organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o786-o787

Crystal structure of N,N,N-tris­­[(1,3-benzo­thia­zol-2-yl)meth­yl]amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i., Czech Republic (Received 9 September 2015; accepted 17 September 2015; online 26 September 2015)

The title compound, C24H18N4S3, exhibits three near planar benzo­thia­zole systems in a pseudo-C3 conformation. The dihedral angles between the planes of the benzo­thia­zole groups range from 112.56 (4) to 124.68 (4)° In the crystal, mol­ecules are connected to each other through three short C—H⋯N contacts, forming an infinite chain along [100]. The molecules are also linked by ππ interactions with each of the three five-membered thiazole rings. [inter-centroid distance range: 3.614 (1)–4.074 (1) Å, inter-planar distance range: 3.4806 (17)–3.6902 (15) Å, slippage range: 0.759 (3)–1.887 (3) Å].

1. Related literature

For synthesis of the title compound and a structure of the ligand bound to copper, see: Thompson et al. (1980[Thompson, L. K., Ball, R. G. & Trotter, J. (1980). Can. J. Chem. 58, 1566-1576.]). For a related organic structure, see: Zhang et al. (2009[Zhang, Y., Zhao, B., Zhang, S., Qu, Y. & Xia, X. (2009). Acta Cryst. E65, o1674.]). For other related structures, see; Bautista & Thompson (1980[Bautista, D. V. & Thompson, L. K. (1980). Inorg. Chim. Acta, 42, 203-209.]); Pandey & Mathur (1995[Pandey, H. N. & Mathur, P. (1995). Indian J. Chem. Sect. A, 34, 186-190.]). For a study of its use as a ligand in azide–alkyne cyclo­additions, see: Rodionov, Presolski, Gardinier et al. (2007[Rodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H. & Finn, G. M. (2007). J. Am. Chem. Soc. 129, 12696-12704.]); Rodionov, Presolski, Diaz et al. (2007[Rodionov, V. O., Presolski, S. I., Diaz, D. D., Fokin, V. V. & Finn, M. G. (2007). J. Am. Chem. Soc. 129, 12705-12712.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H18N4S3

  • Mr = 495.66

  • Triclinic, [P \overline 1]

  • a = 6.6530 (3) Å

  • b = 14.3098 (6) Å

  • c = 14.5822 (7) Å

  • α = 61.471 (1)°

  • β = 88.474 (2)°

  • γ = 79.138 (1)°

  • V = 1194.61 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.967

  • 4691 measured reflections

  • 4691 independent reflections

  • 3767 reflections with I > 2σ(I)

  • Rint = 0.000

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.08

  • 4691 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N1i 0.95 2.47 3.376 (3) 159
C12—H12A⋯N2i 0.95 2.60 3.449 (2) 150
C20—H20A⋯N3i 0.95 2.54 3.490 (3) 178
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Tripodal ligands with nitro­gen donors have become a common motif in coordination chemistry. Herein we report the structure of tris­(benzo­thia­zolyl­methyl)­amine. The bond distances and angles of the complex are similar to the previously reported bis­(benzo­thia­zol-2-yl­methyl)­amine (Zhang et al., 2009). Copper and cobalt complexes of this ligand have been synthesized (Bautista & Thompson, 1980; Thompson et al., 1980, Pandey & Mathur, 1995) and copper complexes have been explored as catalysts for azide-alkyne cyclo­additions (Rodionov, Presolski, Diaz, et al., 2007; Rodionov, Presolski, Gardinier, et al. 2007).

The molecular structure of the title compound is shown in Figure 1. The compound possesses three planar benzo­thia­zoles that demonstrate a pseudo-C3 configuration. The planes of the three benzo­thia­zole ligands exhibit dihedral angles of 112.555 (2), 123.744 (2) and 124.677 (3). The structure exhibits infinite chains along [100] which result from three C—H···N short contacts. The packing of the title compound is shown in Figure 2.

Synthesis and crystallization top

The compound was prepared by literature procedure (Thompson et al., 1980). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a di­ethyl ether solution.

Refinement details top

The structure was solved by direct methods and all non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Hydrogen atoms were placed in calculated positions and then refined with riding models with C—H lengths of 0.99 Å for (CH2) and 0.95 Å for (CH) with isotropic displacement parameters set to 1.20 times Ueq of the parent C atoms. Diffused solvent (ethyl ether) was treated using Platon (Spek, 2009) program SQUEEZE (found void 157Å3, 48 electrons) and the unit card was adjusted by C4H10O to address issues of chemical formula, molecular mass, density and F000 value.

Related literature top

For synthesis of the title compound and a structure of the ligand bound to copper, see: Thompson et al. (1980). For a related organic structure, see: Zhang et al. (2009). For other related structures, see; Bautista & Thompson (1980); Pandey & Mathur (1995); Spek (2009). For a study of its use as a ligand in azide–alkyne cycloadditions, see: Rodionov, Presolski, Gardinier et al. (2007); Rodionov, Presolski, Diaz et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
N,N,N-Tris[(1,3-benzothiazol-2-yl)methyl]amine top
Crystal data top
C24H18N4S3Z = 2
Mr = 495.66F(000) = 518
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6530 (3) ÅCell parameters from 6510 reflections
b = 14.3098 (6) Åθ = 3.1–25.7°
c = 14.5822 (7) ŵ = 0.34 mm1
α = 61.471 (1)°T = 100 K
β = 88.474 (2)°Block, yellow
γ = 79.138 (1)°0.15 × 0.12 × 0.10 mm
V = 1194.61 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4691 independent reflections
Radiation source: fine-focus ROTATING ANODE3767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.951, Tmax = 0.967k = 1517
4691 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0926P]
where P = (Fo2 + 2Fc2)/3
4691 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H18N4S3γ = 79.138 (1)°
Mr = 495.66V = 1194.61 (9) Å3
Triclinic, P1Z = 2
a = 6.6530 (3) ÅMo Kα radiation
b = 14.3098 (6) ŵ = 0.34 mm1
c = 14.5822 (7) ÅT = 100 K
α = 61.471 (1)°0.15 × 0.12 × 0.10 mm
β = 88.474 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3767 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.967Rint = 0.0000
4691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
4691 reflectionsΔρmin = 0.29 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40279 (7)0.15702 (4)0.47208 (4)0.04313 (15)
S20.27604 (8)0.38911 (4)0.15881 (4)0.04461 (16)
S30.25502 (7)0.44886 (4)0.38876 (5)0.04767 (16)
N10.1195 (2)0.05355 (12)0.57200 (13)0.0416 (4)
N20.0211 (2)0.34050 (12)0.08966 (12)0.0405 (4)
N30.1239 (2)0.54789 (12)0.36542 (12)0.0382 (4)
N40.0043 (2)0.30973 (12)0.34526 (12)0.0368 (4)
C10.0012 (3)0.19336 (15)0.39103 (15)0.0418 (5)
H1B0.03580.17020.33750.050*
H1A0.13610.17840.41390.050*
C20.1562 (3)0.13010 (14)0.48240 (15)0.0384 (4)
C30.4652 (3)0.05555 (14)0.60010 (15)0.0387 (4)
C40.6507 (3)0.01905 (15)0.66060 (18)0.0483 (5)
H4A0.76860.04800.63180.058*
C50.6574 (3)0.06029 (16)0.76342 (18)0.0558 (6)
H5A0.78130.08530.80640.067*
C60.4877 (4)0.10437 (17)0.8055 (2)0.0628 (6)
H6A0.49620.15810.87700.075*
C70.3052 (3)0.07124 (16)0.74462 (18)0.0570 (6)
H7A0.19030.10350.77310.068*
C80.2940 (3)0.00976 (13)0.64160 (16)0.0403 (4)
C90.1080 (3)0.37025 (16)0.23985 (15)0.0424 (5)
H9A0.15360.44750.22140.051*
H9B0.23110.34120.23880.051*
C100.0308 (3)0.36203 (14)0.16109 (14)0.0374 (4)
C110.3140 (3)0.37193 (14)0.04962 (14)0.0375 (4)
C120.4860 (3)0.37765 (15)0.00699 (15)0.0440 (5)
H12A0.60350.39680.00990.053*
C130.4821 (3)0.35475 (16)0.08855 (15)0.0473 (5)
H13A0.59840.35820.12840.057*
C140.3113 (3)0.32676 (17)0.11319 (16)0.0521 (5)
H14A0.31290.31040.16920.063*
C150.1381 (3)0.32219 (17)0.05775 (16)0.0501 (5)
H15A0.02050.30390.07580.060*
C160.1393 (3)0.34469 (14)0.02442 (14)0.0377 (4)
C170.0894 (3)0.35415 (15)0.41340 (16)0.0411 (4)
H17A0.05000.29930.48750.049*
H17B0.24100.37190.40320.049*
C180.0096 (3)0.45492 (15)0.38820 (14)0.0375 (4)
C190.2093 (3)0.58523 (15)0.35501 (14)0.0385 (4)
C200.3495 (3)0.65143 (16)0.33751 (17)0.0477 (5)
H20A0.49300.62330.34680.057*
C210.2730 (4)0.75976 (17)0.30610 (18)0.0531 (5)
H21A0.36570.80730.29220.064*
C220.0642 (3)0.80027 (16)0.29458 (17)0.0521 (5)
H22A0.01590.87520.27260.062*
C230.0763 (3)0.73355 (16)0.31451 (17)0.0486 (5)
H23A0.21960.76170.30730.058*
C240.0023 (3)0.62444 (14)0.34531 (14)0.0364 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0398 (3)0.0435 (3)0.0487 (3)0.0190 (2)0.0104 (2)0.0209 (2)
S20.0367 (3)0.0614 (3)0.0469 (3)0.0167 (2)0.0027 (2)0.0324 (3)
S30.0343 (3)0.0435 (3)0.0722 (4)0.0075 (2)0.0131 (2)0.0339 (3)
N10.0365 (9)0.0334 (8)0.0527 (10)0.0113 (7)0.0097 (8)0.0179 (8)
N20.0331 (8)0.0457 (9)0.0415 (9)0.0078 (7)0.0041 (7)0.0197 (8)
N30.0354 (8)0.0461 (9)0.0381 (9)0.0046 (7)0.0009 (7)0.0253 (7)
N40.0352 (8)0.0386 (8)0.0390 (9)0.0090 (7)0.0041 (7)0.0201 (7)
C10.0392 (11)0.0432 (10)0.0479 (12)0.0160 (8)0.0061 (9)0.0232 (9)
C20.0373 (10)0.0346 (9)0.0504 (12)0.0123 (8)0.0103 (9)0.0247 (9)
C30.0369 (10)0.0308 (9)0.0528 (12)0.0070 (8)0.0085 (9)0.0237 (9)
C40.0384 (11)0.0405 (10)0.0672 (15)0.0057 (9)0.0051 (10)0.0277 (11)
C50.0469 (13)0.0415 (11)0.0648 (15)0.0036 (9)0.0063 (11)0.0183 (11)
C60.0592 (15)0.0426 (12)0.0606 (15)0.0021 (11)0.0007 (12)0.0085 (11)
C70.0500 (13)0.0374 (11)0.0658 (15)0.0093 (9)0.0130 (11)0.0110 (11)
C80.0378 (10)0.0288 (9)0.0525 (12)0.0066 (8)0.0088 (9)0.0184 (9)
C90.0331 (10)0.0485 (11)0.0446 (11)0.0055 (8)0.0005 (8)0.0225 (9)
C100.0324 (10)0.0362 (9)0.0390 (11)0.0056 (8)0.0043 (8)0.0146 (8)
C110.0368 (10)0.0353 (9)0.0334 (10)0.0069 (8)0.0041 (8)0.0109 (8)
C120.0406 (11)0.0473 (11)0.0415 (11)0.0137 (9)0.0020 (9)0.0176 (9)
C130.0490 (12)0.0500 (12)0.0358 (11)0.0078 (9)0.0037 (9)0.0158 (9)
C140.0560 (14)0.0618 (13)0.0373 (11)0.0071 (11)0.0024 (10)0.0244 (10)
C150.0468 (12)0.0616 (13)0.0448 (12)0.0143 (10)0.0070 (10)0.0263 (10)
C160.0376 (10)0.0362 (9)0.0334 (10)0.0043 (8)0.0069 (8)0.0126 (8)
C170.0345 (10)0.0463 (11)0.0481 (12)0.0117 (8)0.0106 (9)0.0261 (9)
C180.0350 (10)0.0444 (10)0.0371 (10)0.0087 (8)0.0070 (8)0.0228 (9)
C190.0393 (11)0.0428 (10)0.0401 (11)0.0071 (8)0.0080 (8)0.0258 (9)
C200.0420 (11)0.0521 (12)0.0616 (13)0.0119 (9)0.0134 (10)0.0368 (11)
C210.0573 (14)0.0525 (12)0.0647 (15)0.0193 (10)0.0162 (11)0.0379 (11)
C220.0600 (14)0.0419 (11)0.0588 (14)0.0065 (10)0.0019 (11)0.0290 (10)
C230.0453 (12)0.0484 (11)0.0535 (13)0.0009 (9)0.0042 (10)0.0290 (10)
C240.0387 (10)0.0426 (10)0.0330 (10)0.0058 (8)0.0010 (8)0.0230 (8)
Geometric parameters (Å, º) top
S1—C31.729 (2)C7—H7A0.9500
S1—C21.7415 (18)C9—C101.489 (3)
S2—C111.729 (2)C9—H9A0.9900
S2—C101.7423 (18)C9—H9B0.9900
S3—C191.7349 (18)C11—C121.385 (3)
S3—C181.7460 (18)C11—C161.403 (3)
N1—C21.297 (2)C12—C131.378 (3)
N1—C81.397 (2)C12—H12A0.9500
N2—C101.290 (2)C13—C141.383 (3)
N2—C161.401 (2)C13—H13A0.9500
N3—C181.292 (2)C14—C151.384 (3)
N3—C241.398 (2)C14—H14A0.9500
N4—C11.462 (2)C15—C161.382 (3)
N4—C91.466 (2)C15—H15A0.9500
N4—C171.466 (2)C17—C181.506 (2)
C1—C21.493 (3)C17—H17A0.9900
C1—H1B0.9900C17—H17B0.9900
C1—H1A0.9900C19—C201.386 (3)
C3—C41.396 (3)C19—C241.398 (3)
C3—C81.399 (3)C20—C211.381 (3)
C4—C51.377 (3)C20—H20A0.9500
C4—H4A0.9500C21—C221.382 (3)
C5—C61.382 (3)C21—H21A0.9500
C5—H5A0.9500C22—C231.388 (3)
C6—C71.388 (3)C22—H22A0.9500
C6—H6A0.9500C23—C241.391 (3)
C7—C81.384 (3)C23—H23A0.9500
C3—S1—C289.03 (9)C12—C11—C16121.21 (18)
C11—S2—C1089.09 (9)C12—C11—S2129.24 (15)
C19—S3—C1889.02 (9)C16—C11—S2109.49 (14)
C2—N1—C8110.35 (15)C13—C12—C11118.16 (19)
C10—N2—C16110.28 (15)C13—C12—H12A120.9
C18—N3—C24110.23 (15)C11—C12—H12A120.9
C1—N4—C9111.51 (14)C12—C13—C14120.96 (19)
C1—N4—C17112.81 (14)C12—C13—H13A119.5
C9—N4—C17112.20 (14)C14—C13—H13A119.5
N4—C1—C2110.82 (14)C13—C14—C15121.1 (2)
N4—C1—H1B109.5C13—C14—H14A119.4
C2—C1—H1B109.5C15—C14—H14A119.4
N4—C1—H1A109.5C16—C15—C14118.71 (19)
C2—C1—H1A109.5C16—C15—H15A120.6
H1B—C1—H1A108.1C14—C15—H15A120.6
N1—C2—C1123.72 (17)C15—C16—N2125.52 (18)
N1—C2—S1116.22 (15)C15—C16—C11119.80 (18)
C1—C2—S1120.06 (13)N2—C16—C11114.66 (16)
C4—C3—C8120.91 (18)N4—C17—C18109.94 (14)
C4—C3—S1129.40 (15)N4—C17—H17A109.7
C8—C3—S1109.69 (14)C18—C17—H17A109.7
C5—C4—C3117.91 (19)N4—C17—H17B109.7
C5—C4—H4A121.0C18—C17—H17B109.7
C3—C4—H4A121.0H17A—C17—H17B108.2
C4—C5—C6121.4 (2)N3—C18—C17124.56 (16)
C4—C5—H5A119.3N3—C18—S3116.31 (14)
C6—C5—H5A119.3C17—C18—S3119.13 (14)
C5—C6—C7120.9 (2)C20—C19—C24121.92 (17)
C5—C6—H6A119.6C20—C19—S3128.84 (15)
C7—C6—H6A119.6C24—C19—S3109.24 (13)
C8—C7—C6118.6 (2)C21—C20—C19117.64 (19)
C8—C7—H7A120.7C21—C20—H20A121.2
C6—C7—H7A120.7C19—C20—H20A121.2
C7—C8—N1125.12 (18)C20—C21—C22121.2 (2)
C7—C8—C3120.18 (19)C20—C21—H21A119.4
N1—C8—C3114.70 (17)C22—C21—H21A119.4
N4—C9—C10111.13 (15)C21—C22—C23121.23 (19)
N4—C9—H9A109.4C21—C22—H22A119.4
C10—C9—H9A109.4C23—C22—H22A119.4
N4—C9—H9B109.4C22—C23—C24118.42 (19)
C10—C9—H9B109.4C22—C23—H23A120.8
H9A—C9—H9B108.0C24—C23—H23A120.8
N2—C10—C9124.19 (17)C23—C24—N3125.21 (17)
N2—C10—S2116.46 (15)C23—C24—C19119.57 (17)
C9—C10—S2119.28 (14)N3—C24—C19115.20 (16)
C9—N4—C1—C2163.44 (15)C11—C12—C13—C140.0 (3)
C17—N4—C1—C269.23 (19)C12—C13—C14—C150.8 (3)
C8—N1—C2—C1179.97 (16)C13—C14—C15—C160.9 (3)
C8—N1—C2—S10.3 (2)C14—C15—C16—N2178.09 (17)
N4—C1—C2—N1132.22 (18)C14—C15—C16—C110.3 (3)
N4—C1—C2—S148.1 (2)C10—N2—C16—C15177.63 (18)
C3—S1—C2—N10.28 (15)C10—N2—C16—C110.8 (2)
C3—S1—C2—C1179.47 (15)C12—C11—C16—C150.5 (3)
C2—S1—C3—C4179.89 (18)S2—C11—C16—C15177.11 (15)
C2—S1—C3—C80.75 (14)C12—C11—C16—N2179.05 (16)
C8—C3—C4—C52.5 (3)S2—C11—C16—N21.42 (19)
S1—C3—C4—C5176.78 (16)C1—N4—C17—C18155.22 (15)
C3—C4—C5—C61.2 (3)C9—N4—C17—C1877.82 (19)
C4—C5—C6—C71.1 (4)C24—N3—C18—C17179.50 (16)
C5—C6—C7—C82.2 (3)C24—N3—C18—S30.4 (2)
C6—C7—C8—N1178.05 (19)N4—C17—C18—N3126.01 (19)
C6—C7—C8—C30.9 (3)N4—C17—C18—S353.8 (2)
C2—N1—C8—C7178.12 (19)C19—S3—C18—N30.05 (15)
C2—N1—C8—C30.9 (2)C19—S3—C18—C17179.91 (15)
C4—C3—C8—C71.4 (3)C18—S3—C19—C20179.60 (19)
S1—C3—C8—C7177.98 (16)C18—S3—C19—C240.43 (14)
C4—C3—C8—N1179.48 (16)C24—C19—C20—C212.3 (3)
S1—C3—C8—N11.1 (2)S3—C19—C20—C21176.77 (16)
C1—N4—C9—C1079.28 (18)C19—C20—C21—C221.3 (3)
C17—N4—C9—C10153.06 (15)C20—C21—C22—C230.2 (3)
C16—N2—C10—C9176.60 (16)C21—C22—C23—C240.8 (3)
C16—N2—C10—S20.2 (2)C22—C23—C24—N3178.19 (18)
N4—C9—C10—N2133.35 (18)C22—C23—C24—C190.2 (3)
N4—C9—C10—S249.92 (19)C18—N3—C24—C23177.37 (18)
C11—S2—C10—N20.87 (15)C18—N3—C24—C190.7 (2)
C11—S2—C10—C9176.10 (15)C20—C19—C24—C231.8 (3)
C10—S2—C11—C12178.60 (18)S3—C19—C24—C23177.46 (14)
C10—S2—C11—C161.23 (13)C20—C19—C24—N3179.98 (17)
C16—C11—C12—C130.6 (3)S3—C19—C24—N30.7 (2)
S2—C11—C12—C13176.48 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.952.473.376 (3)159
C12—H12A···N2i0.952.603.449 (2)150
C20—H20A···N3i0.952.543.490 (3)178
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.95002.47003.376 (3)158.9
C12—H12A···N2i0.95002.60003.449 (2)149.5
C20—H20A···N3i0.95002.54003.490 (3)177.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1229339 and CHE-1429086).

References

First citationBautista, D. V. & Thompson, L. K. (1980). Inorg. Chim. Acta, 42, 203–209.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPandey, H. N. & Mathur, P. (1995). Indian J. Chem. Sect. A, 34, 186–190.  Google Scholar
First citationRodionov, V. O., Presolski, S. I., Diaz, D. D., Fokin, V. V. & Finn, M. G. (2007). J. Am. Chem. Soc. 129, 12705–12712.  CrossRef PubMed CAS Google Scholar
First citationRodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H. & Finn, G. M. (2007). J. Am. Chem. Soc. 129, 12696–12704.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, L. K., Ball, R. G. & Trotter, J. (1980). Can. J. Chem. 58, 1566–1576.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Zhao, B., Zhang, S., Qu, Y. & Xia, X. (2009). Acta Cryst. E65, o1674.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o786-o787
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds