organic compounds
of 2-(2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)acetonitrile
aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com
In the title 3-azabicyclononane derivative, C22H22N2, both the fused piperidine and cyclohexane rings adopt a chair conformation. The phenyl rings attached to the central azabicylononane fragment in an equatorial orientation are inclined to each other at 23.7 (1)°. The amino group is not involved in any hydrogen bonding, so the crystal packing is stabilized only by van der Waals forces.
CCDC reference: 1426330
1. Related literature
For the biological activities of 3-azabicyclononane derivatives, see: Silver et al. (1967); Fleming & Wang (2003); Miller & Manson (2001); Fatiadi (1983). For related structures, see: Parthiban et al. (2008a,b,c,d,e).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 and PLATON.
Supporting information
CCDC reference: 1426330
10.1107/S2056989015017740/cv5495sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015017740/cv5495Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015017740/cv5495Isup3.cml
Nitrile derivatives received considerable interest since they have been used in biological field as well as in optical fields (Silver et al., 1967). Alkenyl
are unique structural units and versatile building blocks in organic synthesis for natural products, pharmaceuticals, agricultural chemicals, and dyes (Fleming & Wang, 2003; Miller & Manson,2001; Fatiadi, 1983). Hence, the synthesis and stereochemistry of 3-azabicyclononan-9-ones are under intensive study (Parthiban et al., 2008a, b, c, d, e). In continuation of our work with 3-azabicyclononane derivatives, we have undertaken the determination of the title compound, and the results are presented here.The molecular structure of the title compound is shown in Fig. 1. The bond length C22—N2 of 1.146 (2) Å confirms the triple bond character. Two phenyl rings attached to the 3-azabiclononane fragment form a dihedral angle of 23.7 (1)°. The piperidine (N1/C1—C5) and cyclohexane (C2—C4/C20/C19/C18) rings adopt chair conformation. This is confirmed by the puckering parameters q2 = 0.044 (1) Å, q3 = 0.598 (1) Å, QT = 0.600 (1) Å, φ = -156.7 (4)° for piperidine ring, and q2 = 0.122 (1) Å, q3 = -0.556 (1) Å, QT = 0.569 (1) Å, φ = -128.0 (1)° for cyclohexane ring. In the piperidine ring , atoms N1 and C3 deviate at 0.639 (1) and -0.705 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms, whereas in cyclohexane ring, atoms C19 and C3 deviate at 0.562 (1) and -0.721 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms.
The crystal packing is stabilized by
only, since the amino group is not involved in any hydrogen-bonding interactions.To a solution of the 2, 4-diphenyl-3-azabicyclo [3.3.1] nonan-9-one (500 mg, 1.72 mmol) in THF (5 mL), LiOH (212 mg, 3.516mmol) and diethylcyanomethyl phosphonate (364g, 1.4063mmol) was added. The reaction mixture was stirred at for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with ethyl acetate (45 mL). The organic layer was washed with water (10 mL X 3) and dried over Na2SO4. The filtrate was concentrated and the crude product mass was purified by column-chromatography over silica-gel (100–200 mesh) using petroleum ether and diethyl ether (5-10%) as
to give a colorless solid. This solid was recrystallized in ethyl acetate to yield a colourless crystals of the title compound.Atom H1N was located from a difference Fourier map and refined with a bond length restraint of 0.90 (2) Å. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93-0.98 Å, and Uiso(H) = 1.5Ueq (C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. |
C22H22N2 | Z = 2 |
Mr = 314.41 | F(000) = 336 |
Triclinic, P1 | Dx = 1.176 Mg m−3 |
a = 7.9672 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3129 (5) Å | Cell parameters from 9878 reflections |
c = 13.6069 (8) Å | θ = 2.3–27.2° |
α = 89.607 (4)° | µ = 0.07 mm−1 |
β = 81.886 (4)° | T = 296 K |
γ = 84.469 (4)° | Block, colourless |
V = 888.00 (9) Å3 | 0.23 × 0.21 × 0.19 mm |
Bruker SMART APEX CCD area-detector diffractometer | Rint = 0.034 |
Radiation source: fine-focus sealed tube | θmax = 27.2°, θmin = 1.5° |
ω scans | h = −10→10 |
14326 measured reflections | k = −9→10 |
3814 independent reflections | l = −17→17 |
2375 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0623P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3814 reflections | Δρmax = 0.13 e Å−3 |
221 parameters | Δρmin = −0.16 e Å−3 |
C22H22N2 | γ = 84.469 (4)° |
Mr = 314.41 | V = 888.00 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9672 (5) Å | Mo Kα radiation |
b = 8.3129 (5) Å | µ = 0.07 mm−1 |
c = 13.6069 (8) Å | T = 296 K |
α = 89.607 (4)° | 0.23 × 0.21 × 0.19 mm |
β = 81.886 (4)° |
Bruker SMART APEX CCD area-detector diffractometer | 2375 reflections with I > 2σ(I) |
14326 measured reflections | Rint = 0.034 |
3814 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.13 e Å−3 |
3814 reflections | Δρmin = −0.16 e Å−3 |
221 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.30954 (14) | 0.47358 (15) | 0.20403 (9) | 0.0491 (3) | |
H1N | 0.3354 (19) | 0.5473 (19) | 0.1565 (12) | 0.069 (5)* | |
N2 | 0.6722 (2) | 0.17287 (19) | 0.51383 (11) | 0.0845 (5) | |
C1 | 0.21406 (17) | 0.55407 (17) | 0.29305 (10) | 0.0494 (4) | |
H1A | 0.2864 | 0.6291 | 0.3178 | 0.059* | |
C2 | 0.17259 (18) | 0.42725 (18) | 0.37503 (11) | 0.0543 (4) | |
H2 | 0.1209 | 0.4846 | 0.4362 | 0.065* | |
C3 | 0.33678 (17) | 0.33590 (17) | 0.39353 (10) | 0.0518 (4) | |
C4 | 0.42543 (17) | 0.24949 (17) | 0.30202 (10) | 0.0503 (4) | |
H4 | 0.5326 | 0.1933 | 0.3171 | 0.060* | |
C5 | 0.46745 (16) | 0.37958 (17) | 0.22222 (10) | 0.0465 (3) | |
H5 | 0.5395 | 0.4532 | 0.2485 | 0.056* | |
C6 | 0.05227 (17) | 0.65065 (17) | 0.27059 (11) | 0.0511 (4) | |
C7 | −0.0303 (2) | 0.6131 (2) | 0.19207 (13) | 0.0661 (5) | |
H7 | 0.0167 | 0.5294 | 0.1487 | 0.079* | |
C8 | −0.1827 (2) | 0.6993 (2) | 0.17744 (15) | 0.0808 (5) | |
H8 | −0.2375 | 0.6731 | 0.1246 | 0.097* | |
C9 | −0.2528 (2) | 0.8236 (2) | 0.24123 (16) | 0.0825 (6) | |
H9 | −0.3550 | 0.8814 | 0.2314 | 0.099* | |
C10 | −0.1720 (2) | 0.8623 (2) | 0.31933 (15) | 0.0730 (5) | |
H10 | −0.2195 | 0.9459 | 0.3626 | 0.088* | |
C11 | −0.01988 (19) | 0.77658 (18) | 0.33353 (12) | 0.0607 (4) | |
H11 | 0.0348 | 0.8039 | 0.3862 | 0.073* | |
C12 | 0.56488 (17) | 0.30391 (16) | 0.12778 (10) | 0.0475 (3) | |
C13 | 0.48803 (19) | 0.2693 (2) | 0.04674 (11) | 0.0614 (4) | |
H13 | 0.3721 | 0.2981 | 0.0478 | 0.074* | |
C14 | 0.5812 (2) | 0.1923 (2) | −0.03620 (12) | 0.0710 (5) | |
H14 | 0.5270 | 0.1690 | −0.0899 | 0.085* | |
C15 | 0.7520 (2) | 0.1501 (2) | −0.03997 (13) | 0.0717 (5) | |
H15 | 0.8139 | 0.0983 | −0.0959 | 0.086* | |
C16 | 0.8314 (2) | 0.1848 (2) | 0.03951 (14) | 0.0772 (5) | |
H16 | 0.9478 | 0.1571 | 0.0375 | 0.093* | |
C17 | 0.73838 (18) | 0.2608 (2) | 0.12246 (12) | 0.0660 (5) | |
H17 | 0.7933 | 0.2837 | 0.1759 | 0.079* | |
C18 | 0.05238 (18) | 0.3031 (2) | 0.35037 (12) | 0.0643 (4) | |
H18A | 0.0231 | 0.2383 | 0.4087 | 0.077* | |
H18B | −0.0520 | 0.3606 | 0.3343 | 0.077* | |
C19 | 0.12981 (19) | 0.19133 (19) | 0.26393 (12) | 0.0634 (4) | |
H19A | 0.1298 | 0.2507 | 0.2023 | 0.076* | |
H19B | 0.0597 | 0.1028 | 0.2612 | 0.076* | |
C20 | 0.31190 (19) | 0.12269 (17) | 0.27312 (12) | 0.0588 (4) | |
H20A | 0.3635 | 0.0737 | 0.2102 | 0.071* | |
H20B | 0.3080 | 0.0382 | 0.3227 | 0.071* | |
C21 | 0.39261 (19) | 0.33330 (18) | 0.48167 (11) | 0.0575 (4) | |
H21 | 0.3278 | 0.3924 | 0.5339 | 0.069* | |
C22 | 0.5476 (2) | 0.2435 (2) | 0.49907 (11) | 0.0613 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0458 (7) | 0.0516 (7) | 0.0477 (7) | 0.0043 (5) | −0.0046 (5) | 0.0050 (6) |
N2 | 0.0855 (11) | 0.0958 (12) | 0.0753 (10) | 0.0097 (9) | −0.0348 (8) | 0.0004 (9) |
C1 | 0.0453 (8) | 0.0515 (8) | 0.0503 (9) | 0.0025 (6) | −0.0075 (6) | −0.0030 (7) |
C2 | 0.0505 (8) | 0.0635 (10) | 0.0454 (8) | 0.0066 (7) | −0.0029 (6) | −0.0003 (7) |
C3 | 0.0515 (8) | 0.0557 (9) | 0.0477 (9) | −0.0010 (7) | −0.0084 (7) | 0.0047 (7) |
C4 | 0.0473 (8) | 0.0552 (9) | 0.0479 (8) | 0.0069 (6) | −0.0127 (6) | 0.0020 (7) |
C5 | 0.0407 (7) | 0.0513 (8) | 0.0474 (8) | −0.0005 (6) | −0.0084 (6) | −0.0022 (7) |
C6 | 0.0474 (8) | 0.0488 (8) | 0.0552 (9) | 0.0015 (6) | −0.0043 (7) | 0.0033 (7) |
C7 | 0.0596 (10) | 0.0666 (10) | 0.0712 (11) | 0.0116 (8) | −0.0180 (8) | −0.0069 (9) |
C8 | 0.0714 (11) | 0.0835 (13) | 0.0895 (14) | 0.0119 (9) | −0.0310 (10) | −0.0014 (11) |
C9 | 0.0612 (11) | 0.0734 (12) | 0.1101 (16) | 0.0195 (9) | −0.0200 (10) | 0.0072 (11) |
C10 | 0.0662 (11) | 0.0580 (10) | 0.0882 (13) | 0.0135 (8) | −0.0014 (9) | −0.0027 (9) |
C11 | 0.0609 (9) | 0.0528 (9) | 0.0658 (10) | 0.0046 (7) | −0.0068 (8) | −0.0015 (8) |
C12 | 0.0451 (8) | 0.0486 (8) | 0.0479 (8) | −0.0007 (6) | −0.0067 (6) | 0.0008 (7) |
C13 | 0.0540 (9) | 0.0757 (11) | 0.0533 (10) | 0.0053 (8) | −0.0112 (7) | −0.0042 (8) |
C14 | 0.0782 (12) | 0.0826 (12) | 0.0512 (10) | 0.0030 (9) | −0.0127 (8) | −0.0090 (9) |
C15 | 0.0770 (12) | 0.0732 (11) | 0.0576 (10) | 0.0086 (9) | 0.0052 (9) | −0.0101 (9) |
C16 | 0.0508 (9) | 0.0956 (14) | 0.0791 (13) | 0.0118 (9) | −0.0002 (9) | −0.0140 (11) |
C17 | 0.0487 (9) | 0.0839 (12) | 0.0641 (11) | 0.0048 (8) | −0.0100 (7) | −0.0135 (9) |
C18 | 0.0487 (9) | 0.0721 (11) | 0.0706 (11) | −0.0041 (7) | −0.0051 (7) | 0.0172 (9) |
C19 | 0.0581 (9) | 0.0599 (10) | 0.0754 (11) | −0.0145 (7) | −0.0147 (8) | 0.0076 (9) |
C20 | 0.0652 (10) | 0.0510 (9) | 0.0601 (10) | −0.0017 (7) | −0.0112 (7) | 0.0066 (8) |
C21 | 0.0621 (9) | 0.0621 (10) | 0.0472 (9) | 0.0014 (7) | −0.0094 (7) | 0.0002 (7) |
C22 | 0.0708 (11) | 0.0681 (10) | 0.0478 (9) | −0.0033 (8) | −0.0204 (8) | 0.0011 (8) |
N1—C1 | 1.4651 (17) | C10—C11 | 1.383 (2) |
N1—C5 | 1.4665 (16) | C10—H10 | 0.9300 |
N1—H1N | 0.904 (16) | C11—H11 | 0.9300 |
N2—C22 | 1.1461 (18) | C12—C13 | 1.379 (2) |
C1—C6 | 1.5191 (18) | C12—C17 | 1.3860 (18) |
C1—C2 | 1.553 (2) | C13—C14 | 1.385 (2) |
C1—H1A | 0.9800 | C13—H13 | 0.9300 |
C2—C3 | 1.5000 (18) | C14—C15 | 1.365 (2) |
C2—C18 | 1.543 (2) | C14—H14 | 0.9300 |
C2—H2 | 0.9800 | C15—C16 | 1.373 (2) |
C3—C21 | 1.3361 (19) | C15—H15 | 0.9300 |
C3—C4 | 1.4939 (19) | C16—C17 | 1.381 (2) |
C4—C20 | 1.541 (2) | C16—H16 | 0.9300 |
C4—C5 | 1.5529 (19) | C17—H17 | 0.9300 |
C4—H4 | 0.9800 | C18—C19 | 1.526 (2) |
C5—C12 | 1.5116 (18) | C18—H18A | 0.9700 |
C5—H5 | 0.9800 | C18—H18B | 0.9700 |
C6—C7 | 1.384 (2) | C19—C20 | 1.5286 (19) |
C6—C11 | 1.385 (2) | C19—H19A | 0.9700 |
C7—C8 | 1.388 (2) | C19—H19B | 0.9700 |
C7—H7 | 0.9300 | C20—H20A | 0.9700 |
C8—C9 | 1.378 (2) | C20—H20B | 0.9700 |
C8—H8 | 0.9300 | C21—C22 | 1.428 (2) |
C9—C10 | 1.373 (3) | C21—H21 | 0.9300 |
C9—H9 | 0.9300 | ||
C1—N1—C5 | 113.55 (11) | C11—C10—H10 | 120.1 |
C1—N1—H1N | 110.1 (10) | C10—C11—C6 | 121.05 (16) |
C5—N1—H1N | 108.7 (9) | C10—C11—H11 | 119.5 |
N1—C1—C6 | 111.71 (11) | C6—C11—H11 | 119.5 |
N1—C1—C2 | 109.87 (11) | C13—C12—C17 | 117.63 (14) |
C6—C1—C2 | 110.76 (11) | C13—C12—C5 | 123.02 (12) |
N1—C1—H1A | 108.1 | C17—C12—C5 | 119.30 (12) |
C6—C1—H1A | 108.1 | C12—C13—C14 | 120.89 (14) |
C2—C1—H1A | 108.1 | C12—C13—H13 | 119.6 |
C3—C2—C18 | 107.86 (12) | C14—C13—H13 | 119.6 |
C3—C2—C1 | 108.18 (11) | C15—C14—C13 | 120.67 (15) |
C18—C2—C1 | 115.18 (12) | C15—C14—H14 | 119.7 |
C3—C2—H2 | 108.5 | C13—C14—H14 | 119.7 |
C18—C2—H2 | 108.5 | C14—C15—C16 | 119.43 (15) |
C1—C2—H2 | 108.5 | C14—C15—H15 | 120.3 |
C21—C3—C4 | 125.54 (13) | C16—C15—H15 | 120.3 |
C21—C3—C2 | 123.15 (14) | C15—C16—C17 | 119.93 (15) |
C4—C3—C2 | 111.31 (11) | C15—C16—H16 | 120.0 |
C3—C4—C20 | 108.48 (12) | C17—C16—H16 | 120.0 |
C3—C4—C5 | 107.33 (11) | C16—C17—C12 | 121.45 (15) |
C20—C4—C5 | 115.21 (11) | C16—C17—H17 | 119.3 |
C3—C4—H4 | 108.6 | C12—C17—H17 | 119.3 |
C20—C4—H4 | 108.6 | C19—C18—C2 | 113.21 (12) |
C5—C4—H4 | 108.6 | C19—C18—H18A | 108.9 |
N1—C5—C12 | 111.71 (11) | C2—C18—H18A | 108.9 |
N1—C5—C4 | 109.50 (10) | C19—C18—H18B | 108.9 |
C12—C5—C4 | 111.25 (11) | C2—C18—H18B | 108.9 |
N1—C5—H5 | 108.1 | H18A—C18—H18B | 107.7 |
C12—C5—H5 | 108.1 | C18—C19—C20 | 112.39 (13) |
C4—C5—H5 | 108.1 | C18—C19—H19A | 109.1 |
C7—C6—C11 | 118.53 (14) | C20—C19—H19A | 109.1 |
C7—C6—C1 | 122.50 (13) | C18—C19—H19B | 109.1 |
C11—C6—C1 | 118.91 (13) | C20—C19—H19B | 109.1 |
C6—C7—C8 | 120.54 (16) | H19A—C19—H19B | 107.9 |
C6—C7—H7 | 119.7 | C19—C20—C4 | 113.88 (12) |
C8—C7—H7 | 119.7 | C19—C20—H20A | 108.8 |
C9—C8—C7 | 120.01 (17) | C4—C20—H20A | 108.8 |
C9—C8—H8 | 120.0 | C19—C20—H20B | 108.8 |
C7—C8—H8 | 120.0 | C4—C20—H20B | 108.8 |
C10—C9—C8 | 120.03 (16) | H20A—C20—H20B | 107.7 |
C10—C9—H9 | 120.0 | C3—C21—C22 | 122.75 (14) |
C8—C9—H9 | 120.0 | C3—C21—H21 | 118.6 |
C9—C10—C11 | 119.84 (17) | C22—C21—H21 | 118.6 |
C9—C10—H10 | 120.1 | N2—C22—C21 | 179.18 (18) |
C5—N1—C1—C6 | 179.66 (11) | C6—C7—C8—C9 | 0.1 (3) |
C5—N1—C1—C2 | −57.00 (15) | C7—C8—C9—C10 | 0.0 (3) |
N1—C1—C2—C3 | 55.94 (15) | C8—C9—C10—C11 | 0.3 (3) |
C6—C1—C2—C3 | 179.83 (11) | C9—C10—C11—C6 | −0.6 (3) |
N1—C1—C2—C18 | −64.80 (15) | C7—C6—C11—C10 | 0.7 (2) |
C6—C1—C2—C18 | 59.09 (16) | C1—C6—C11—C10 | −176.43 (14) |
C18—C2—C3—C21 | −115.00 (16) | N1—C5—C12—C13 | −25.14 (19) |
C1—C2—C3—C21 | 119.81 (16) | C4—C5—C12—C13 | 97.57 (16) |
C18—C2—C3—C4 | 64.47 (15) | N1—C5—C12—C17 | 157.44 (13) |
C1—C2—C3—C4 | −60.72 (15) | C4—C5—C12—C17 | −79.85 (16) |
C21—C3—C4—C20 | 116.21 (16) | C17—C12—C13—C14 | 0.8 (2) |
C2—C3—C4—C20 | −63.25 (14) | C5—C12—C13—C14 | −176.61 (14) |
C21—C3—C4—C5 | −118.71 (15) | C12—C13—C14—C15 | −0.6 (3) |
C2—C3—C4—C5 | 61.83 (14) | C13—C14—C15—C16 | 0.0 (3) |
C1—N1—C5—C12 | −177.87 (11) | C14—C15—C16—C17 | 0.4 (3) |
C1—N1—C5—C4 | 58.42 (15) | C15—C16—C17—C12 | −0.1 (3) |
C3—C4—C5—N1 | −58.56 (14) | C13—C12—C17—C16 | −0.5 (2) |
C20—C4—C5—N1 | 62.36 (15) | C5—C12—C17—C16 | 177.05 (15) |
C3—C4—C5—C12 | 177.47 (10) | C3—C2—C18—C19 | −55.28 (16) |
C20—C4—C5—C12 | −61.61 (14) | C1—C2—C18—C19 | 65.64 (16) |
N1—C1—C6—C7 | 25.8 (2) | C2—C18—C19—C20 | 46.74 (17) |
C2—C1—C6—C7 | −97.05 (17) | C18—C19—C20—C4 | −45.54 (17) |
N1—C1—C6—C11 | −157.20 (13) | C3—C4—C20—C19 | 52.91 (15) |
C2—C1—C6—C11 | 79.97 (16) | C5—C4—C20—C19 | −67.39 (16) |
C11—C6—C7—C8 | −0.5 (2) | C4—C3—C21—C22 | −0.6 (2) |
C1—C6—C7—C8 | 176.55 (14) | C2—C3—C21—C22 | 178.80 (14) |
Experimental details
Crystal data | |
Chemical formula | C22H22N2 |
Mr | 314.41 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.9672 (5), 8.3129 (5), 13.6069 (8) |
α, β, γ (°) | 89.607 (4), 81.886 (4), 84.469 (4) |
V (Å3) | 888.00 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.23 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14326, 3814, 2375 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.643 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.131, 1.05 |
No. of reflections | 3814 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.13, −0.16 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).
Acknowledgements
KP is thankful to the UGC, New Delhi, for the award of a UGC–BSR–RFSMS Fellowship. The authors thank the Department of Biotechnology (DBT&NEC), New Delhi, for financial support, and the IIT - Guwahathi for the data collection.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fatiadi, A. J. (1983). In Preparation and Synthetic Applications of Cyano Compounds in Triple bonded functional groups. Vol. 2, edited by S. Patai & Z. Rappaport, pp. 1057–1303. Chichester: John Wiley & Sons, Ltd. Google Scholar
Fleming, F. F. & Wang, Q. (2003). Chem. Rev. 103, 2035–2078. CrossRef PubMed CAS Google Scholar
Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570. Web of Science CrossRef PubMed CAS Google Scholar
Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silver, R. F., Kerr, K. A., Frandsen, P. D., Kelley, S. J. & Holmes, H. L. (1967). Can. J. Chem. 45, 1001–1006. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.