organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o792-o793

Crystal structure of 2-(2,4-di­phenyl-3-aza­bi­cyclo­[3.3.1]nonan-9-yl­­idene)aceto­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 12 September 2015; accepted 21 September 2015; online 26 September 2015)

In the title 3-aza­bicyclo­nonane derivative, C22H22N2, both the fused piperidine and cyclo­hexane rings adopt a chair conformation. The phenyl rings attached to the central aza­bicylononane fragment in an equatorial orientation are inclined to each other at 23.7 (1)°. The amino group is not involved in any hydrogen bonding, so the crystal packing is stabilized only by van der Waals forces.

1. Related literature

For the biological activities of 3-aza­bicyclo­nonane derivatives, see: Silver et al. (1967[Silver, R. F., Kerr, K. A., Frandsen, P. D., Kelley, S. J. & Holmes, H. L. (1967). Can. J. Chem. 45, 1001-1006.]); Fleming & Wang (2003[Fleming, F. F. & Wang, Q. (2003). Chem. Rev. 103, 2035-2078.]); Miller & Manson (2001[Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.]); Fatiadi (1983[Fatiadi, A. J. (1983). In Preparation and Synthetic Applications of Cyano Compounds in Triple bonded functional groups. Vol. 2, edited by S. Patai & Z. Rappaport, pp. 1057-1303. Chichester: John Wiley & Sons, Ltd.]). For related structures, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.],d[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.],e[Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708-o1709.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H22N2

  • Mr = 314.41

  • Triclinic, [P \overline 1]

  • a = 7.9672 (5) Å

  • b = 8.3129 (5) Å

  • c = 13.6069 (8) Å

  • α = 89.607 (4)°

  • β = 81.886 (4)°

  • γ = 84.469 (4)°

  • V = 888.00 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 14326 measured reflections

  • 3814 independent reflections

  • 2375 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.05

  • 3814 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014/7 and PLATON.

Supporting information


Chemical context top

Nitrile derivatives received considerable inter­est since they have been used in biological field as well as in optical fields (Silver et al., 1967). Alkenyl nitriles are unique structural units and versatile building blocks in organic synthesis for natural products, pharmaceuticals, agricultural chemicals, and dyes (Fleming & Wang, 2003; Miller & Manson,2001; Fatiadi, 1983). Hence, the synthesis and stereochemistry of 3-aza­bicyclo­nonan-9-ones are under intensive study (Parthiban et al., 2008a, b, c, d, e). In continuation of our work with 3-aza­bicyclo­nonane derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The bond length C22—N2 of 1.146 (2) Å confirms the triple bond character. Two phenyl rings attached to the 3-aza­biclononane fragment form a dihedral angle of 23.7 (1)°. The piperidine (N1/C1—C5) and cyclo­hexane (C2—C4/C20/C19/C18) rings adopt chair conformation. This is confirmed by the puckering parameters q2 = 0.044 (1) Å, q3 = 0.598 (1) Å, QT = 0.600 (1) Å, φ = -156.7 (4)° for piperidine ring, and q2 = 0.122 (1) Å, q3 = -0.556 (1) Å, QT = 0.569 (1) Å, φ = -128.0 (1)° for cyclo­hexane ring. In the piperidine ring , atoms N1 and C3 deviate at 0.639 (1) and -0.705 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms, whereas in cyclo­hexane ring, atoms C19 and C3 deviate at 0.562 (1) and -0.721 (1) Å, respectively, from the least-squares plane formed by the remaining four atoms.

Supra­molecular features top

The crystal packing is stabilized by van der Waals forces only, since the amino group is not involved in any hydrogen-bonding inter­actions.

Synthesis and crystallization top

To a solution of the 2, 4-di­phenyl-3-aza­bicyclo [3.3.1] nonan-9-one (500 mg, 1.72 mmol) in THF (5 mL), LiOH (212 mg, 3.516mmol) and di­ethyl­cyano­methyl phospho­nate (364g, 1.4063mmol) was added. The reaction mixture was stirred at for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with ethyl acetate (45 mL). The organic layer was washed with water (10 mL X 3) and dried over Na2SO4. The filtrate was concentrated and the crude product mass was purified by column-chromatography over silica-gel (100–200 mesh) using petroleum ether and di­ethyl ether (5-10%) as eluent to give a colorless solid. This solid was recrystallized in ethyl acetate to yield a colourless crystals of the title compound.

Refinement top

Atom H1N was located from a difference Fourier map and refined with a bond length restraint of 0.90 (2) Å. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93-0.98 Å, and Uiso(H) = 1.5Ueq (C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Related literature top

For the biological activities of 3-azabicyclononane derivatives, see: Silver et al. (1967); Fleming & Wang (2003); Miller & Manson (2001); Fatiadi (1983). For related structures, see: Parthiban et al. (2008a,b,c,d,e).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
2-{2,4-Diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene}acetonitrile top
Crystal data top
C22H22N2Z = 2
Mr = 314.41F(000) = 336
Triclinic, P1Dx = 1.176 Mg m3
a = 7.9672 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3129 (5) ÅCell parameters from 9878 reflections
c = 13.6069 (8) Åθ = 2.3–27.2°
α = 89.607 (4)°µ = 0.07 mm1
β = 81.886 (4)°T = 296 K
γ = 84.469 (4)°Block, colourless
V = 888.00 (9) Å30.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.034
Radiation source: fine-focus sealed tubeθmax = 27.2°, θmin = 1.5°
ω scansh = 1010
14326 measured reflectionsk = 910
3814 independent reflectionsl = 1717
2375 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.0228P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3814 reflectionsΔρmax = 0.13 e Å3
221 parametersΔρmin = 0.16 e Å3
Crystal data top
C22H22N2γ = 84.469 (4)°
Mr = 314.41V = 888.00 (9) Å3
Triclinic, P1Z = 2
a = 7.9672 (5) ÅMo Kα radiation
b = 8.3129 (5) ŵ = 0.07 mm1
c = 13.6069 (8) ÅT = 296 K
α = 89.607 (4)°0.23 × 0.21 × 0.19 mm
β = 81.886 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2375 reflections with I > 2σ(I)
14326 measured reflectionsRint = 0.034
3814 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
3814 reflectionsΔρmin = 0.16 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30954 (14)0.47358 (15)0.20403 (9)0.0491 (3)
H1N0.3354 (19)0.5473 (19)0.1565 (12)0.069 (5)*
N20.6722 (2)0.17287 (19)0.51383 (11)0.0845 (5)
C10.21406 (17)0.55407 (17)0.29305 (10)0.0494 (4)
H1A0.28640.62910.31780.059*
C20.17259 (18)0.42725 (18)0.37503 (11)0.0543 (4)
H20.12090.48460.43620.065*
C30.33678 (17)0.33590 (17)0.39353 (10)0.0518 (4)
C40.42543 (17)0.24949 (17)0.30202 (10)0.0503 (4)
H40.53260.19330.31710.060*
C50.46745 (16)0.37958 (17)0.22222 (10)0.0465 (3)
H50.53950.45320.24850.056*
C60.05227 (17)0.65065 (17)0.27059 (11)0.0511 (4)
C70.0303 (2)0.6131 (2)0.19207 (13)0.0661 (5)
H70.01670.52940.14870.079*
C80.1827 (2)0.6993 (2)0.17744 (15)0.0808 (5)
H80.23750.67310.12460.097*
C90.2528 (2)0.8236 (2)0.24123 (16)0.0825 (6)
H90.35500.88140.23140.099*
C100.1720 (2)0.8623 (2)0.31933 (15)0.0730 (5)
H100.21950.94590.36260.088*
C110.01988 (19)0.77658 (18)0.33353 (12)0.0607 (4)
H110.03480.80390.38620.073*
C120.56488 (17)0.30391 (16)0.12778 (10)0.0475 (3)
C130.48803 (19)0.2693 (2)0.04674 (11)0.0614 (4)
H130.37210.29810.04780.074*
C140.5812 (2)0.1923 (2)0.03620 (12)0.0710 (5)
H140.52700.16900.08990.085*
C150.7520 (2)0.1501 (2)0.03997 (13)0.0717 (5)
H150.81390.09830.09590.086*
C160.8314 (2)0.1848 (2)0.03951 (14)0.0772 (5)
H160.94780.15710.03750.093*
C170.73838 (18)0.2608 (2)0.12246 (12)0.0660 (5)
H170.79330.28370.17590.079*
C180.05238 (18)0.3031 (2)0.35037 (12)0.0643 (4)
H18A0.02310.23830.40870.077*
H18B0.05200.36060.33430.077*
C190.12981 (19)0.19133 (19)0.26393 (12)0.0634 (4)
H19A0.12980.25070.20230.076*
H19B0.05970.10280.26120.076*
C200.31190 (19)0.12269 (17)0.27312 (12)0.0588 (4)
H20A0.36350.07370.21020.071*
H20B0.30800.03820.32270.071*
C210.39261 (19)0.33330 (18)0.48167 (11)0.0575 (4)
H210.32780.39240.53390.069*
C220.5476 (2)0.2435 (2)0.49907 (11)0.0613 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0458 (7)0.0516 (7)0.0477 (7)0.0043 (5)0.0046 (5)0.0050 (6)
N20.0855 (11)0.0958 (12)0.0753 (10)0.0097 (9)0.0348 (8)0.0004 (9)
C10.0453 (8)0.0515 (8)0.0503 (9)0.0025 (6)0.0075 (6)0.0030 (7)
C20.0505 (8)0.0635 (10)0.0454 (8)0.0066 (7)0.0029 (6)0.0003 (7)
C30.0515 (8)0.0557 (9)0.0477 (9)0.0010 (7)0.0084 (7)0.0047 (7)
C40.0473 (8)0.0552 (9)0.0479 (8)0.0069 (6)0.0127 (6)0.0020 (7)
C50.0407 (7)0.0513 (8)0.0474 (8)0.0005 (6)0.0084 (6)0.0022 (7)
C60.0474 (8)0.0488 (8)0.0552 (9)0.0015 (6)0.0043 (7)0.0033 (7)
C70.0596 (10)0.0666 (10)0.0712 (11)0.0116 (8)0.0180 (8)0.0069 (9)
C80.0714 (11)0.0835 (13)0.0895 (14)0.0119 (9)0.0310 (10)0.0014 (11)
C90.0612 (11)0.0734 (12)0.1101 (16)0.0195 (9)0.0200 (10)0.0072 (11)
C100.0662 (11)0.0580 (10)0.0882 (13)0.0135 (8)0.0014 (9)0.0027 (9)
C110.0609 (9)0.0528 (9)0.0658 (10)0.0046 (7)0.0068 (8)0.0015 (8)
C120.0451 (8)0.0486 (8)0.0479 (8)0.0007 (6)0.0067 (6)0.0008 (7)
C130.0540 (9)0.0757 (11)0.0533 (10)0.0053 (8)0.0112 (7)0.0042 (8)
C140.0782 (12)0.0826 (12)0.0512 (10)0.0030 (9)0.0127 (8)0.0090 (9)
C150.0770 (12)0.0732 (11)0.0576 (10)0.0086 (9)0.0052 (9)0.0101 (9)
C160.0508 (9)0.0956 (14)0.0791 (13)0.0118 (9)0.0002 (9)0.0140 (11)
C170.0487 (9)0.0839 (12)0.0641 (11)0.0048 (8)0.0100 (7)0.0135 (9)
C180.0487 (9)0.0721 (11)0.0706 (11)0.0041 (7)0.0051 (7)0.0172 (9)
C190.0581 (9)0.0599 (10)0.0754 (11)0.0145 (7)0.0147 (8)0.0076 (9)
C200.0652 (10)0.0510 (9)0.0601 (10)0.0017 (7)0.0112 (7)0.0066 (8)
C210.0621 (9)0.0621 (10)0.0472 (9)0.0014 (7)0.0094 (7)0.0002 (7)
C220.0708 (11)0.0681 (10)0.0478 (9)0.0033 (8)0.0204 (8)0.0011 (8)
Geometric parameters (Å, º) top
N1—C11.4651 (17)C10—C111.383 (2)
N1—C51.4665 (16)C10—H100.9300
N1—H1N0.904 (16)C11—H110.9300
N2—C221.1461 (18)C12—C131.379 (2)
C1—C61.5191 (18)C12—C171.3860 (18)
C1—C21.553 (2)C13—C141.385 (2)
C1—H1A0.9800C13—H130.9300
C2—C31.5000 (18)C14—C151.365 (2)
C2—C181.543 (2)C14—H140.9300
C2—H20.9800C15—C161.373 (2)
C3—C211.3361 (19)C15—H150.9300
C3—C41.4939 (19)C16—C171.381 (2)
C4—C201.541 (2)C16—H160.9300
C4—C51.5529 (19)C17—H170.9300
C4—H40.9800C18—C191.526 (2)
C5—C121.5116 (18)C18—H18A0.9700
C5—H50.9800C18—H18B0.9700
C6—C71.384 (2)C19—C201.5286 (19)
C6—C111.385 (2)C19—H19A0.9700
C7—C81.388 (2)C19—H19B0.9700
C7—H70.9300C20—H20A0.9700
C8—C91.378 (2)C20—H20B0.9700
C8—H80.9300C21—C221.428 (2)
C9—C101.373 (3)C21—H210.9300
C9—H90.9300
C1—N1—C5113.55 (11)C11—C10—H10120.1
C1—N1—H1N110.1 (10)C10—C11—C6121.05 (16)
C5—N1—H1N108.7 (9)C10—C11—H11119.5
N1—C1—C6111.71 (11)C6—C11—H11119.5
N1—C1—C2109.87 (11)C13—C12—C17117.63 (14)
C6—C1—C2110.76 (11)C13—C12—C5123.02 (12)
N1—C1—H1A108.1C17—C12—C5119.30 (12)
C6—C1—H1A108.1C12—C13—C14120.89 (14)
C2—C1—H1A108.1C12—C13—H13119.6
C3—C2—C18107.86 (12)C14—C13—H13119.6
C3—C2—C1108.18 (11)C15—C14—C13120.67 (15)
C18—C2—C1115.18 (12)C15—C14—H14119.7
C3—C2—H2108.5C13—C14—H14119.7
C18—C2—H2108.5C14—C15—C16119.43 (15)
C1—C2—H2108.5C14—C15—H15120.3
C21—C3—C4125.54 (13)C16—C15—H15120.3
C21—C3—C2123.15 (14)C15—C16—C17119.93 (15)
C4—C3—C2111.31 (11)C15—C16—H16120.0
C3—C4—C20108.48 (12)C17—C16—H16120.0
C3—C4—C5107.33 (11)C16—C17—C12121.45 (15)
C20—C4—C5115.21 (11)C16—C17—H17119.3
C3—C4—H4108.6C12—C17—H17119.3
C20—C4—H4108.6C19—C18—C2113.21 (12)
C5—C4—H4108.6C19—C18—H18A108.9
N1—C5—C12111.71 (11)C2—C18—H18A108.9
N1—C5—C4109.50 (10)C19—C18—H18B108.9
C12—C5—C4111.25 (11)C2—C18—H18B108.9
N1—C5—H5108.1H18A—C18—H18B107.7
C12—C5—H5108.1C18—C19—C20112.39 (13)
C4—C5—H5108.1C18—C19—H19A109.1
C7—C6—C11118.53 (14)C20—C19—H19A109.1
C7—C6—C1122.50 (13)C18—C19—H19B109.1
C11—C6—C1118.91 (13)C20—C19—H19B109.1
C6—C7—C8120.54 (16)H19A—C19—H19B107.9
C6—C7—H7119.7C19—C20—C4113.88 (12)
C8—C7—H7119.7C19—C20—H20A108.8
C9—C8—C7120.01 (17)C4—C20—H20A108.8
C9—C8—H8120.0C19—C20—H20B108.8
C7—C8—H8120.0C4—C20—H20B108.8
C10—C9—C8120.03 (16)H20A—C20—H20B107.7
C10—C9—H9120.0C3—C21—C22122.75 (14)
C8—C9—H9120.0C3—C21—H21118.6
C9—C10—C11119.84 (17)C22—C21—H21118.6
C9—C10—H10120.1N2—C22—C21179.18 (18)
C5—N1—C1—C6179.66 (11)C6—C7—C8—C90.1 (3)
C5—N1—C1—C257.00 (15)C7—C8—C9—C100.0 (3)
