organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o721-o722

The crystal structure of 2-[5-(di­methyl­amino)­naphthalene-1-sulfonamido]­phenyl 5-(di­methyl­amino)­naphthalene-1-sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand, bDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, cSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, and dDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
*Correspondence e-mail: fscibnw@ku.ac.th

Edited by T. N. Guru Row, Indian Institute of Science, India (Received 16 July 2015; accepted 31 August 2015; online 12 September 2015)

The complete mol­ecule of the title compound, C30H29N3O5S2, is generated by a crystallographic twofold axis: the O atom and NH group attached to the central benzene ring are statistically disordered. The dihedral angle between the naphthalene ring system and the central benzene ring is 52.99 (6)°, while the pendant naphthalene ring systems subtend a dihedral angle of 68.17 (4)°. An intra­molecular C—H⋯O hydrogen bond closes an S(6) ring. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds.

1. Related literature

For the use of dansyl tags to monitor biological activity in enzyme systems, see: Brown et al. (1970[Brown, C. S. & Cunningham, L. W. (1970). Biochemistry, 9, 3878-3885.]); Liu et al. (2010[Liu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608-1611.]). Dansyl-conjugated liposome has been used to modulate the fluorescence resonance energy transfer (FRET) mechanism, see: Li et al. (2006[Li, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22(21), 8165-8167.]). Dansyl fluoro­genic sensors have been used for the recognition and detection of targets such as cationic and anionic species, see: Cao et al. (2014[Cao, Y., Ding, L., Wang, S., Liu, Y., Fan, J., Hu, W., Liu, P. & Fang, Y. (2014). Appl. Mater. Interfaces, 6, 49-56.]); Jisha et al. (2009[Jisha, V. S., Thomas, A. J. & Ramaiah, D. (2009). J. Org. Chem. 74, 6667-6673.]); Bhalla et al. (2007[Bhalla, V., Kumar, R., Kumar, M. & Dhir, A. (2007). Tetrahedron, 63, 11153-11159.]). For crystal structures of dansyl derivatives, see: Bhatt et al. (2011[Bhatt, P., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2458-o2459.]); Zhang et al. (2009[Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.]) and of metal–calix[4]arene complexes bearing two dansyl carboxamide units, see: Buie et al. (2008[Buie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). Inorg. Chem. 47, 3549-3558.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H29N3O5S2

  • Mr = 575.68

  • Monoclinic, C 2/c

  • a = 12.7594 (13) Å

  • b = 13.3481 (14) Å

  • c = 16.4331 (17) Å

  • β = 98.349 (4)°

  • V = 2769.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.22 mm

2.2. Data collection

  • Bruker D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.698, Tmax = 0.746

  • 17644 measured reflections

  • 3444 independent reflections

  • 2246 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.03

  • 3444 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.93 2.37 3.030 (2) 128
C13—H13⋯O3i 0.93 2.73 3.386 (2) 129
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Introduction top

Dansyl derivatives can be widely used as fluorescence probes in biological and environmental systems. Dansyl tags have been increasingly used to monitor biological activities in the enzyme system for providing the accurate information (Brown et al., 1970; Liu et al., 2010). An example is dansyl-conjugated liposome for modulating fluorescence resonance energy transfer (FRET) mechanism (Li et al. 2006). Furthermore, dansyl fluoro­genic sensors were prepared for recognition and detection of many targets such as cationic and anionic species (Cao et al., 2014; Jisha et al., 2009; Bhalla et al., 2007). Crystal structures of dansyl derivatives (Bhatt et al., 2011; Zhang et al., 2009) and metal complexes of calix[4]arene bearing two dansyl carboxamide units have been reported (Buie et al., 2008).

Synthesis and crystallization top

The title compound was synthesized by condensation of 2-amino­phenol (0.55 g, 5.04 mmol) and dansyl chloride (2.72 g, 10.08 mmol) using potassium carbonate (17.27 g, 12.50 mmol) as a base in aceto­nitrile (30 ml). The solution was heated and stirred under N2 atmosphere for 24 h. The solvent was then removed by a rotary evaporator. Water (10 ml) was added to the residue and the organic phase was extracted with di­chloro­methane (3 x 20 ml). The organic layer was dried with Na2SO4. The product was purified by column chromatography using di­chloro­methane as an eluent. The solvent was evaporated to afford a yellow crystalline solid in 55% yield. Single crystals suitable for X-ray measurements were obtained by recrystallization using the mixture solution of di­chloro­methane and hexane (1:1, v/v) at room temperature.

Refinement top

Atom O1 and the N1H1 group attached to the central benzene ring are statistically disordered and were refined with the occupancies of the N, H and O atoms fixed at 0.5. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The N-bound H-atom was refined with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Related literature top

For the use of dansyl tags to monitor biological activity in enzyme systems, see: Brown et al. (1970); Liu et al. (2010). For the use of dansyl-conjugated liposome to modulate the fluorescence resonance energy transfer (FRET) mechanism, see: Li et al. (2006). Dansyl fluorogenic sensors have been prepared for the recognition and detection of targets such as cationic and anionic species, see: Cao et al. (2014); Jisha et al. (2009); Bhalla et al. (2007). For crystal structures of dansyl derivatives, see: Bhatt et al. (2011); Zhang et al. (2009) and of metal complexes of calix[4]arene bearing two dansyl carboxamide units, see: Buie et al. (2008)

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids and atom numbering. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the [110] direction.
2-[5-(Dimethylamino)naphthalene-1-sulfonamido]phenyl 5-(dimethylamino)naphthalene-1-sulfonate top
Crystal data top
C30H29N3O5S2F(000) = 1208
Mr = 575.68Dx = 1.381 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.7594 (13) ÅCell parameters from 4957 reflections
b = 13.3481 (14) Åθ = 3.1–25.7°
c = 16.4331 (17) ŵ = 0.24 mm1
β = 98.349 (4)°T = 296 K
V = 2769.1 (5) Å3Block, light green
Z = 40.26 × 0.22 × 0.22 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
3444 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus2246 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.041
Detector resolution: 10.5 pixels mm-1θmax = 28.3°, θmin = 3.1°
ω and φ scansh = 1516
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1717
Tmin = 0.698, Tmax = 0.746l = 2121
17644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.1669P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3444 reflectionsΔρmax = 0.26 e Å3
186 parametersΔρmin = 0.23 e Å3
0 restraints
Crystal data top
C30H29N3O5S2V = 2769.1 (5) Å3
Mr = 575.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.7594 (13) ŵ = 0.24 mm1
b = 13.3481 (14) ÅT = 296 K
c = 16.4331 (17) Å0.26 × 0.22 × 0.22 mm
β = 98.349 (4)°
Data collection top
Bruker D8 QUEST CMOS
diffractometer
3444 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2246 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.746Rint = 0.041
17644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3444 reflectionsΔρmin = 0.23 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69732 (3)0.73580 (4)0.32645 (3)0.05431 (17)
N10.603 (2)0.709 (2)0.2569 (14)0.0418 (18)0.5
H10.58010.75370.22150.050*0.5
O20.77825 (10)0.66139 (12)0.33521 (10)0.0736 (5)
O30.72349 (11)0.83601 (11)0.30878 (10)0.0711 (4)
N20.35617 (13)0.82675 (13)0.57539 (10)0.0609 (5)
C110.55450 (13)0.61136 (13)0.25005 (10)0.0433 (4)
C50.49120 (13)0.77874 (12)0.49182 (10)0.0427 (4)
C60.54736 (13)0.79731 (12)0.42414 (10)0.0413 (4)
C10.62854 (13)0.72779 (13)0.41220 (11)0.0450 (4)
C100.40779 (14)0.84536 (14)0.50673 (12)0.0495 (4)
C120.60785 (15)0.52183 (15)0.24889 (12)0.0543 (5)
H120.68060.52150.24810.065*
C70.51636 (15)0.87928 (13)0.37174 (11)0.0500 (4)
H70.55330.89400.32850.060*
C40.51413 (16)0.69084 (14)0.53896 (12)0.0531 (5)
H40.47480.67660.58100.064*
C20.65034 (16)0.64565 (15)0.46148 (12)0.0582 (5)
H20.70460.60220.45270.070*
C90.37880 (17)0.92039 (15)0.45129 (13)0.0612 (5)
H90.32200.96150.45830.073*
C80.43259 (17)0.93625 (15)0.38477 (13)0.0611 (5)
H80.41040.98760.34800.073*
C130.55357 (17)0.43329 (16)0.24897 (14)0.0665 (6)
H130.58950.37280.24760.080*
C30.59130 (17)0.62698 (15)0.52481 (13)0.0635 (6)
H30.60520.57020.55740.076*
C140.41854 (19)0.83896 (17)0.65611 (13)0.0707 (6)
H14A0.49050.81970.65370.106*
H14B0.38980.79750.69510.106*
H14C0.41650.90780.67270.106*
C150.25143 (19)0.8715 (2)0.57308 (17)0.0878 (8)
H15A0.25870.94190.58460.132*
H15B0.21530.84010.61360.132*
H15C0.21140.86200.51950.132*
O10.6121 (16)0.7010 (16)0.2444 (11)0.0418 (18)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (2)0.0701 (4)0.0622 (3)0.0032 (2)0.0121 (2)0.0040 (3)
N10.035 (3)0.051 (3)0.043 (5)0.0008 (19)0.017 (2)0.002 (3)
O20.0366 (7)0.1019 (12)0.0833 (10)0.0177 (7)0.0120 (7)0.0060 (9)
O30.0528 (8)0.0783 (10)0.0848 (10)0.0260 (7)0.0188 (7)0.0017 (8)
N20.0564 (10)0.0708 (12)0.0595 (10)0.0057 (8)0.0213 (8)0.0053 (8)
C110.0430 (9)0.0499 (10)0.0401 (9)0.0004 (8)0.0161 (8)0.0007 (8)
C50.0422 (9)0.0435 (10)0.0411 (9)0.0018 (7)0.0023 (7)0.0002 (7)
C60.0387 (9)0.0416 (9)0.0426 (9)0.0021 (7)0.0023 (7)0.0026 (7)
C10.0367 (9)0.0517 (10)0.0454 (10)0.0024 (8)0.0017 (7)0.0020 (8)
C100.0474 (10)0.0508 (11)0.0509 (11)0.0029 (8)0.0088 (8)0.0037 (8)
C120.0515 (11)0.0591 (13)0.0566 (11)0.0084 (9)0.0225 (9)0.0023 (9)
C70.0572 (11)0.0458 (10)0.0478 (10)0.0015 (9)0.0101 (9)0.0054 (8)
C40.0616 (12)0.0523 (11)0.0459 (10)0.0048 (9)0.0098 (9)0.0076 (9)
C20.0543 (11)0.0605 (12)0.0585 (12)0.0223 (9)0.0033 (9)0.0026 (10)
C90.0606 (12)0.0543 (12)0.0702 (13)0.0212 (10)0.0144 (10)0.0039 (10)
C80.0715 (14)0.0484 (11)0.0626 (12)0.0162 (10)0.0074 (10)0.0128 (9)
C130.0791 (14)0.0509 (12)0.0752 (14)0.0108 (10)0.0306 (13)0.0021 (11)
C30.0775 (14)0.0554 (12)0.0570 (12)0.0212 (11)0.0078 (11)0.0144 (10)
C140.0904 (17)0.0706 (15)0.0549 (13)0.0006 (12)0.0233 (12)0.0004 (11)
C150.0640 (14)0.111 (2)0.0949 (19)0.0165 (14)0.0343 (14)0.0055 (15)
O10.035 (3)0.051 (3)0.043 (5)0.0008 (19)0.017 (2)0.002 (3)
Geometric parameters (Å, º) top
S1—N11.58 (3)C12—H120.9300
S1—O21.4248 (14)C12—C131.370 (3)
S1—O31.4189 (15)C7—H70.9300
S1—C11.7681 (18)C7—C81.354 (3)
S1—O11.67 (2)C4—H40.9300
N1—H10.8600C4—C31.348 (3)
N1—C111.44 (3)C2—H20.9300
N2—C101.409 (2)C2—C31.393 (3)
N2—C141.454 (3)C9—H90.9300
N2—C151.459 (3)C9—C81.389 (3)
C11—C11i1.391 (3)C8—H80.9300
C11—C121.377 (2)C13—C13i1.372 (4)
C11—O11.41 (2)C13—H130.9300
C5—C61.429 (2)C3—H30.9300
C5—C101.435 (2)C14—H14A0.9600
C5—C41.413 (2)C14—H14B0.9600
C6—C11.425 (2)C14—H14C0.9600
C6—C71.413 (2)C15—H15A0.9600
C1—C21.367 (3)C15—H15B0.9600
C10—C91.368 (3)C15—H15C0.9600
N1—S1—C198.6 (8)C6—C7—H7120.1
O2—S1—N1112.1 (9)C8—C7—C6119.74 (17)
O2—S1—C1108.28 (9)C8—C7—H7120.1
O2—S1—O1105.4 (6)C5—C4—H4119.0
O3—S1—N1104.3 (10)C3—C4—C5121.93 (18)
O3—S1—O2119.29 (9)C3—C4—H4119.0
O3—S1—C1112.27 (9)C1—C2—H2120.0
O3—S1—O1104.0 (7)C1—C2—C3120.02 (18)
O1—S1—C1106.6 (6)C3—C2—H2120.0
S1—N1—H1118.6C10—C9—H9119.4
C11—N1—S1122.8 (18)C10—C9—C8121.27 (18)
C11—N1—H1118.6C8—C9—H9119.4
C10—N2—C14116.97 (16)C7—C8—C9122.05 (18)
C10—N2—C15116.09 (18)C7—C8—H8119.0
C14—N2—C15110.84 (18)C9—C8—H8119.0
C11i—C11—N1115.0 (10)C12—C13—C13i120.37 (12)
C11i—C11—O1121.9 (8)C12—C13—H13119.8
C12—C11—N1125.1 (10)C13i—C13—H13119.8
C12—C11—C11i119.76 (11)C4—C3—C2120.24 (18)
C12—C11—O1118.1 (8)C4—C3—H3119.9
C6—C5—C10119.56 (15)C2—C3—H3119.9
C4—C5—C6118.90 (16)N2—C14—H14A109.5
C4—C5—C10121.37 (17)N2—C14—H14B109.5
C1—C6—C5116.78 (15)N2—C14—H14C109.5
C7—C6—C5118.75 (16)H14A—C14—H14B109.5
C7—C6—C1124.40 (16)H14A—C14—H14C109.5
C6—C1—S1121.67 (13)H14B—C14—H14C109.5
C2—C1—S1116.02 (14)N2—C15—H15A109.5
C2—C1—C6122.00 (17)N2—C15—H15B109.5
N2—C10—C5118.17 (16)N2—C15—H15C109.5
C9—C10—N2123.36 (17)H15A—C15—H15B109.5
C9—C10—C5118.38 (17)H15A—C15—H15C109.5
C11—C12—H12120.1H15B—C15—H15C109.5
C13—C12—C11119.85 (18)C11—O1—S1117.7 (13)
C13—C12—H12120.1
S1—N1—C11—C11i124.2 (13)C6—C5—C4—C33.7 (3)
S1—N1—C11—C1251.6 (18)C6—C1—C2—C31.1 (3)
S1—C1—C2—C3172.60 (16)C6—C7—C8—C93.7 (3)
N1—S1—C1—C667.6 (10)C1—S1—N1—C1166.4 (15)
N1—S1—C1—C2106.1 (10)C1—S1—O1—C1148.7 (12)
N1—C11—C12—C13174.6 (11)C1—C6—C7—C8174.71 (18)
O2—S1—N1—C1147.5 (16)C1—C2—C3—C41.5 (3)
O2—S1—C1—C6175.57 (14)C10—C5—C6—C1179.37 (15)
O2—S1—C1—C210.74 (18)C10—C5—C6—C72.3 (3)
O2—S1—O1—C1166.2 (11)C10—C5—C4—C3179.07 (19)
O3—S1—N1—C11177.9 (12)C10—C9—C8—C70.5 (3)
O3—S1—C1—C641.79 (17)C12—C11—O1—S172.7 (11)
O3—S1—C1—C2144.52 (15)C7—C6—C1—S12.0 (2)
O3—S1—O1—C11167.5 (9)C7—C6—C1—C2175.27 (19)
N2—C10—C9—C8179.6 (2)C4—C5—C6—C14.0 (2)
C11i—C11—C12—C131.0 (3)C4—C5—C6—C7173.16 (17)
C11i—C11—O1—S1112.6 (11)C4—C5—C10—N26.6 (3)
C11—C12—C13—C13i0.6 (4)C4—C5—C10—C9170.03 (19)
C5—C6—C1—S1174.98 (12)C14—N2—C10—C566.8 (2)
C5—C6—C1—C21.7 (3)C14—N2—C10—C9116.8 (2)
C5—C6—C7—C82.2 (3)C15—N2—C10—C5159.33 (19)
C5—C10—C9—C84.0 (3)C15—N2—C10—C917.1 (3)
C5—C4—C3—C21.0 (3)O1—S1—C1—C671.5 (8)
C6—C5—C10—N2178.08 (16)O1—S1—C1—C2102.2 (8)
C6—C5—C10—C95.3 (3)O1—C11—C12—C13175.8 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.373.030 (2)128
C13—H13···O3ii0.932.733.386 (2)129
Symmetry code: (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.373.030 (2)127.7
C13—H13···O3i0.932.733.386 (2)128.6
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Thailand Research Fund (MRG 5580182), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Education, Ministry of Education, Kasetsart University Research and Development Institute and the Department of Chemistry, Faculty of Science, Kasetsart University for financial support.

References

First citationBhalla, V., Kumar, R., Kumar, M. & Dhir, A. (2007). Tetrahedron, 63, 11153–11159.  CrossRef CAS Google Scholar
First citationBhatt, P., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2458–o2459.  CSD CrossRef IUCr Journals Google Scholar
First citationBrown, C. S. & Cunningham, L. W. (1970). Biochemistry, 9, 3878–3885.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). Inorg. Chem. 47, 3549–3558.  CrossRef PubMed CAS Google Scholar
First citationCao, Y., Ding, L., Wang, S., Liu, Y., Fan, J., Hu, W., Liu, P. & Fang, Y. (2014). Appl. Mater. Interfaces, 6, 49–56.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJisha, V. S., Thomas, A. J. & Ramaiah, D. (2009). J. Org. Chem. 74, 6667–6673.  CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22(21), 8165–8167.  Google Scholar
First citationLiu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608–1611.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o721-o722
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds