organic compounds
The
of 2-[5-(dimethylamino)naphthalene-1-sulfonamido]phenyl 5-(dimethylamino)naphthalene-1-sulfonateaDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand, bDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, cSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and dDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
*Correspondence e-mail: fscibnw@ku.ac.th
The complete molecule of the title compound, C30H29N3O5S2, is generated by a crystallographic twofold axis: the O atom and NH group attached to the central benzene ring are statistically disordered. The dihedral angle between the naphthalene ring system and the central benzene ring is 52.99 (6)°, while the pendant naphthalene ring systems subtend a dihedral angle of 68.17 (4)°. An intramolecular C—H⋯O hydrogen bond closes an S(6) ring. In the crystal, the molecules are linked by weak C—H⋯O hydrogen bonds.
Keywords: crystal structure; dansyl derivatives; disorder; hydrogen bonding; π-stacking.
CCDC reference: 1421273
1. Related literature
For the use of dansyl tags to monitor biological activity in enzyme systems, see: Brown et al. (1970); Liu et al. (2010). Dansyl-conjugated has been used to modulate the fluorescence resonance (FRET) mechanism, see: Li et al. (2006). Dansyl fluorogenic sensors have been used for the recognition and detection of targets such as cationic and anionic species, see: Cao et al. (2014); Jisha et al. (2009); Bhalla et al. (2007). For crystal structures of dansyl derivatives, see: Bhatt et al. (2011); Zhang et al. (2009) and of metal–calix[4]arene complexes bearing two dansyl carboxamide units, see: Buie et al. (2008).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1421273
10.1107/S2056989015016199/gw2153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock bw6. DOI: 10.1107/S2056989015016199/gw2153Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016199/gw2153Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989015016199/gw2153Isup4.cml
Dansyl derivatives can be widely used as fluorescence probes in biological and environmental systems. Dansyl tags have been increasingly used to monitor biological activities in the enzyme system for providing the accurate information (Brown et al., 1970; Liu et al., 2010). An example is dansyl-conjugated
for modulating fluorescence resonance (FRET) mechanism (Li et al. 2006). Furthermore, dansyl fluorogenic sensors were prepared for recognition and detection of many targets such as cationic and anionic species (Cao et al., 2014; Jisha et al., 2009; Bhalla et al., 2007). Crystal structures of dansyl derivatives (Bhatt et al., 2011; Zhang et al., 2009) and metal complexes of calix[4]arene bearing two dansyl carboxamide units have been reported (Buie et al., 2008).The title compound was synthesized by condensation of 2-aminophenol (0.55 g, 5.04 mmol) and dansyl chloride (2.72 g, 10.08 mmol) using potassium carbonate (17.27 g, 12.50 mmol) as a base in acetonitrile (30 ml). The solution was heated and stirred under N2 atmosphere for 24 h. The solvent was then removed by a rotary evaporator. Water (10 ml) was added to the residue and the organic phase was extracted with dichloromethane (3 x 20 ml). The organic layer was dried with Na2SO4. The product was purified by
using dichloromethane as an The solvent was evaporated to afford a yellow crystalline solid in 55% yield. Single crystals suitable for X-ray measurements were obtained by recrystallization using the mixture solution of dichloromethane and hexane (1:1, v/v) at room temperature.Atom O1 and the N1H1 group attached to the central benzene ring are statistically disordered and were refined with the occupancies of the N, H and O atoms fixed at 0.5. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The N-bound H-atom was refined with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C30H29N3O5S2 | F(000) = 1208 |
Mr = 575.68 | Dx = 1.381 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7594 (13) Å | Cell parameters from 4957 reflections |
b = 13.3481 (14) Å | θ = 3.1–25.7° |
c = 16.4331 (17) Å | µ = 0.24 mm−1 |
β = 98.349 (4)° | T = 296 K |
V = 2769.1 (5) Å3 | Block, light green |
Z = 4 | 0.26 × 0.22 × 0.22 mm |
Bruker D8 QUEST CMOS diffractometer | 3444 independent reflections |
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 2246 reflections with I > 2σ(I) |
GraphiteDouble Bounce Multilayer Mirror monochromator | Rint = 0.041 |
Detector resolution: 10.5 pixels mm-1 | θmax = 28.3°, θmin = 3.1° |
ω and φ scans | h = −15→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −17→17 |
Tmin = 0.698, Tmax = 0.746 | l = −21→21 |
17644 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0488P)2 + 1.1669P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3444 reflections | Δρmax = 0.26 e Å−3 |
186 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
C30H29N3O5S2 | V = 2769.1 (5) Å3 |
Mr = 575.68 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.7594 (13) Å | µ = 0.24 mm−1 |
b = 13.3481 (14) Å | T = 296 K |
c = 16.4331 (17) Å | 0.26 × 0.22 × 0.22 mm |
β = 98.349 (4)° |
Bruker D8 QUEST CMOS diffractometer | 3444 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 2246 reflections with I > 2σ(I) |
Tmin = 0.698, Tmax = 0.746 | Rint = 0.041 |
17644 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3444 reflections | Δρmin = −0.23 e Å−3 |
186 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.69732 (3) | 0.73580 (4) | 0.32645 (3) | 0.05431 (17) | |
N1 | 0.603 (2) | 0.709 (2) | 0.2569 (14) | 0.0418 (18) | 0.5 |
H1 | 0.5801 | 0.7537 | 0.2215 | 0.050* | 0.5 |
O2 | 0.77825 (10) | 0.66139 (12) | 0.33521 (10) | 0.0736 (5) | |
O3 | 0.72349 (11) | 0.83601 (11) | 0.30878 (10) | 0.0711 (4) | |
N2 | 0.35617 (13) | 0.82675 (13) | 0.57539 (10) | 0.0609 (5) | |
C11 | 0.55450 (13) | 0.61136 (13) | 0.25005 (10) | 0.0433 (4) | |
C5 | 0.49120 (13) | 0.77874 (12) | 0.49182 (10) | 0.0427 (4) | |
C6 | 0.54736 (13) | 0.79731 (12) | 0.42414 (10) | 0.0413 (4) | |
C1 | 0.62854 (13) | 0.72779 (13) | 0.41220 (11) | 0.0450 (4) | |
C10 | 0.40779 (14) | 0.84536 (14) | 0.50673 (12) | 0.0495 (4) | |
C12 | 0.60785 (15) | 0.52183 (15) | 0.24889 (12) | 0.0543 (5) | |
H12 | 0.6806 | 0.5215 | 0.2481 | 0.065* | |
C7 | 0.51636 (15) | 0.87928 (13) | 0.37174 (11) | 0.0500 (4) | |
H7 | 0.5533 | 0.8940 | 0.3285 | 0.060* | |
C4 | 0.51413 (16) | 0.69084 (14) | 0.53896 (12) | 0.0531 (5) | |
H4 | 0.4748 | 0.6766 | 0.5810 | 0.064* | |
C2 | 0.65034 (16) | 0.64565 (15) | 0.46148 (12) | 0.0582 (5) | |
H2 | 0.7046 | 0.6022 | 0.4527 | 0.070* | |
C9 | 0.37880 (17) | 0.92039 (15) | 0.45129 (13) | 0.0612 (5) | |
H9 | 0.3220 | 0.9615 | 0.4583 | 0.073* | |
C8 | 0.43259 (17) | 0.93625 (15) | 0.38477 (13) | 0.0611 (5) | |
H8 | 0.4104 | 0.9876 | 0.3480 | 0.073* | |
C13 | 0.55357 (17) | 0.43329 (16) | 0.24897 (14) | 0.0665 (6) | |
H13 | 0.5895 | 0.3728 | 0.2476 | 0.080* | |
C3 | 0.59130 (17) | 0.62698 (15) | 0.52481 (13) | 0.0635 (6) | |
H3 | 0.6052 | 0.5702 | 0.5574 | 0.076* | |
C14 | 0.41854 (19) | 0.83896 (17) | 0.65611 (13) | 0.0707 (6) | |
H14A | 0.4905 | 0.8197 | 0.6537 | 0.106* | |
H14B | 0.3898 | 0.7975 | 0.6951 | 0.106* | |
H14C | 0.4165 | 0.9078 | 0.6727 | 0.106* | |
C15 | 0.25143 (19) | 0.8715 (2) | 0.57308 (17) | 0.0878 (8) | |
H15A | 0.2587 | 0.9419 | 0.5846 | 0.132* | |
H15B | 0.2153 | 0.8401 | 0.6136 | 0.132* | |
H15C | 0.2114 | 0.8620 | 0.5195 | 0.132* | |
O1 | 0.6121 (16) | 0.7010 (16) | 0.2444 (11) | 0.0418 (18) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0322 (2) | 0.0701 (4) | 0.0622 (3) | −0.0032 (2) | 0.0121 (2) | −0.0040 (3) |
N1 | 0.035 (3) | 0.051 (3) | 0.043 (5) | 0.0008 (19) | 0.017 (2) | −0.002 (3) |
O2 | 0.0366 (7) | 0.1019 (12) | 0.0833 (10) | 0.0177 (7) | 0.0120 (7) | −0.0060 (9) |
O3 | 0.0528 (8) | 0.0783 (10) | 0.0848 (10) | −0.0260 (7) | 0.0188 (7) | −0.0017 (8) |
N2 | 0.0564 (10) | 0.0708 (12) | 0.0595 (10) | 0.0057 (8) | 0.0213 (8) | −0.0053 (8) |
C11 | 0.0430 (9) | 0.0499 (10) | 0.0401 (9) | −0.0004 (8) | 0.0161 (8) | 0.0007 (8) |
C5 | 0.0422 (9) | 0.0435 (10) | 0.0411 (9) | 0.0018 (7) | 0.0023 (7) | −0.0002 (7) |
C6 | 0.0387 (9) | 0.0416 (9) | 0.0426 (9) | −0.0021 (7) | 0.0023 (7) | −0.0026 (7) |
C1 | 0.0367 (9) | 0.0517 (10) | 0.0454 (10) | 0.0024 (8) | 0.0017 (7) | −0.0020 (8) |
C10 | 0.0474 (10) | 0.0508 (11) | 0.0509 (11) | 0.0029 (8) | 0.0088 (8) | −0.0037 (8) |
C12 | 0.0515 (11) | 0.0591 (13) | 0.0566 (11) | 0.0084 (9) | 0.0225 (9) | 0.0023 (9) |
C7 | 0.0572 (11) | 0.0458 (10) | 0.0478 (10) | 0.0015 (9) | 0.0101 (9) | 0.0054 (8) |
C4 | 0.0616 (12) | 0.0523 (11) | 0.0459 (10) | 0.0048 (9) | 0.0098 (9) | 0.0076 (9) |
C2 | 0.0543 (11) | 0.0605 (12) | 0.0585 (12) | 0.0223 (9) | 0.0033 (9) | 0.0026 (10) |
C9 | 0.0606 (12) | 0.0543 (12) | 0.0702 (13) | 0.0212 (10) | 0.0144 (10) | 0.0039 (10) |
C8 | 0.0715 (14) | 0.0484 (11) | 0.0626 (12) | 0.0162 (10) | 0.0074 (10) | 0.0128 (9) |
C13 | 0.0791 (14) | 0.0509 (12) | 0.0752 (14) | 0.0108 (10) | 0.0306 (13) | 0.0021 (11) |
C3 | 0.0775 (14) | 0.0554 (12) | 0.0570 (12) | 0.0212 (11) | 0.0078 (11) | 0.0144 (10) |
C14 | 0.0904 (17) | 0.0706 (15) | 0.0549 (13) | 0.0006 (12) | 0.0233 (12) | −0.0004 (11) |
C15 | 0.0640 (14) | 0.111 (2) | 0.0949 (19) | 0.0165 (14) | 0.0343 (14) | −0.0055 (15) |
O1 | 0.035 (3) | 0.051 (3) | 0.043 (5) | 0.0008 (19) | 0.017 (2) | −0.002 (3) |
S1—N1 | 1.58 (3) | C12—H12 | 0.9300 |
S1—O2 | 1.4248 (14) | C12—C13 | 1.370 (3) |
S1—O3 | 1.4189 (15) | C7—H7 | 0.9300 |
S1—C1 | 1.7681 (18) | C7—C8 | 1.354 (3) |
S1—O1 | 1.67 (2) | C4—H4 | 0.9300 |
N1—H1 | 0.8600 | C4—C3 | 1.348 (3) |
N1—C11 | 1.44 (3) | C2—H2 | 0.9300 |
N2—C10 | 1.409 (2) | C2—C3 | 1.393 (3) |
N2—C14 | 1.454 (3) | C9—H9 | 0.9300 |
N2—C15 | 1.459 (3) | C9—C8 | 1.389 (3) |
C11—C11i | 1.391 (3) | C8—H8 | 0.9300 |
C11—C12 | 1.377 (2) | C13—C13i | 1.372 (4) |
C11—O1 | 1.41 (2) | C13—H13 | 0.9300 |
C5—C6 | 1.429 (2) | C3—H3 | 0.9300 |
C5—C10 | 1.435 (2) | C14—H14A | 0.9600 |
C5—C4 | 1.413 (2) | C14—H14B | 0.9600 |
C6—C1 | 1.425 (2) | C14—H14C | 0.9600 |
C6—C7 | 1.413 (2) | C15—H15A | 0.9600 |
C1—C2 | 1.367 (3) | C15—H15B | 0.9600 |
C10—C9 | 1.368 (3) | C15—H15C | 0.9600 |
N1—S1—C1 | 98.6 (8) | C6—C7—H7 | 120.1 |
O2—S1—N1 | 112.1 (9) | C8—C7—C6 | 119.74 (17) |
O2—S1—C1 | 108.28 (9) | C8—C7—H7 | 120.1 |
O2—S1—O1 | 105.4 (6) | C5—C4—H4 | 119.0 |
O3—S1—N1 | 104.3 (10) | C3—C4—C5 | 121.93 (18) |
O3—S1—O2 | 119.29 (9) | C3—C4—H4 | 119.0 |
O3—S1—C1 | 112.27 (9) | C1—C2—H2 | 120.0 |
O3—S1—O1 | 104.0 (7) | C1—C2—C3 | 120.02 (18) |
O1—S1—C1 | 106.6 (6) | C3—C2—H2 | 120.0 |
S1—N1—H1 | 118.6 | C10—C9—H9 | 119.4 |
C11—N1—S1 | 122.8 (18) | C10—C9—C8 | 121.27 (18) |
C11—N1—H1 | 118.6 | C8—C9—H9 | 119.4 |
C10—N2—C14 | 116.97 (16) | C7—C8—C9 | 122.05 (18) |
C10—N2—C15 | 116.09 (18) | C7—C8—H8 | 119.0 |
C14—N2—C15 | 110.84 (18) | C9—C8—H8 | 119.0 |
C11i—C11—N1 | 115.0 (10) | C12—C13—C13i | 120.37 (12) |
C11i—C11—O1 | 121.9 (8) | C12—C13—H13 | 119.8 |
C12—C11—N1 | 125.1 (10) | C13i—C13—H13 | 119.8 |
C12—C11—C11i | 119.76 (11) | C4—C3—C2 | 120.24 (18) |
C12—C11—O1 | 118.1 (8) | C4—C3—H3 | 119.9 |
C6—C5—C10 | 119.56 (15) | C2—C3—H3 | 119.9 |
C4—C5—C6 | 118.90 (16) | N2—C14—H14A | 109.5 |
C4—C5—C10 | 121.37 (17) | N2—C14—H14B | 109.5 |
C1—C6—C5 | 116.78 (15) | N2—C14—H14C | 109.5 |
C7—C6—C5 | 118.75 (16) | H14A—C14—H14B | 109.5 |
C7—C6—C1 | 124.40 (16) | H14A—C14—H14C | 109.5 |
C6—C1—S1 | 121.67 (13) | H14B—C14—H14C | 109.5 |
C2—C1—S1 | 116.02 (14) | N2—C15—H15A | 109.5 |
C2—C1—C6 | 122.00 (17) | N2—C15—H15B | 109.5 |
N2—C10—C5 | 118.17 (16) | N2—C15—H15C | 109.5 |
C9—C10—N2 | 123.36 (17) | H15A—C15—H15B | 109.5 |
C9—C10—C5 | 118.38 (17) | H15A—C15—H15C | 109.5 |
C11—C12—H12 | 120.1 | H15B—C15—H15C | 109.5 |
C13—C12—C11 | 119.85 (18) | C11—O1—S1 | 117.7 (13) |
C13—C12—H12 | 120.1 | ||
S1—N1—C11—C11i | 124.2 (13) | C6—C5—C4—C3 | 3.7 (3) |
S1—N1—C11—C12 | −51.6 (18) | C6—C1—C2—C3 | 1.1 (3) |
S1—C1—C2—C3 | −172.60 (16) | C6—C7—C8—C9 | 3.7 (3) |
N1—S1—C1—C6 | −67.6 (10) | C1—S1—N1—C11 | −66.4 (15) |
N1—S1—C1—C2 | 106.1 (10) | C1—S1—O1—C11 | −48.7 (12) |
N1—C11—C12—C13 | 174.6 (11) | C1—C6—C7—C8 | 174.71 (18) |
O2—S1—N1—C11 | 47.5 (16) | C1—C2—C3—C4 | −1.5 (3) |
O2—S1—C1—C6 | 175.57 (14) | C10—C5—C6—C1 | −179.37 (15) |
O2—S1—C1—C2 | −10.74 (18) | C10—C5—C6—C7 | −2.3 (3) |
O2—S1—O1—C11 | 66.2 (11) | C10—C5—C4—C3 | 179.07 (19) |
O3—S1—N1—C11 | 177.9 (12) | C10—C9—C8—C7 | −0.5 (3) |
O3—S1—C1—C6 | 41.79 (17) | C12—C11—O1—S1 | −72.7 (11) |
O3—S1—C1—C2 | −144.52 (15) | C7—C6—C1—S1 | −2.0 (2) |
O3—S1—O1—C11 | −167.5 (9) | C7—C6—C1—C2 | −175.27 (19) |
N2—C10—C9—C8 | 179.6 (2) | C4—C5—C6—C1 | −4.0 (2) |
C11i—C11—C12—C13 | −1.0 (3) | C4—C5—C6—C7 | 173.16 (17) |
C11i—C11—O1—S1 | 112.6 (11) | C4—C5—C10—N2 | 6.6 (3) |
C11—C12—C13—C13i | −0.6 (4) | C4—C5—C10—C9 | −170.03 (19) |
C5—C6—C1—S1 | 174.98 (12) | C14—N2—C10—C5 | 66.8 (2) |
C5—C6—C1—C2 | 1.7 (3) | C14—N2—C10—C9 | −116.8 (2) |
C5—C6—C7—C8 | −2.2 (3) | C15—N2—C10—C5 | −159.33 (19) |
C5—C10—C9—C8 | −4.0 (3) | C15—N2—C10—C9 | 17.1 (3) |
C5—C4—C3—C2 | −1.0 (3) | O1—S1—C1—C6 | −71.5 (8) |
C6—C5—C10—N2 | −178.08 (16) | O1—S1—C1—C2 | 102.2 (8) |
C6—C5—C10—C9 | 5.3 (3) | O1—C11—C12—C13 | −175.8 (9) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3 | 0.93 | 2.37 | 3.030 (2) | 128 |
C13—H13···O3ii | 0.93 | 2.73 | 3.386 (2) | 129 |
Symmetry code: (ii) −x+3/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3 | 0.93 | 2.37 | 3.030 (2) | 127.7 |
C13—H13···O3i | 0.93 | 2.73 | 3.386 (2) | 128.6 |
Symmetry code: (i) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Thailand Research Fund (MRG 5580182), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Education, Ministry of Education, Kasetsart University Research and Development Institute and the Department of Chemistry, Faculty of Science, Kasetsart University for financial support.
References
Bhalla, V., Kumar, R., Kumar, M. & Dhir, A. (2007). Tetrahedron, 63, 11153–11159. CrossRef CAS Google Scholar
Bhatt, P., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2458–o2459. CSD CrossRef IUCr Journals Google Scholar
Brown, C. S. & Cunningham, L. W. (1970). Biochemistry, 9, 3878–3885. CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). Inorg. Chem. 47, 3549–3558. CrossRef PubMed CAS Google Scholar
Cao, Y., Ding, L., Wang, S., Liu, Y., Fan, J., Hu, W., Liu, P. & Fang, Y. (2014). Appl. Mater. Interfaces, 6, 49–56. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jisha, V. S., Thomas, A. J. & Ramaiah, D. (2009). J. Org. Chem. 74, 6667–6673. CSD CrossRef PubMed CAS Google Scholar
Li, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22(21), 8165–8167. Google Scholar
Liu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608–1611. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.