N1—C1—C2—C355.94 (15)C8—C9—C10—C110.3 (3)
C6—C1—C2—C3179.83 (11)C9—C10—C11—C60.6 (3)
N1—C1—C2—C1864.80 (15)C7—C6—C11—C100.7 (2)
C6—C1—C2—C1859.09 (16)C1—C6—C11—C10176.43 (14)
C18—C2—C3—C21115.00 (16)N1—C5—C12—C1325.14 (19)
C1—C2—C3—C21119.81 (16)C4—C5—C12—C1397.57 (16)
C18—C2—C3—C464.47 (15)N1—C5—C12—C17157.44 (13)
C1—C2—C3—C460.72 (15)C4—C5—C12—C1779.85 (16)
C21—C3—C4—C20116.21 (16)C17—C12—C13—C140.8 (2)
C2—C3—C4—C2063.25 (14)C5—C12—C13—C14176.61 (14)
C21—C3—C4—C5118.71 (15)C12—C13—C14—C150.6 (3)
C2—C3—C4—C561.83 (14)C13—C14—C15—C160.0 (3)
C1—N1—C5—C12177.87 (11)C14—C15—C16—C170.4 (3)
C1—N1—C5—C458.42 (15)C15—C16—C17—C120.1 (3)
C3—C4—C5—N158.56 (14)C13—C12—C17—C160.5 (2)
C20—C4—C5—N162.36 (15)C5—C12—C17—C16177.05 (15)
C3—C4—C5—C12177.47 (10)C3—C2—C18—C1955.28 (16)
C20—C4—C5—C1261.61 (14)C1—C2—C18—C1965.64 (16)
N1—C1—C6—C725.8 (2)C2—C18—C19—C2046.74 (17)
C2—C1—C6—C797.05 (17)C18—C19—C20—C445.54 (17)
N1—C1—C6—C11157.20 (13)C3—C4—C20—C1952.91 (15)
C2—C1—C6—C1179.97 (16)C5—C4—C20—C1967.39 (16)
C11—C6—C7—C80.5 (2)C4—C3—C21—C220.6 (2)
C1—C6—C7—C8176.55 (14)C2—C3—C21—C22178.80 (14)

Experimental details

Crystal data
Chemical formulaC22H22N2
Mr314.41
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9672 (5), 8.3129 (5), 13.6069 (8)
α, β, γ (°)89.607 (4), 81.886 (4), 84.469 (4)
V3)888.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14326, 3814, 2375
Rint0.034
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.05
No. of reflections3814
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL2014/7 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

KP is thankful to the UGC, New Delhi, for the award of a UGC–BSR–RFSMS Fellowship. The authors thank the Department of Biotechnology (DBT&NEC), New Delhi, for financial support, and the IIT - Guwahathi for the data collection.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatiadi, A. J. (1983). In Preparation and Synthetic Applications of Cyano Compounds in Triple bonded functional groups. Vol. 2, edited by S. Patai & Z. Rappaport, pp. 1057–1303. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationFleming, F. F. & Wang, Q. (2003). Chem. Rev. 103, 2035–2078.  CrossRef PubMed CAS Google Scholar
First citationMiller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563–570.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilver, R. F., Kerr, K. A., Frandsen, P. D., Kelley, S. J. & Holmes, H. L. (1967). Can. J. Chem. 45, 1001–1006.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o792-o793
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds