (13)0.0472 (10)0.0111 (9)0.0048 (8)0.0139 (9)
Cl10.0836 (6)0.0706 (5)0.0591 (5)0.0037 (4)0.0180 (4)0.0208 (4)
Cl20.0733 (5)0.0911 (6)0.0425 (4)0.0114 (4)0.0080 (3)0.0028 (4)
C210.034 (3)0.038 (4)0.037 (3)0.001 (2)0.008 (2)0.001 (2)
C220.029 (3)0.048 (4)0.054 (4)0.004 (3)0.006 (2)0.001 (3)
C230.035 (3)0.053 (4)0.055 (3)0.002 (2)0.0049 (19)0.006 (3)
C240.040 (3)0.067 (6)0.039 (3)0.001 (3)0.009 (2)0.003 (3)
C250.041 (3)0.051 (4)0.034 (3)0.000 (3)0.000 (2)0.005 (3)
O40.0366 (16)0.082 (2)0.074 (2)0.0104 (14)0.0054 (13)0.0299 (17)
N20.029 (2)0.041 (6)0.031 (2)0.0078 (18)0.0001 (16)0.001 (3)
C21'0.037 (5)0.054 (9)0.033 (5)0.003 (5)0.001 (4)0.002 (5)
C22'0.027 (6)0.047 (6)0.041 (5)0.001 (4)0.001 (4)0.005 (4)
C23'0.032 (5)0.050 (5)0.046 (5)0.005 (3)0.004 (3)0.003 (3)
C24'0.040 (5)0.047 (7)0.043 (5)0.003 (4)0.000 (4)0.001 (4)
C25'0.034 (5)0.037 (5)0.035 (5)0.002 (4)0.009 (4)0.001 (4)
O4'0.035 (3)0.046 (3)0.075 (4)0.004 (3)0.003 (2)0.000 (3)
N2'0.038 (5)0.027 (8)0.036 (4)0.004 (3)0.002 (3)0.002 (4)
Geometric parameters (Å, º) top
C1—C61.379 (3)C18—H180.9300
C1—C21.380 (3)C19—H190.9300
C1—C131.493 (3)C20—O31.233 (3)
C2—C31.376 (3)C20—N21.335 (7)
C2—H20.9300C20—N2'1.359 (14)
C3—C41.384 (3)C26—Cl21.793 (3)
C3—H30.9300C26—H26A0.9700
C4—C51.380 (3)C26—H26B0.9700
C4—C71.495 (3)O2—H2A0.8200
C5—C61.373 (3)C21—N21.489 (10)
C5—H50.9300C21—C221.512 (8)
C6—H60.9300C21—H21A0.9700
C7—O11.235 (3)C21—H21B0.9700
C7—N11.337 (3)C22—C231.511 (8)
C8—N11.461 (3)C22—H22A0.9700
C8—C91.508 (3)C22—H22B0.9700
C8—H8A0.9700C23—O41.391 (8)
C8—H8B0.9700C23—C241.521 (9)
C9—C101.510 (4)C23—H230.9800
C9—H9A0.9700C24—C251.505 (8)
C9—H9B0.9700C24—H24A0.9700
C10—O21.417 (3)C24—H24B0.9700
C10—C111.511 (4)C25—N21.483 (9)
C10—H100.9800C25—H25A0.9700
C11—C121.514 (4)C25—H25B0.9700
C11—H11A0.9700O4—H40.8200
C11—H11B0.9700C21'—N2'1.41 (2)
C12—N11.460 (3)C21'—C22'1.544 (16)
C12—H12A0.9700C21'—H21C0.9700
C12—H12B0.9700C21'—H21D0.9700
C13—Cl11.789 (3)C22'—C23'1.540 (14)
C13—H13A0.9700C22'—H22C0.9700
C13—H13B0.9700C22'—H22D0.9700
C14—C191.384 (3)C23'—O4'1.372 (14)
C14—C151.385 (4)C23'—C24'1.551 (15)
C14—C261.496 (3)C23'—H23'0.9800
C15—C161.373 (3)C24'—C25'1.538 (15)
C15—H150.9300C24'—H24C0.9700
C16—C171.383 (3)C24'—H24D0.9700
C16—H160.9300C25'—N2'1.411 (19)
C17—C181.380 (3)C25'—H25C0.9700
C17—C201.496 (3)C25'—H25D0.9700
C18—C191.380 (3)O4'—H4'0.8200
C6—C1—C2118.6 (2)N2'—C20—C17119.6 (8)
C6—C1—C13120.9 (2)C14—C26—Cl2110.88 (18)
C2—C1—C13120.5 (2)C14—C26—H26A109.5
C3—C2—C1120.8 (2)Cl2—C26—H26A109.5
C3—C2—H2119.6C14—C26—H26B109.5
C1—C2—H2119.6Cl2—C26—H26B109.5
C2—C3—C4120.3 (2)H26A—C26—H26B108.1
C2—C3—H3119.9C7—N1—C12120.33 (19)
C4—C3—H3119.9C7—N1—C8125.23 (19)
C5—C4—C3118.9 (2)C12—N1—C8113.28 (19)
C5—C4—C7119.0 (2)C10—O2—H2A109.5
C3—C4—C7121.8 (2)N2—C21—C22108.0 (10)
C6—C5—C4120.5 (2)N2—C21—H21A110.1
C6—C5—H5119.8C22—C21—H21A110.1
C4—C5—H5119.8N2—C21—H21B110.1
C5—C6—C1120.9 (2)C22—C21—H21B110.1
C5—C6—H6119.5H21A—C21—H21B108.4
C1—C6—H6119.5C23—C22—C21113.4 (10)
O1—C7—N1121.9 (2)C23—C22—H22A108.9
O1—C7—C4119.1 (2)C21—C22—H22A108.9
N1—C7—C4118.95 (19)C23—C22—H22B108.9
N1—C8—C9110.5 (2)C21—C22—H22B108.9
N1—C8—H8A109.6H22A—C22—H22B107.7
C9—C8—H8A109.6O4—C23—C22110.9 (6)
N1—C8—H8B109.6O4—C23—C24106.8 (7)
C9—C8—H8B109.6C22—C23—C24106.4 (10)
H8A—C8—H8B108.1O4—C23—H23110.9
C8—C9—C10111.0 (2)C22—C23—H23110.9
C8—C9—H9A109.4C24—C23—H23110.9
C10—C9—H9A109.4C25—C24—C23109.3 (10)
C8—C9—H9B109.4C25—C24—H24A109.8
C10—C9—H9B109.4C23—C24—H24A109.8
H9A—C9—H9B108.0C25—C24—H24B109.8
O2—C10—C11108.6 (2)C23—C24—H24B109.8
O2—C10—C9112.8 (2)H24A—C24—H24B108.3
C11—C10—C9109.2 (2)N2—C25—C24107.6 (10)
O2—C10—H10108.7N2—C25—H25A110.2
C11—C10—H10108.7C24—C25—H25A110.2
C9—C10—H10108.7N2—C25—H25B110.2
C10—C11—C12111.0 (2)C24—C25—H25B110.2
C10—C11—H11A109.4H25A—C25—H25B108.5
C12—C11—H11A109.4C23—O4—H4109.5
C10—C11—H11B109.4C20—N2—C25119.2 (7)
C12—C11—H11B109.4C20—N2—C21122.5 (8)
H11A—C11—H11B108.0C25—N2—C21116.6 (9)
N1—C12—C11110.3 (2)N2'—C21'—C22'115 (2)
N1—C12—H12A109.6N2'—C21'—H21C108.5
C11—C12—H12A109.6C22'—C21'—H21C108.5
N1—C12—H12B109.6N2'—C21'—H21D108.5
C11—C12—H12B109.6C22'—C21'—H21D108.5
H12A—C12—H12B108.1H21C—C21'—H21D107.5
C1—C13—Cl1111.73 (18)C23'—C22'—C21'106 (2)
C1—C13—H13A109.3C23'—C22'—H22C110.6
Cl1—C13—H13A109.3C21'—C22'—H22C110.6
C1—C13—H13B109.3C23'—C22'—H22D110.6
Cl1—C13—H13B109.3C21'—C22'—H22D110.6
H13A—C13—H13B107.9H22C—C22'—H22D108.7
C19—C14—C15118.6 (2)O4'—C23'—C22'115.4 (15)
C19—C14—C26120.4 (2)O4'—C23'—C24'100.2 (15)
C15—C14—C26121.1 (2)C22'—C23'—C24'113 (2)
C16—C15—C14120.8 (2)O4'—C23'—H23'109.4
C16—C15—H15119.6C22'—C23'—H23'109.4
C14—C15—H15119.6C24'—C23'—H23'109.4
C15—C16—C17120.6 (2)C25'—C24'—C23'113 (2)
C15—C16—H16119.7C25'—C24'—H24C109.0
C17—C16—H16119.7C23'—C24'—H24C109.0
C18—C17—C16119.0 (2)C25'—C24'—H24D109.0
C18—C17—C20121.3 (2)C23'—C24'—H24D109.0
C16—C17—C20119.4 (2)H24C—C24'—H24D107.8
C19—C18—C17120.4 (2)N2'—C25'—C24'115 (2)
C19—C18—H18119.8N2'—C25'—H25C108.5
C17—C18—H18119.8C24'—C25'—H25C108.5
C18—C19—C14120.7 (2)N2'—C25'—H25D108.5
C18—C19—H19119.7C24'—C25'—H25D108.5
C14—C19—H19119.7H25C—C25'—H25D107.5
O3—C20—N2122.4 (4)C23'—O4'—H4'109.5
O3—C20—N2'121.2 (8)C20—N2'—C21'129.3 (18)
O3—C20—C17118.9 (2)C20—N2'—C25'122.8 (15)
N2—C20—C17118.2 (4)C21'—N2'—C25'107.6 (19)
C6—C1—C2—C31.0 (4)C19—C14—C26—Cl2101.6 (3)
C13—C1—C2—C3179.7 (2)C15—C14—C26—Cl279.3 (3)
C1—C2—C3—C42.1 (4)O1—C7—N1—C123.4 (4)
C2—C3—C4—C51.4 (4)C4—C7—N1—C12173.9 (2)
C2—C3—C4—C7172.8 (2)O1—C7—N1—C8163.5 (2)
C3—C4—C5—C60.3 (4)C4—C7—N1—C819.2 (4)
C7—C4—C5—C6174.6 (2)C11—C12—N1—C7135.0 (2)
C4—C5—C6—C11.3 (4)C11—C12—N1—C856.6 (3)
C2—C1—C6—C50.6 (4)C9—C8—N1—C7135.6 (3)
C13—C1—C6—C5178.0 (2)C9—C8—N1—C1256.7 (3)
C5—C4—C7—O152.0 (3)N2—C21—C22—C2352.6 (15)
C3—C4—C7—O1122.2 (3)C21—C22—C23—O4176.1 (9)
C5—C4—C7—N1130.6 (2)C21—C22—C23—C2460.4 (12)
C3—C4—C7—N155.2 (3)O4—C23—C24—C25177.4 (8)
N1—C8—C9—C1056.2 (3)C22—C23—C24—C2564.1 (11)
C8—C9—C10—O2177.3 (2)C23—C24—C25—N261.6 (13)
C8—C9—C10—C1156.4 (3)O3—C20—N2—C250.8 (16)
O2—C10—C11—C12179.8 (2)C17—C20—N2—C25171.0 (9)
C9—C10—C11—C1256.4 (3)O3—C20—N2—C21163.4 (9)
C10—C11—C12—N156.2 (3)C17—C20—N2—C2124.7 (17)
C6—C1—C13—Cl178.8 (3)C24—C25—N2—C20138.2 (12)
C2—C1—C13—Cl1102.6 (3)C24—C25—N2—C2156.6 (15)
C19—C14—C15—C160.1 (4)C22—C21—N2—C20144.2 (14)
C26—C14—C15—C16179.2 (2)C22—C21—N2—C2551.2 (16)
C14—C15—C16—C171.3 (4)N2'—C21'—C22'—C23'63 (3)
C15—C16—C17—C181.3 (4)C21'—C22'—C23'—O4'67 (2)
C15—C16—C17—C20174.8 (2)C21'—C22'—C23'—C24'47 (2)
C16—C17—C18—C190.1 (4)O4'—C23'—C24'—C25'82 (2)
C20—C17—C18—C19173.3 (2)C22'—C23'—C24'—C25'42 (2)
C17—C18—C19—C141.5 (4)C23'—C24'—C25'—N2'46 (3)
C15—C14—C19—C181.5 (4)O3—C20—N2'—C21'173 (2)
C26—C14—C19—C18179.4 (2)C17—C20—N2'—C21'1 (4)
C18—C17—C20—O3118.4 (3)O3—C20—N2'—C25'15 (4)
C16—C17—C20—O355.0 (3)C17—C20—N2'—C25'172 (2)
C18—C17—C20—N253.7 (8)C22'—C21'—N2'—C20106 (3)
C16—C17—C20—N2132.9 (8)C22'—C21'—N2'—C25'68 (3)
C18—C17—C20—N2'67.9 (17)C24'—C25'—N2'—C20117 (3)
C16—C17—C20—N2'118.7 (17)C24'—C25'—N2'—C21'57 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.182.789 (2)132
O4—H4···O3ii0.822.132.793 (3)138
C11—H11B···O3iii0.972.603.522 (3)160
C26—H26A···O2iv0.972.593.494 (4)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.182.789 (2)132
O4—H4···O3ii0.822.132.793 (3)138
C11—H11B···O3iii0.972.603.522 (3)160
C26—H26A···O2iv0.972.593.494 (4)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the DST–FIST, Central Instrumentation Facility, Queen Mary's College, Chennai-4, for the computing facility and the SAIF, IIT, Madras, for the X-ray data-collection facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBolzani, V. da S., Gunatilaka, A. A. L. & Kingston, D. G. I. (1995). Tetrahedron, 51, 5929–5934.  CrossRef CAS Google Scholar
First citationBräu, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499–1505.  PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCampfield, L. A., Smith, F. J., Mackie, G., Tenenbaum, R., Sassano, M. L., Mullin, J. & Kierstead, R. W. (1995). Obes. Res. Clin. Pract. 3, 591S–603S.  CAS Google Scholar
First citationDaly, J. W. & Spande, T. F. (1986). Alkaloids: Chemical and Biological Perspectives, Vol. 4, edited by S. W. Pelletier, pp. 1–274. New York: Wiley.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFodor, G. B. & Colasanti, B. (1985). Alkaloids: Chemical and Biological Perspectives, Vol. 3, edited by S. W. Pelletier, pp. 1–91. New York: Wiley.  Google Scholar
First citationGulluoglu, M. T., Erdogdu, Y. & Yurdakul, S. (2007). J. Mol. Struct. pp. 834–836.  Google Scholar
First citationKozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962–1969.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o703-o704
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds