research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1250-1254

Double salt crystal structure of hexa­sodium hemiundeca­hydrogen α-hexa­molybdoplatinate(IV) heminona­hydrogen α-hexa­molybdoplatinate(IV) nona­cosa­hydrate: di­hydrogen disordered-mixture double salt

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 July 2015; accepted 21 September 2015; online 26 September 2015)

The title double salt containing two distinct, differently protonated hexa­molybdoplatinate(IV) polyanions, Na6[H5.5α-PtMo6O24][H4.5α-PtMo6O24]·29H2O, has been synthesized by a hydro­thermal reaction at ca pH 1.80. The positions of the H atoms in the polyanions were established from difference Fourier maps and confirmed by the inter­polyanion hydrogen bonds, bond-distance elongation, and bond-valence sum (BVS) calculations. The fractional numbers of H atoms in each polyanion are required for charge balance and in order to avoid unrealistically short H⋯H distances in the inter­polyanion hydrogen bonds. Considering the disorder, the refined formula of the title polyanion, {[H5.5α-PtMo6O24]; polyanion (A) and [H4.5α-PtMo6O24]; polyanion (B)}6−, can be rewritten as a set of real formula, viz. {[H6α-PtMo6O24]; polyanion (A). [H4α-PtMo6O24]; polyanion (B)}6− and {[H5α-PtMo6O24]; polyanion (A). [H5α-PtMo6O24]; polyanion (B)}6−. The polyanion pairs both form dimers of the same formula, viz. {[H10α-Pt2Mo12O48]}6− connected by seven inter­polyanion O—H⋯O hydrogen bonds.

1. Chemical context

The α (planar structure) – β (bent structure) – α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8− polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Lee, 1988[Lee, U. (1988). Bull. Korean Chem. Soc., 9, 256-257.]) , [H4β-PtMo6O24]4− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]) and [H4.5α-PtMo6O24]3.5− (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Lee et al., 2010[Lee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.]; Joo et al., 2015a[Joo, H.-C., Park, K.-M. & Lee, U. (2015a). Acta Cryst. E71, 268-271.]) is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937[Anderson, J. S. (1937). Nature, 140, 850.]) and as well as in the chemistry of POMs. In addition, differently proton­ated polyanion species have been reported, viz. [H2α-PtMo6O24]6− (Lee & Joo, 2000[Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311-e312.]; Lee & Joo, 2004[Lee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i61-i63.]), and [H6α-PtMo6O24]2− (Lee & Joo, 2006a[Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.]; Lee & Joo, 2006b[Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.]; Lee & Joo, 2010[Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8-i9.]). These polyanions form dimers by effective inter­polyanion hydrogen bonds. Recently, a hydrogen-bonded hexa­molybdoplatinate(IV) tetra­mer, [(α-PtMo6O24)4H23]9−, and the trimers, [(α-PtMo6O24)3H16]8− and [(α-PtMo6O24)3H14]10− were reported as tetra-n-butyl­ammonium, and tetra-n-butyl­ammonium/tri­ethyl­ammonium salts, respectively (Day et al., 2009[Day, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079-5087.]).

In our studies of Anderson-type heteropolyoxotungstates containing PtIV, [Hnα-PtIVW6O24](8–n)– n = 0, 2, 2.5, 3, 3.5), we have found out that the gradual protonation is also a typical character of these compounds (Izarova et al., 2012[Izarova, N. V., Pope, M. T. & Kortz, U. (2012). Angew. Chem. Int. Ed. 51, 9492-9510.]). Furthermore, we have reported the stepwise protonation species in the nona­vanadoplatinate(IV) series, viz. [HnPtV9O28](7−n)− (n = 2 and 3) (Lee et al., 2008[Lee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793-796.]; Joo et al., 2011[Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801-m1802.]; Joo & Lee, 2015[Joo, H.-C. & Lee, U. (2015). Acta Cryst. E71, 647-649.]; Joo et al., 2015b[Joo, H.-C., Park, K.-M. & Lee, U. (2015b). Acta Cryst. E71, 786-790.]). As well as the PtIV a Keggin-type (Keggin, 1934[Keggin, J. F. (1934). Proc. R. Soc. London Ser. A, 114, 75.]) heteropolyoxometalate was formed, [α-SiPtIV2W10O40]8− (Lee et al., 2003[Lee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152-m155.]).

The PtIV ion shows a very rich chemical behavior when it forms POMs with Mo, W and V systems. We assume that the diversity of the PtIV-containing POMs is caused by the starting material of the heteroatom, [PtIV(OH)6]2−, and the similarities in the oxidation states and the ionic radii of addenda atoms (Pt4+; 0.76, Mo6+; 0.73, W6+; 0.74 & V5+; 0.68 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) and the electron configuration of Pt4+ (5d6) that preferentially forms the six-coordinated octa­hedra. In partic­ular, the selective protonation of the μ3-O atoms around Pt atom in the POMs is an important factor to the formation of POMs because the geometries of Mμ3-O (bond distance) and Mμ3-O—M (bond angle) (M = Mo, W and V) are changeable by the partial protonation of the μ3-O and μ2-O atoms.

2. Structural commentary

The title compound contains two statistically different protonated hexa­molybdoplatinate(IV) polyanions, [H5.5α-PtIVMo5O24]2.5− (A), and [H4.5α-PtIVMo5O24]3.5− (B). Figs. 1[link] and 2[link] show the structures of the title compound and polyanions, respectively. The O atoms of the clusters were designated as OT (terminal Mo=O atom), OB (bridging μ2-OB atom; Mo—O—Mo), and OC (centered μ3-O atom; Mo2—OC—Pt).

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms of the polyanion are presented as small spheres of arbitrary radius and the H atoms of water mol­ecules have been omitted for clarity. Bonds between coordinating OW molecules and Na+ are indicated by dashed lines.
[Figure 2]
Figure 2
The polyanion structure in the title compound with the atomic numbering scheme and displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are presented as small spheres of arbitrary radius.

The H atoms of the protonated O atoms were found in difference Fourier maps and confirmed by bond-length elongation of Mo—O, and change of angles of Mo—OB—Mo and Mo—OC—Mo (Table 1[link]), the inter­polyanion hydrogen bonds (Table 2[link] and Fig. 4), and the bond-valence sums (BVSs; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The protonated O atoms in the hexa­molybdoplatinates(IV), polyanion (A) and (B), are five (Pt and Mo2)-bound μ3-O (O2C—O6C) and one Mo2-bound μ2-O (O7B) [for polyanion (A)], and four (Pt and Mo2)-bound μ3-O (O26C—O28C and O30C) and one Mo2-bound μ2-O (O31B) [for polyanion (B)] atoms. One (Pt and Mo2)-bound μ3-O atom in each polanion [O2C for polyanion (A) and O30C for polyanion (B)] is half-number protonated by disorder (Fig. 2[link]). The residues of the two disordered H atoms, H2 and H30, were confirmed in the difference Fourier map (Fig. 3[link]). This disorder is necessary for charge-balance of the polyanions and in order to avoid unreasonably short H⋯H distances in the inter­polyanion hydrogen bonds.

Table 1
Selected geometric parameters (Å, °)

Mo1—O1C 2.114 (3) Mo1—O7B 2.098 (3)
Mo6—O1C 2.198 (3) Mo6—O7B 2.076 (3)
Mo1—O2C 2.216 (3) Mo1—O8B 1.883 (3)
Mo2—O2C 2.246 (3) Mo2—O8B 1.963 (3)
Mo2—O3C 2.245 (3) Mo2—O9B 1.924 (3)
Mo3—O3C 2.336 (3) Mo3—O9B 1.953 (3)
Mo3—O4C 2.267 (3) Mo3—O10B 1.927 (3)
Mo4—O4C 2.283 (3) Mo4—O10B 1.947 (3)
Mo4—O5C 2.312 (3) Mo4—O11B 1.916 (3)
Mo5—O5C 2.280 (3) Mo5—O11B 1.935 (3)
Mo5—O6C 2.358 (3) Mo5—O12B 1.947 (3)
Mo6—O6C 2.287 (3) Mo6—O12B 1.906 (3)
Mo7—O25C 2.186 (3) Mo7—O31B 2.072 (3)
Mo12—O25C 2.084 (3) Mo12—O31B 2.090 (3)
Mo7—O26C 2.297 (3) Mo7—O32B 1.899 (3)
Mo8—O26C 2.305 (3) Mo8—O32B 1.935 (3)
Mo8—O27C 2.272 (3) Mo8—O33B 1.959 (3)
Mo9—O27C 2.302 (3) Mo9—O33B 1.932 (3)
Mo9—O28C 2.307 (3) Mo9—O34B 1.925 (3)
Mo10—O28C 2.302 (3) Mo10—O34B 1.961 (3)
Mo10—O29C 2.196 (3) Mo10—O35B 1.988 (3)
Mo11—O29C 2.122 (3) Mo11—O35B 1.947 (3)
Mo11—O30C 2.359 (3) Mo11—O36B 1.970 (3)
Mo12—O30C 2.340 (3) Mo12—O36B 1.870 (3)
       
Mo1—O1C—Mo6 104.42 (13) Mo12—O25C—Mo7 104.38 (13)
Mo1—O2C—Mo2 93.27 (12) Mo7—O26C—Mo8 92.23 (11)
Mo2—O3C—Mo3 92.61 (11) Mo8—O27C—Mo9 93.67 (11)
Mo3—O4C—Mo4 94.36 (12) Mo10—O28C—Mo9 93.85 (11)
Mo5—O5C—Mo4 93.05 (11) Mo11—O29C—Mo10 96.01 (12)
Mo6—O6C—Mo5 91.98 (11) Mo12—O30C—Mo11 90.63 (11)
Mo6—O7B—Mo1 109.51 (15) Mo7—O31B—Mo12 108.35 (15)
Mo1—O8B—Mo2 115.01 (15) Mo7—O32B—Mo8 119.84 (16)
Mo2—O9B—Mo3 117.38 (16) Mo9—O33B—Mo8 118.01 (15)
Mo3—O10B—Mo4 118.97 (16) Mo9—O34B—Mo10 120.01 (16)
Mo4—O11B—Mo5 119.86 (16) Mo11—O35B—Mo10 109.31 (15)
Mo6—O12B—Mo5 120.24 (16) Mo12—O36B—Mo11 120.93 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2C—H2⋯O30C 0.86 (3) 1.84 (6) 2.595 (5) 145 (9)
O3C—H3⋯O14Wi 0.86 (3) 1.74 (3) 2.586 (5) 164 (4)
O4C—H4⋯O38T 0.85 (3) 1.72 (3) 2.576 (4) 178 (5)
O5C—H5⋯O29W 0.86 (3) 1.79 (3) 2.595 (5) 156 (5)
O6C—H6⋯O48T 0.86 (3) 1.72 (3) 2.569 (4) 171 (5)
O7B—H7⋯O35B 0.84 (3) 1.94 (3) 2.785 (5) 175 (5)
O26C—H26⋯O17T 0.82 (3) 1.73 (3) 2.556 (4) 178 (5)
O27C—H27⋯O15Wii 0.87 (3) 1.70 (3) 2.548 (5) 164 (5)
O28C—H28⋯O16T 0.86 (3) 1.73 (3) 2.575 (4) 166 (5)
O30C—H30⋯O2C 0.84 (3) 1.76 (3) 2.595 (5) 172 (9)
O31B—H31⋯O9B 0.82 (3) 1.95 (3) 2.763 (4) 171 (5)
O1W—H1A⋯O36Bii 0.87 (3) 1.96 (3) 2.830 (5) 173 (5)
O1W—H1B⋯O48T 0.84 (3) 2.22 (3) 3.023 (5) 161 (5)
O2W—H2A⋯O16W 0.86 (3) 1.87 (3) 2.731 (6) 175 (5)
O2W—H2B⋯O43Tiii 0.87 (3) 2.17 (3) 3.031 (5) 169 (5)
O3W—H3A⋯O22W 0.87 (3) 2.10 (3) 2.969 (6) 175 (5)
O3W—H3B⋯O38T 0.86 (3) 2.13 (3) 2.980 (5) 176 (5)
O4W—H4A⋯O26W 0.88 (3) 1.98 (3) 2.857 (6) 175 (5)
O4W—H4B⋯O25W 0.82 (3) 1.99 (3) 2.806 (6) 176 (6)
O5W—H5A⋯O16T 0.85 (3) 2.08 (3) 2.930 (5) 178 (6)
O6W—H6A⋯O25Cii 0.86 (3) 2.04 (3) 2.880 (5) 167 (5)
O6W—H6B⋯O18W 0.87 (3) 1.97 (3) 2.831 (6) 173 (5)
O7W—H7A⋯O17Wiv 0.82 (3) 1.98 (3) 2.804 (5) 175 (6)
O7W—H7B⋯O32Bii 0.82 (3) 2.02 (3) 2.842 (5) 174 (5)
O8W—H8A⋯O34Biii 0.87 (3) 2.21 (3) 3.064 (5) 168 (5)
O8W—H8B⋯O9Wiii 0.87 (3) 1.89 (3) 2.750 (6) 169 (5)
O9W—H9A⋯O19Tv 0.83 (3) 2.22 (3) 3.046 (5) 178 (5)
O9W—H9B⋯O7Wvi 0.86 (3) 1.91 (3) 2.720 (5) 156 (6)
O10W—H10A⋯O25Wvii 0.84 (3) 2.23 (4) 2.924 (7) 140 (5)
O10W—H10B⋯O21Wviii 0.86 (3) 2.02 (3) 2.874 (7) 174 (7)
O11W—H11A⋯O34B 0.85 (3) 1.93 (3) 2.723 (5) 155 (5)
O11W—H11B⋯O43Tix 0.85 (3) 2.08 (3) 2.867 (5) 154 (5)
O12W—H12A⋯O22T 0.98 2.25 2.904 (5) 123
O12W—H12A⋯O21W 0.98 2.31 3.141 (8) 142
O13W—H13A⋯O12Wx 0.99 1.80 2.766 (6) 164
O13W—H13B⋯O31B 0.99 2.53 3.396 (5) 146
O14W—H14A⋯O27Wiii 0.98 1.76 2.737 (6) 177
O14W—H14B⋯O23W 0.98 1.96 2.796 (6) 142
O15W—H15A⋯O19W 0.83 (3) 1.97 (3) 2.738 (5) 154 (5)
O16W—H16A⋯O20W 0.89 (3) 2.45 (6) 3.156 (7) 137 (7)
O16W—H16B⋯O24Wviii 0.85 (3) 2.17 (6) 2.842 (6) 136 (6)
O17W—H17A⋯O8Bxi 0.81 (3) 1.98 (3) 2.790 (5) 173 (5)
O17W—H17B⋯O17T 0.84 (3) 2.22 (3) 3.027 (5) 160 (5)
O18W—H18A⋯O28W 0.83 (3) 2.18 (4) 2.907 (5) 146 (5)
O18W—H18B⋯O1Cviii 0.81 (3) 1.99 (3) 2.798 (5) 176 (5)
O19W—H19A⋯O29Cii 0.85 (3) 2.01 (3) 2.842 (5) 164 (5)
O19W—H19B⋯O10Wviii 0.80 (3) 2.14 (3) 2.920 (6) 164 (6)
O20W—H20B⋯O23W 0.85 (3) 2.46 (7) 3.121 (8) 135 (8)
O21W—H21A⋯O23T 0.89 (3) 2.24 (4) 3.064 (6) 155 (7)
O21W—H21B⋯O33Biii 0.86 (3) 2.17 (3) 2.972 (5) 155 (6)
O22W—H22A⋯O28Wii 0.88 (3) 2.28 (5) 3.007 (6) 140 (5)
O22W—H22B⋯O26Wii 0.85 (3) 1.96 (3) 2.805 (7) 169 (6)
O23W—H23A⋯O22T 0.87 (3) 2.30 (5) 2.970 (6) 134 (6)
O23W—H23B⋯O10Bi 0.85 (3) 1.95 (3) 2.775 (5) 162 (7)
O24W—H24A⋯O28W 0.84 (3) 2.02 (3) 2.854 (6) 173 (6)
O24W—H24B⋯O35B 0.89 (3) 2.05 (3) 2.911 (5) 163 (5)
O25W—H25A⋯O38Tii 0.83 (3) 2.52 (6) 3.119 (6) 130 (7)
O25W—H25B⋯O47T 0.86 (3) 2.01 (3) 2.834 (5) 161 (7)
O26W—H26A⋯O24W 0.87 (3) 1.93 (5) 2.723 (6) 150 (7)
O26W—H26B⋯O19Tv 0.87 (3) 2.23 (4) 2.920 (5) 135 (5)
O27W—H27A⋯O18Txi 0.86 (3) 2.33 (5) 2.945 (5) 129 (5)
O27W—H27B⋯O33B 0.87 (3) 2.10 (4) 2.846 (5) 144 (5)
O28W—H28A⋯O12Bviii 0.86 (3) 1.93 (3) 2.775 (5) 168 (6)
O28W—H28B⋯O1W 0.86 (3) 1.96 (3) 2.817 (6) 171 (6)
O29W—H29A⋯O22Ti 0.86 (3) 2.26 (5) 2.895 (5) 131 (5)
O29W—H29B⋯O22Wvii 0.84 (3) 2.03 (3) 2.844 (6) 165 (7)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) x, y-1, z+1; (v) x, y-1, z; (vi) x, y, z-1; (vii) x+1, y, z; (viii) -x+1, -y+1, -z+1; (ix) -x, -y+1, -z; (x) -x, -y+2, -z+1; (xi) -x+1, -y+2, -z.
[Figure 3]
Figure 3
Difference-Fourier map around atoms H2 and H30. Calculated with atom H2 and H30 absent from the model.

Two discrete heteropolyanions, (A) and (B), form a dimer, {[H10α-Pt2Mo12O48]6−, held together by two strong pairs of (Pt and Mo2)-bound μ3-OC—H⋯(Mo)-bound μ1-OT, normally a pair of (Mo2)-bound μ2-OB—H⋯(Mo2)-bound μ2-OB, and a single disordered strong (Pt and Mo2)-bound μ3-OC—H⋯(Pt and Mo2)-bound μ3-OC hydrogen bonds (Fig. 4[link] and Table 2[link]). Considering the disorder, the statistically refined formula of the title polyanion, {[H5.5α-PtMo6O24]·[H4.5α-PtMo6O24]}6−, can be rewritten as mixture of dimers of {[H6α-PtMo6O24]; polyanion (A)}·[H4α-PtMo6O24]; polyanion (B)}6− and {[H5α-PtMo6O24]; polyanion (A)}·[H5α-PtMo6O24]; polyanion (B)}6− (Fig. 5[link]). In other words, a set of polyanion (A), [H5.5α-PtMo6O24]2.5−, and polyanion (B), [H4.5α-PtMo6O24]3.5−, are the average disordered formulae of {[H6α-PtMo6O24]2·[H4α-PtMo6O24]4−} and {[H5α-PtMo6O24]3−·[H5α-PtMo6O24]3−} (Fig. 5[link]).

[Figure 4]
Figure 4
Polyhedral view of the heteropolyanion in the title compound, with O—H⋯O contacts of the inter­polyanion hydrogen bonds shown as red dashed lines. Disordered H atoms are included.
[Figure 5]
Figure 5
Polyhedral view of the unit-cell packing in the title compound, with O—H⋯O contacts of the inter­polyanion hydrogen bonds shown as red dashed lines. Disordered H atoms have been omitted. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The previously reported [β-H4PtMo6O24]4− polyanion (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]; Joo et al., 1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]) showed a bent structure (C2v) but the present polyanion shows a near planar structure. The protonated O atoms of [H6PtMo6O24]2− in the present structure show the same protonation scheme as one previously reported (Lee & Joo, 2006a[Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.],b[Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.]), viz. four μ3-OC and two μ2-OB atoms are protonated. However, the protonation scheme of the previously reported polyanion in [H6PtMo6O24]2− (Lee & Joo, 2010[Lee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8-i9.]) was different, consisting of five μ3-OC and one μ2-OB protonated O atoms. Five proton­ated polyanion species (A) and (B) were confirmed for the first time in the title compound. Four μ3-O and one μ2-O atoms are protonated in both polyanions, but the position of the unprotonated μ3-O atom differs (Fig. 2[link]).

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The BVSs for protonated atoms O2C–O6C and O7B in polyanion (A) are 1.58, 1.45, 1.43, 1.36, 1.42 and 1.24, and O26C–O28C, O30C and O31B in the polyanion (B) are 1.41, 1.41, 1.39, 1.33 and 1.24 valence units (v.u.), respectively, if the valence of the O—H bond is not included. As the BVS value around the O atoms in the polyanion should be 2.0 v.u., the missing valences for each of the O atoms are 0.42 (for O2C), 0.55 (for O3C), 0.57 (for O4C), 0.64 (for O5C), 0.58 (for O6C) and 0.76 (for O7B) v.u. in polyanion (A), and 0.59 (for O26C), 0.59 (for O27C), 0.61 (for O28C), 0.67 (for O30C) and 0.76 (for O31B) in polyanion (B), respectively, corresponding to the valence of the O—H bonds. The BVSs around the other unprotonated atoms, O1C and O8B–O12B in the polyanion (A) and O25C, O29C and O32B–O36B in polyanion (B) are 1.82, 1.93, 1.84, 1.85, 1.90 and 1.90, and 1.82, 1.80, 1.94, 1.80, 1.81, 1.70 and 1.94 v.u., respectively, if the valence of the OB and the C⋯H—OW hydrogen bonds and (OB and C)⋯Na+ inter­actions are not included.

All Na+ cations are located on general positions of the space group P[\overline{1}]. The calculated BVSs for the Na1–Na6 ions are 1.22, 1.19, 1.32, 1.10, 1.21 and 1.18 v.u., respectively (Na+⋯O distance 〈 2.50 Å; total v.u = 7.22). The Na+ ions are variously coordinated by O atoms as [Na1(OT)2(OW)4]+, [Na2(OT)(OW)5]+, [Na3(OT)2(OW)4]+, [Na4(OT)(OW)4]+, [Na5(OT)2(OW)4]+ and [Na6(OT)2(OW)4]+.

3. Supra­molecular features

The dimerized polyanions (A) + (B), {[H10α-Pt2Mo12O48]6−, are connected three-dimensionally by O atoms of the polyanion coordinated to Na+ ions. Two discrete heteropolyanions, (A) and (B), form a dimer, {[H10α-Pt2Mo12O48]6−, held together by two strong pairs of (Pt and Mo2)-bound μ3-OC—H⋯(Mo)-bound μ1-OT, normally a pair of (Mo2)-bound μ2-OB—H⋯(Mo2)-bound μ2-OB, and a single disordered strong (Pt and Mo2)-bound μ3O-C—H0.5⋯(Pt & Mo2)-bound μ3-OC hydrogen bond (Fig. 4[link] and Table 2[link]). It is notable that the water mol­ecules O21W–O29W, do not show any inter­action with the metal atoms and are bonded to other O atoms only by O—H⋯O hydrogen bonds. The other H atoms of the polyanion (H3, H5 and H27) form hydrogen bonds with water mol­ecules (Table 2[link]).

4. Synthesis and crystallization

Crystals of title compound were prepared by the reaction of Na2MoO4·2H2O and Na2Pt(OH)6 at ca pH 1.80 as described in a previous report (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37-45.]).

5. Refinement

The crystal data, the data collection and the structure refinement details are summarized in Table 3[link]. Atoms O5C and O30C, and O2C and O25C sets required an ISOR restraint in SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) with reduced deviation s = 0.004 and st = 0.008, and s = 0.002 and st = 0.004, respectively. All H atoms of polyanions were located in difference Fourier maps, and were refined with a distance restraint of O—H = 0.85 (3) Å using the command DFIX in SHELXL2014/7, and included in the refinement with Uiso(H) = 1.5Ueq(O). The occupancies of atoms H2 and H30 were reduced to 0.5 because of disorder. All H atoms of the water mol­ecules, except O12W–O15W, were located in difference Fourier maps, and were refined using a distance restraint of O—H = 0.85 (3) Å and an angle restraint of HA—HB = 1.40 (3) Å using the command DFIX in SHELXL2014/7, and included in the refinement with Uiso(H) = 1.5Ueq(O). An angle restraint of 1.35 (3) Å for O5W, O18W and O19W, and 1.30 (3) Å for O7W was applied. The H atoms of O12W–O13W were positioned geometrically and refined using a riding model (HFIX 137), with OW—H = 0.98 Å and Uiso(H) = 1.5Ueq(O). The H atoms of O14W were refined using a riding model (HFIX 23), with OW—H = 0.99 Å and Uiso(H) = 1.5Ueq(O). All invalid H atoms were removed in the final step of refinement. The highest peak in the difference map is 0.82 Å from Pt1 and the deepest hole is 0.98 Å from Pt2.

Table 3
Experimental details

Crystal data
Chemical formula Na6[H5.5α-PtMo6O24]
Mr 2979.85
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 14.0384 (6), 15.7969 (6), 16.7235 (6)
α, β, γ (°) 72.825 (2), 75.522 (2), 89.168 (2)
V3) 3423.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.36
Crystal size (mm) 0.67 × 0.44 × 0.22
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.234, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 58415, 14940, 12688
Rint 0.057
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.06
No. of reflections 14940
No. of parameters 1064
No. of restraints 114
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.73, −2.25
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Chemical context top

The α (planar structure) –β (bent structure) –α geometrical isomerization, according to stepwise protonation in the [PtMo6O24]8- polyoxometalate (POM) species, viz. ([H3.5α-PtMo6O24]4.5- (Lee & Sasaki, 1994; Lee, 1988 ), [H4β-PtMo6O24]4- (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5- (Lee & Sasaki, 1994; Lee et al., 2010; Joo et al., 2015a) is an unprecedented phenomenon in the Anderson-type heteropolyanion (Anderson, 1937) and as well as in the chemistry of POMs. In addition, differently protonated polyanion species have been reported, viz. [H2α-PtMo6O24]6- (Lee & Joo, 2000; Lee & Joo, 2004), and [H6α-PtMo6O24]2- (Lee & Joo, 2006a; Lee & Joo, 2006b; Lee & Joo, 2010). These polyanions form dimers by effective inter­polyanion hydrogen bonds. Recently, a hydrogen-bonded hexamolybdoplatinate(IV) tetra­mer, [(α-PtMo6O24)4H23]9-, and the trimers, [(α-PtMo6O24)3H16]8- and [(α-PtMo6O24)3H14]10- were reported as tetra-n-butyl­ammonium, and tetra-n-butyl­ammonium/tri­ethyl­ammonium salts, respectively (Day et al., 2009).

In our studies of Anderson-type heteropolyoxotungstates containing PtIV, [Hnα-PtIVW6O24](8-n)- n = 0, 2, 2.5, 3, 3.5), we have found out that the gradual protonation is also a typical character of these compounds (Izarova et al., 2012). Furthermore, we have reported the stepwise protonation species in the nonavanadoplatinate(IV), viz. [HnPtV9O28](7-n)- (n = 2 and 3) (Lee et al., 2008; Joo et al., 2011; Joo & Lee, 2015; Joo et al., 2015b). As well as the PtIV a Keggin-type (Keggin, 1934) heteropolyoxometalate was formed, [α-SiPtIV2W10O40]8- (Lee et al., 2003).

The PtIV ion shows a very rich chemical behavior when it forms POMs with Mo, W and V systems. We assume that the diversity of the PtIV-containing POMs is caused by the starting material of the heteroatom, [PtIV(OH)6]2-, and the similarities in the oxidation states and the ionic radii of addenda atoms (Pt4+; 0.76, Mo6+; 0.73, W6+; 0.74 & V5+; 0.68 Å; Shannon, 1976) and the electron configuration of Pt4+ (5d6) that preferentially forms the six-coordinated o­cta­hedra. In particular, the selective protonation of the µ3-O atoms around Pt atom in the POMs is an important factor to the formation of POMs because the geometries of Mµ3-O (bond distance) and Mµ3-O—M (bond angle) (M = Mo, W and V) are changeable by the partial protonation of the µ3-O and µ2-O atoms.

Structural commentary top

The title compound contains two statistically different protonated hexamolybdoplatinate(IV) polyanions, [H5.5α-PtIVMo5O24]2.5- (A), and [H4.5α-PtIVMo5O24]3.5- (B). Figs. 1 and 2 show the structures of the title compound and polyanions, respectively. The O atoms of the clusters were designated as OT (terminal MoO atom), OB (bridging µ2-OB atom; Mo—O—Mo), and OC (centered µ3-O atom; Mo2—OC—Pt).

The H atoms of the protonated O atoms were found in difference Fourier maps and confirmed by bond-length elongation of Mo—O, and change of angles of Mo—OB—Mo and Mo—OC—Mo (Table 1), the inter­polyanion hydrogen bonds (Table 2 and Fig. 4), and the bond-valence sums (BVSs; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The protonated O atoms in the hexamolybdoplatinates(IV), polyanion (A) and (B), are five (Pt and Mo2)-bound µ3-O (O2C—O6C) and one Mo2-bound µ2-O (O7B) [for polyanion (A)], and four (Pt and Mo2)-bound µ3-O (O26C—O28C and O30C) and one Mo2-bound µ2-O (O31B) [for polyanion (B)] atoms. In addition, one (Pt and Mo2)-bound µ3-O atom [O2C for polyanion (A) and O30C for polyanion (B)] atoms are half-number protonated by disorder (Fig. 2). The residues of the two disordered H atoms, H2 and H30, were confirmed in the difference Fourier map (Fig. 3). This disorder is necessary for charge-balance of the polyanions and in order to avoid unreasonably short H···H distances in the inter­polyanion hydrogen bonds.

Two discrete heteropolyanions, (A) and (B), form a dimer, {[H10α-Pt2Mo12O48]6-, held together by two strong pairs of (Pt and Mo2)-bound µ3-OC—H···(Mo)-bound µ1-OT, normally a pair of (Mo2)-bound µ2-OB—H···(Mo2)-bound µ2-OB, and single disordered strong (Pt and Mo2)-bound µ3-OC—H···(Pt and Mo2)-bound µ3-OC hydrogen bonds (Fig. 4 and Table 2). Considering the disorder, the statistically refined formula of the title polyanion, {[H5.5α-PtMo6O24]·[H4.5α-PtMo6O24]}6-, can be rewritten as mixture of dimers of {[H6α-PtMo6O24]; polyanion (A)}·[H4α-PtMo6O24]; polyanion (B)}6- and {[H5α-PtMo6O24]; polyanion (A)}·[H5α-PtMo6O24]; polyanion (B)}6- (Fig. 5). In other words, a set of polyanion (A), [H5.5α-PtMo6O24]2.5-, and polyanion (B), [H4.5α-PtMo6O24]3.5-, are the average disordered formulae of {[H6α-PtMo6O24]2·[H4α-PtMo6O24]4-} and {[H5α-PtMo6O24]3-·[H5α-PtMo6O24]3-} (Fig. 5).

The previously reported [β-H4PtMo6O24]4- polyanion (Lee & Sasaki, 1994; Joo et al., 1994) showed a bent structure (C2v) but the present polyanion shows a near planar structure. The protonated O atoms of [H6PtMo6O24]2- in the present structure show the same protonation scheme as one previously reported (Lee & Joo, 2006a,b), viz. four µ3-OC and two µ2-OB atoms are protonated. However, the protonation scheme of the previously reported polyanion in [H6PtMo6O24]2- (Lee & Joo, 2010) was different, consisting of five µ3-OC and one µ2-OB protonated O atoms. Five protonated polyanion species (A) and (B) were confirmed for the first time in the title compound. Four µ3-O and one µ2-O atoms are protonated in both polyanions, but the position of the unprotonated µ3-O atom differs (Fig. 2).

Confirmation of the protonated O atoms was strongly supported by the BVS analysis. The BVSs for protonated atoms O2C–O6C and O7B in polyanion (A) are 1.58, 1.45, 1.43, 1.36, 1.42 and 1.24, and O26C–O28C, O30C and O31B in the polyanion (B) are 1.41, 1.41, 1.39, 1.33 and 1.24 valence units (v.u.), respectively, if the valence of the O—H bond is not included. As the BVS value around the O atoms in the polyanion should be 2.0 v.u., the missing valences for each of the O atoms are 0.42 (for O2C), 0.55 (for O3C), 0.57 (for O4C), 0.64 (for O5C), 0.58 (for O6C) and 0.76 (for O7B) v.u. in polyanion (A), and 0.59 (for O26C), 0.59 (for O27C), 0.61 (for O28C), 0.67 (for O30C) and 0.76 (for O31B) in polyanion (B), respectively, corresponding to the valence of the O—H bonds. The BVSs around the other unprotonated atoms, O1C and O8B–O12B in the polyanion (A) and O25C, O29C and O32B–O36B in polyanion (B) are 1.82, 1.93, 1.84, 1.85, 1.90 and 1.90, and 1.82, 1.80, 1.94, 1.80, 1.81, 1.70 and 1.94 v.u., respectively, if the valence of the OB and the C···H—OW hydrogen bonds and (OB and C)···Na+ inter­actions are not included.

All Na+ cations are located on general positions of the space group P1. The calculated BVSs for the Na1–Na6 ions are 1.22, 1.19, 1.32, 1.10, 1.21 and 1.18 v.u., respectively (Na+···O distance 2.50 Å; total v.u = 7.22). The Na+ ions are variously coordinated by O atoms as [Na1(OT)2(OW)4]+, [Na2(OT)(OW)5]+, [Na3(OT)2(OW)4]+, [Na4(OT)(OW)4]+, [Na5(OT)2(OW)4]+ and [Na6(OT)2(OW)4]+.

Supra­molecular features top

The dimerized polyanions (A) + (B), {[H10α-Pt2Mo12O48]6-, are connected three-dimensionally by O atoms of the polyanion coordinated to Na+ ions. Two discrete heteropolyanions, (A) and (B), form a dimer, {[H10α-Pt2Mo12O48]6-, held together by two strong pairs of (Pt and Mo2)-bound µ3-OC—H···(Mo)-bound µ1-OT, normally a pair of (Mo2)-bound µ2-OB—H···(Mo2)-bound µ2-OB, and a single disordered strong (Pt and Mo2)-bound µ3O-C—H0.5···(Pt & Mo2)-bound µ3-OC hydrogen bond (Fig. 4 and Table 2). It is notable that the water molecules O21W–O29W, do not show any inter­action with the metal atoms and are bonded to other O atoms only by O—H···O hydrogen bonds. The other H atoms of the polyanion (H3, H5 and H27) form hydrogen bonds with water molecules (Table 2).

Synthesis and crystallization top

Crystals of title compound were prepared by the reaction of Na2MoO4·2H2O and Na2Pt(OH)6 at ca pH 1.80 as described in a previous report (Lee & Sasaki, 1994).

Refinement top

The crystal data, the data collection and the structure refinement details are summarized in Table 3. Atoms O5C and O30C, and O2C and O25C sets required an ISOR restraint in SHELXL2014/7 (Sheldrick, 2015) with reduced deviation s = 0.004 and st = 0.008, and s =0.002 and st = 0.004, respectively. All H atoms of polyanions were located in difference Fourier maps, and were refined a distance restraint of O—H = 0.85 (3) Å using the command DFIX in SHELXL2014/7, and included in the refinement with Uiso(H) = 1.5Ueq(O). The occupancies of atoms H2 and H30 were reduced to 0.5 because of disorder. All H atoms of the water molecules, except O12W–O15W, were located in difference Fourier maps, and were refined using distance restraint of O—H = 0.85 (3) Å and an angle [OK?] restraint of HA—HB = 1.40 (3) Å using the command DFIX in SHELXL2014/7 , and included in the refinement with Uiso(H) = 1.5Ueq(O). An angle restraint of 1.35 (3) Å for O5W, O18W and O19W, and 1.30 (3) Å for O7W was applied. The H atoms of O12W–O13W were positioned geometrically and refined using a riding model (HFIX 137), with OW—H = 0.98 Å and Uiso(H) = 1.5Ueq(O). The H atoms of O14W were refined using a riding model (HFIX 23), with OW—H = 0.99 Å and Uiso(H) = 1.5Ueq(O). All invalid H atoms were removed in the final step of refinement. The highest peak in the difference map is 0.82 Å from Pt1 and the deepest hole is 0.98 Å from Pt2.

Related literature top

For related literature, see: Anderson (1937); Brese & O'Keeffe (1991); Brown & Altermatt (1985); Day et al. (2009); Izarova et al. (2012); Joo & Lee (2015); Joo et al. (1994, 2011, 2015a, 2015b); Keggin (1934); Lee (1988); Lee & Joo (2000, 2004, 2006a, 2006b, 2010); Lee & Sasaki (1994); Lee et al. (2003, 2008); Lee, Joo & Park (2010); Shannon (1976); Sheldrick (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular entities in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms of the polyanion are presented as small spheres of arbitrary radius and the H atoms of water molecules have been omitted for clarity.
[Figure 2] Fig. 2. The polyanion structure in the title compound with the atomic numbering scheme and displacement ellipsoids at the 50% probability level for non-H atoms. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. Difference-Fourier map around atoms H2 and H30. Calculated with atom H2 and H30 absent from the model.
[Figure 4] Fig. 4. Polyhedral view of the heteropolyanion in the title compound, with O—H···O contacts of the interpolyanion hydrogen bonds shown as red dashed lines. Disordered H atoms are included.
[Figure 5] Fig. 5. Polyhedral view of the unit-cell packing in the title compound, with O—H···O contacts of the interpolyanion hydrogen bonds shown as red dashed lines. Disordered H atoms have been omitted. [Symmetry code: (i) -x +1 , -y + 1, -z + 1.]
(I) top
Crystal data top
H6Mo6O24Pt·H4Mo6O24Pt·29(H2O)·6(Na)Z = 2
Mr = 2979.85F(000) = 2820
Triclinic, P1Dx = 2.891 Mg m3
a = 14.0384 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.7969 (6) ÅCell parameters from 9847 reflections
c = 16.7235 (6) Åθ = 2.2–28.3°
α = 72.825 (2)°µ = 6.36 mm1
β = 75.522 (2)°T = 173 K
γ = 89.168 (2)°Block, yellow
V = 3423.7 (2) Å30.67 × 0.44 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
14940 independent reflections
Radiation source: Rotating Anode12688 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.057
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.4°
φ and ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2020
Tmin = 0.234, Tmax = 0.746l = 2121
58415 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Only H-atom coordinates refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0223P)2 + 5.6226P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
14940 reflectionsΔρmax = 1.73 e Å3
1064 parametersΔρmin = 2.25 e Å3
114 restraintsExtinction correction: SHELXL2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00097 (2)
Crystal data top
H6Mo6O24Pt·H4Mo6O24Pt·29(H2O)·6(Na)γ = 89.168 (2)°
Mr = 2979.85V = 3423.7 (2) Å3
Triclinic, P1Z = 2
a = 14.0384 (6) ÅMo Kα radiation
b = 15.7969 (6) ŵ = 6.36 mm1
c = 16.7235 (6) ÅT = 173 K
α = 72.825 (2)°0.67 × 0.44 × 0.22 mm
β = 75.522 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
14940 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
12688 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.746Rint = 0.057
58415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036114 restraints
wR(F2) = 0.091Only H-atom coordinates refined
S = 1.06Δρmax = 1.73 e Å3
14940 reflectionsΔρmin = 2.25 e Å3
1064 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.37861 (2)0.80827 (2)0.33415 (2)0.00743 (6)
Pt20.13101 (2)0.69756 (2)0.15934 (2)0.00734 (6)
Mo10.48088 (3)0.73755 (3)0.17456 (2)0.01032 (9)
Mo20.38120 (3)0.92698 (3)0.13444 (2)0.01043 (9)
Mo30.27924 (3)1.00756 (3)0.29553 (3)0.01189 (9)
Mo40.27941 (3)0.89367 (3)0.49832 (2)0.01226 (9)
Mo50.37444 (3)0.69579 (3)0.54288 (2)0.01302 (9)
Mo60.47496 (3)0.61324 (3)0.38076 (3)0.01233 (9)
Mo70.02597 (3)0.89077 (3)0.11926 (3)0.01261 (9)
Mo80.12559 (3)0.81350 (3)0.04502 (2)0.01205 (9)
Mo90.22090 (3)0.61525 (3)0.00919 (2)0.01097 (9)
Mo100.21502 (3)0.49586 (3)0.19550 (2)0.01178 (9)
Mo110.12327 (3)0.56971 (3)0.35600 (2)0.01106 (9)
Mo120.02151 (3)0.76546 (3)0.32235 (2)0.01089 (9)
Na10.23742 (14)0.46059 (13)0.69299 (12)0.0204 (4)
Na20.23737 (13)0.33338 (13)0.89570 (12)0.0215 (4)
Na30.00711 (13)1.06967 (13)0.39992 (12)0.0207 (4)
Na40.02805 (15)1.23682 (14)0.20474 (13)0.0312 (5)
Na50.25851 (14)1.04851 (13)0.20594 (12)0.0197 (4)
Na60.50542 (14)0.56953 (15)0.10815 (14)0.0302 (5)
O1C0.4984 (2)0.7498 (2)0.29268 (19)0.0093 (6)
O2C0.3429 (2)0.7918 (2)0.2319 (2)0.0114 (7)
H20.302 (6)0.750 (4)0.236 (6)0.017*0.5
O3C0.4185 (2)0.9314 (2)0.25614 (19)0.0098 (7)
H30.470 (2)0.958 (3)0.260 (3)0.015*
O4C0.2544 (2)0.8638 (2)0.3794 (2)0.0116 (7)
H40.199 (2)0.840 (3)0.382 (3)0.017*
O5C0.4156 (2)0.8287 (2)0.43710 (19)0.0117 (7)
H50.471 (2)0.858 (3)0.423 (3)0.018*
O6C0.3372 (2)0.6876 (2)0.4153 (2)0.0115 (7)
H60.283 (2)0.664 (3)0.415 (3)0.017*
O7B0.4252 (2)0.6188 (2)0.2725 (2)0.0165 (7)
H70.372 (3)0.593 (3)0.275 (3)0.025*
O8B0.5009 (2)0.8611 (2)0.12156 (19)0.0137 (7)
O9B0.2635 (2)0.9556 (2)0.20675 (19)0.0146 (7)
O10B0.3285 (2)0.9949 (2)0.3959 (2)0.0157 (7)
O11B0.2613 (2)0.7673 (2)0.54830 (19)0.0155 (7)
O12B0.4894 (2)0.6608 (2)0.4697 (2)0.0144 (7)
O13T0.5925 (2)0.5883 (2)0.3436 (2)0.0215 (8)
O14T0.4079 (3)0.5158 (2)0.4360 (2)0.0232 (8)
O15T0.5986 (2)0.7061 (2)0.1477 (2)0.0187 (8)
O16T0.4206 (2)0.7054 (2)0.1085 (2)0.0165 (7)
O17T0.3308 (2)0.9010 (2)0.0596 (2)0.0163 (7)
O18T0.4392 (2)1.0292 (2)0.0834 (2)0.0199 (8)
O19T0.3365 (3)1.1085 (2)0.2315 (2)0.0230 (8)
O20T0.1590 (2)1.0260 (2)0.3325 (2)0.0228 (8)
O21T0.1608 (2)0.9179 (2)0.5323 (2)0.0250 (9)
O22T0.3430 (3)0.9230 (2)0.5618 (2)0.0225 (8)
O23T0.4295 (3)0.7258 (3)0.6111 (2)0.0262 (9)
O24T0.3127 (3)0.5959 (2)0.5988 (2)0.0247 (8)
O25C0.0097 (2)0.7540 (2)0.20418 (19)0.0101 (7)
O26C0.1662 (2)0.8208 (2)0.0782 (2)0.0107 (7)
H260.220 (2)0.846 (3)0.073 (3)0.016*
O27C0.0895 (2)0.6796 (2)0.05850 (19)0.0106 (7)
H270.030 (2)0.655 (3)0.075 (3)0.016*
O28C0.2520 (2)0.6413 (2)0.1108 (2)0.0103 (7)
H280.311 (2)0.654 (3)0.111 (3)0.015*
O29C0.0931 (2)0.5750 (2)0.23650 (19)0.0108 (7)
O30C0.1708 (2)0.7142 (2)0.26046 (19)0.0119 (7)
H300.224 (4)0.744 (5)0.250 (6)0.018*0.5
O31B0.0771 (2)0.8849 (2)0.2266 (2)0.0165 (7)
H310.129 (3)0.910 (3)0.223 (3)0.025*
O32B0.0110 (2)0.8455 (2)0.0295 (2)0.0150 (7)
O33B0.2413 (2)0.7429 (2)0.05672 (19)0.0144 (7)
O34B0.1690 (2)0.5144 (2)0.09047 (19)0.0141 (7)
O35B0.2443 (2)0.5361 (2)0.28926 (19)0.0147 (7)
O36B0.0079 (2)0.6417 (2)0.36859 (19)0.0132 (7)
O37T0.0955 (2)0.7942 (2)0.3539 (2)0.0219 (8)
O38T0.0849 (2)0.7958 (2)0.3885 (2)0.0180 (8)
O39T0.0918 (3)0.9120 (3)0.1604 (2)0.0251 (9)
O40T0.0901 (3)0.9901 (2)0.0659 (2)0.0265 (9)
O41T0.1871 (3)0.9132 (2)0.1021 (2)0.0230 (8)
O42T0.0681 (3)0.7831 (2)0.1111 (2)0.0219 (8)
O43T0.1597 (2)0.5900 (2)0.0772 (2)0.0198 (8)
O44T0.3380 (2)0.5884 (2)0.0418 (2)0.0210 (8)
O45T0.3332 (3)0.4717 (2)0.1580 (2)0.0233 (8)
O46T0.1507 (3)0.3978 (2)0.2531 (2)0.0264 (8)
O47T0.0646 (2)0.4688 (2)0.4142 (2)0.0200 (8)
O48T0.1785 (2)0.6017 (2)0.4253 (2)0.0169 (7)
O1W0.1853 (3)0.4397 (3)0.5748 (2)0.0277 (9)
H1A0.124 (2)0.419 (3)0.591 (3)0.042*
H1B0.195 (4)0.479 (3)0.527 (2)0.042*
O2W0.2834 (3)0.4879 (3)0.8111 (2)0.0258 (9)
H2A0.344 (2)0.506 (3)0.800 (3)0.039*
H2B0.251 (3)0.524 (3)0.837 (3)0.039*
O3W0.0402 (3)0.9185 (2)0.4682 (2)0.0248 (8)
H3A0.1018 (19)0.904 (4)0.473 (3)0.037*
H3B0.003 (3)0.883 (3)0.447 (4)0.037*
O4W0.0692 (3)0.2145 (3)0.3358 (3)0.0327 (9)
H4A0.131 (2)0.221 (4)0.336 (4)0.049*
H4B0.035 (3)0.245 (4)0.362 (4)0.049*
O5W0.5335 (3)0.5855 (3)0.0218 (3)0.0339 (10)
H5A0.500 (3)0.621 (3)0.046 (4)0.051*
H5B0.591 (2)0.601 (4)0.007 (4)0.051*
O6W0.1875 (3)0.3127 (2)0.7759 (2)0.0207 (8)
H6A0.1274 (19)0.292 (3)0.790 (3)0.031*
H6B0.225 (3)0.273 (3)0.760 (3)0.031*
O7W0.1841 (3)0.1846 (3)0.9808 (3)0.0267 (9)
H7A0.221 (3)0.151 (3)0.959 (4)0.040*
H7B0.126 (2)0.175 (4)0.982 (4)0.040*
O8W0.2657 (3)0.3672 (2)1.0195 (2)0.0254 (8)
H8A0.247 (4)0.411 (2)1.040 (3)0.038*
H8B0.239 (4)0.320 (2)1.061 (3)0.038*
O9W0.1896 (3)0.2051 (3)0.1354 (3)0.0366 (10)
H9A0.229 (4)0.180 (4)0.162 (3)0.055*
H9B0.184 (4)0.183 (4)0.096 (3)0.055*
O10W0.8819 (3)0.2975 (3)0.2745 (3)0.0474 (11)
H10A0.875 (4)0.287 (5)0.328 (2)0.071*
H10B0.832 (4)0.276 (5)0.263 (4)0.071*
O11W0.0385 (3)0.3872 (2)0.0928 (2)0.0261 (8)
H11A0.073 (3)0.420 (3)0.109 (3)0.039*
H11B0.022 (2)0.398 (4)0.103 (4)0.039*
O12W0.2141 (3)0.9781 (4)0.7002 (3)0.0618 (16)
H12A0.25960.93180.69230.093*
H12B0.21811.02220.64400.093*
O13W0.0165 (3)1.0739 (3)0.2621 (2)0.0315 (9)
H13A0.08531.05810.26440.047*
H13B0.03001.03860.23210.047*
O14W0.4187 (2)0.9806 (2)0.7644 (2)0.0233 (8)
H14A0.41960.92820.81330.035*
H14B0.42740.96310.71160.035*
O15W0.0789 (3)0.3932 (2)0.9223 (2)0.0219 (8)
H15A0.073 (4)0.439 (3)0.884 (2)0.033*
H15B0.075 (4)0.399 (3)0.9722 (19)0.033*
O16W0.4775 (3)0.5453 (4)0.7651 (3)0.0575 (15)
H16A0.461 (5)0.600 (3)0.762 (5)0.086*
H16B0.518 (4)0.550 (4)0.717 (3)0.086*
O17W0.3075 (3)1.0648 (3)0.0822 (2)0.0257 (9)
H17A0.362 (3)1.089 (3)0.098 (3)0.039*
H17B0.300 (4)1.015 (2)0.043 (3)0.039*
O18W0.3126 (3)0.1933 (3)0.7104 (2)0.0250 (9)
H18A0.308 (4)0.205 (4)0.660 (2)0.038*
H18B0.367 (3)0.208 (4)0.712 (3)0.038*
O19W0.0830 (3)0.5111 (3)0.7640 (3)0.0279 (9)
H19A0.032 (3)0.493 (3)0.754 (4)0.042*
H19B0.093 (4)0.5638 (18)0.744 (4)0.042*
O20W0.5152 (5)0.7241 (3)0.8036 (4)0.0765 (17)
H20A0.540 (7)0.731 (6)0.845 (5)0.115*
H20B0.483 (6)0.769 (4)0.785 (5)0.115*
O21W0.2843 (4)0.7843 (4)0.7520 (3)0.0685 (16)
H21A0.340 (4)0.771 (5)0.720 (4)0.103*
H21B0.290 (5)0.766 (6)0.804 (2)0.103*
O22W0.2460 (4)0.8598 (3)0.4844 (3)0.0504 (12)
H22A0.246 (5)0.824 (4)0.452 (3)0.076*
H22B0.257 (6)0.827 (4)0.5371 (19)0.076*
O23W0.5070 (3)0.8893 (3)0.6478 (3)0.0476 (12)
H23A0.487 (4)0.889 (5)0.603 (3)0.071*
H23B0.564 (3)0.917 (4)0.628 (4)0.071*
O24W0.3421 (3)0.3767 (3)0.3558 (3)0.0424 (11)
H24A0.339 (5)0.358 (4)0.409 (2)0.064*
H24B0.305 (4)0.423 (3)0.347 (4)0.064*
O25W0.0526 (4)0.3217 (3)0.4196 (3)0.0541 (14)
H25A0.097 (4)0.302 (4)0.465 (3)0.081*
H25B0.029 (5)0.373 (3)0.416 (4)0.081*
O26W0.2713 (3)0.2255 (3)0.3382 (3)0.0518 (12)
H26A0.277 (5)0.282 (2)0.335 (4)0.078*
H26B0.309 (5)0.219 (4)0.291 (3)0.078*
O27W0.4268 (3)0.8374 (3)0.0976 (3)0.0378 (10)
H27A0.465 (4)0.845 (4)0.067 (3)0.057*
H27B0.379 (3)0.799 (3)0.065 (3)0.057*
O28W0.3135 (3)0.3091 (3)0.5390 (3)0.0300 (9)
H28A0.373 (2)0.326 (4)0.533 (4)0.045*
H28B0.277 (3)0.348 (3)0.555 (4)0.045*
O29W0.5730 (3)0.9091 (3)0.4418 (3)0.0440 (12)
H29A0.573 (5)0.966 (2)0.420 (4)0.066*
H29B0.621 (4)0.896 (4)0.463 (4)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00954 (10)0.00867 (10)0.00598 (9)0.00002 (7)0.00068 (6)0.00612 (7)
Pt20.00933 (10)0.00833 (10)0.00628 (9)0.00006 (7)0.00122 (6)0.00569 (7)
Mo10.0110 (2)0.0139 (2)0.01004 (19)0.00019 (16)0.00179 (15)0.01018 (16)
Mo20.0118 (2)0.0125 (2)0.00893 (19)0.00137 (16)0.00222 (14)0.00634 (16)
Mo30.0139 (2)0.0111 (2)0.0126 (2)0.00246 (16)0.00246 (15)0.00733 (16)
Mo40.0147 (2)0.0147 (2)0.00968 (19)0.00173 (16)0.00023 (15)0.00955 (17)
Mo50.0176 (2)0.0135 (2)0.00813 (19)0.00016 (17)0.00184 (15)0.00471 (16)
Mo60.0149 (2)0.0109 (2)0.0134 (2)0.00249 (16)0.00354 (15)0.00718 (17)
Mo70.0148 (2)0.0111 (2)0.0145 (2)0.00282 (16)0.00414 (16)0.00732 (17)
Mo80.0162 (2)0.0121 (2)0.00841 (19)0.00019 (16)0.00287 (15)0.00410 (16)
Mo90.0123 (2)0.0136 (2)0.00969 (19)0.00170 (16)0.00127 (15)0.00888 (16)
Mo100.0152 (2)0.0105 (2)0.0114 (2)0.00199 (16)0.00271 (15)0.00665 (16)
Mo110.0133 (2)0.0140 (2)0.00731 (19)0.00197 (16)0.00172 (14)0.00598 (16)
Mo120.0122 (2)0.0140 (2)0.01044 (19)0.00028 (16)0.00208 (15)0.01016 (17)
Na10.0246 (11)0.0195 (10)0.0167 (10)0.0017 (8)0.0031 (8)0.0068 (8)
Na20.0182 (10)0.0275 (11)0.0215 (10)0.0043 (8)0.0049 (8)0.0117 (9)
Na30.0208 (11)0.0216 (11)0.0191 (10)0.0018 (9)0.0013 (8)0.0083 (9)
Na40.0332 (12)0.0398 (13)0.0217 (11)0.0021 (10)0.0076 (9)0.0105 (10)
Na50.0196 (10)0.0193 (10)0.0213 (10)0.0013 (8)0.0044 (8)0.0083 (8)
Na60.0196 (11)0.0406 (14)0.0390 (13)0.0043 (10)0.0025 (9)0.0292 (11)
O1C0.0109 (15)0.0103 (16)0.0102 (15)0.0030 (12)0.0029 (12)0.0083 (13)
O2C0.0134 (13)0.0141 (14)0.0093 (13)0.0001 (11)0.0014 (10)0.0088 (11)
O3C0.0123 (16)0.0073 (16)0.0114 (16)0.0029 (13)0.0031 (12)0.0049 (13)
O4C0.0082 (16)0.0139 (17)0.0170 (17)0.0010 (13)0.0028 (13)0.0115 (14)
O5C0.0134 (16)0.0147 (16)0.0107 (15)0.0002 (13)0.0019 (12)0.0106 (13)
O6C0.0096 (16)0.0118 (17)0.0130 (16)0.0011 (13)0.0008 (12)0.0054 (14)
O7B0.0179 (18)0.0164 (18)0.0179 (18)0.0008 (14)0.0056 (14)0.0083 (15)
O8B0.0117 (16)0.0169 (17)0.0131 (16)0.0017 (13)0.0007 (12)0.0076 (14)
O9B0.0162 (17)0.0183 (18)0.0122 (16)0.0005 (14)0.0028 (13)0.0098 (14)
O10B0.0210 (18)0.0127 (17)0.0143 (17)0.0001 (14)0.0017 (13)0.0079 (14)
O11B0.0175 (17)0.0145 (17)0.0120 (16)0.0014 (14)0.0016 (13)0.0046 (14)
O12B0.0171 (17)0.0152 (17)0.0147 (17)0.0039 (14)0.0060 (13)0.0088 (14)
O13T0.0180 (19)0.028 (2)0.0227 (19)0.0080 (16)0.0045 (14)0.0154 (16)
O14T0.034 (2)0.0139 (18)0.0215 (19)0.0022 (16)0.0071 (16)0.0049 (15)
O15T0.0132 (17)0.025 (2)0.0213 (18)0.0026 (15)0.0010 (14)0.0142 (16)
O16T0.0179 (18)0.0210 (19)0.0146 (17)0.0004 (14)0.0025 (13)0.0125 (15)
O17T0.0168 (17)0.0228 (19)0.0122 (16)0.0011 (14)0.0023 (13)0.0104 (15)
O18T0.0229 (19)0.0205 (19)0.0144 (18)0.0061 (15)0.0014 (14)0.0051 (15)
O19T0.031 (2)0.0169 (19)0.0208 (19)0.0033 (15)0.0048 (15)0.0063 (15)
O20T0.0149 (18)0.029 (2)0.027 (2)0.0067 (16)0.0029 (15)0.0146 (17)
O21T0.0176 (19)0.029 (2)0.025 (2)0.0050 (16)0.0054 (15)0.0127 (17)
O22T0.033 (2)0.024 (2)0.0157 (18)0.0011 (16)0.0057 (15)0.0140 (16)
O23T0.032 (2)0.035 (2)0.0200 (19)0.0023 (17)0.0101 (16)0.0176 (17)
O24T0.030 (2)0.0184 (19)0.0189 (19)0.0024 (16)0.0004 (15)0.0012 (16)
O25C0.0109 (13)0.0106 (13)0.0118 (13)0.0017 (11)0.0010 (10)0.0095 (11)
O26C0.0106 (16)0.0088 (16)0.0126 (16)0.0009 (13)0.0011 (13)0.0046 (13)
O27C0.0116 (16)0.0128 (17)0.0118 (16)0.0008 (13)0.0036 (12)0.0097 (13)
O28C0.0078 (16)0.0139 (17)0.0137 (16)0.0008 (13)0.0028 (12)0.0107 (13)
O29C0.0149 (16)0.0083 (16)0.0090 (15)0.0016 (13)0.0019 (12)0.0033 (13)
O30C0.0146 (16)0.0170 (16)0.0071 (14)0.0015 (13)0.0025 (12)0.0086 (13)
O31B0.0172 (18)0.0169 (18)0.0187 (18)0.0032 (14)0.0050 (14)0.0098 (15)
O32B0.0168 (17)0.0174 (18)0.0147 (17)0.0048 (14)0.0062 (13)0.0092 (14)
O33B0.0142 (17)0.0170 (18)0.0115 (16)0.0008 (14)0.0005 (12)0.0060 (14)
O34B0.0181 (17)0.0137 (17)0.0123 (16)0.0003 (14)0.0036 (13)0.0068 (14)
O35B0.0151 (17)0.0201 (18)0.0122 (16)0.0034 (14)0.0029 (13)0.0104 (14)
O36B0.0125 (16)0.0164 (17)0.0115 (16)0.0040 (13)0.0004 (12)0.0079 (14)
O37T0.0159 (18)0.032 (2)0.0221 (19)0.0039 (16)0.0011 (14)0.0178 (17)
O38T0.0196 (18)0.0205 (19)0.0149 (17)0.0046 (15)0.0007 (14)0.0097 (15)
O39T0.0205 (19)0.033 (2)0.030 (2)0.0133 (17)0.0092 (16)0.0201 (18)
O40T0.039 (2)0.0172 (19)0.025 (2)0.0015 (17)0.0113 (17)0.0063 (16)
O41T0.030 (2)0.0172 (19)0.0171 (18)0.0043 (16)0.0003 (15)0.0032 (15)
O42T0.028 (2)0.026 (2)0.0211 (19)0.0054 (16)0.0140 (15)0.0138 (16)
O43T0.0244 (19)0.0236 (19)0.0180 (18)0.0016 (15)0.0083 (14)0.0135 (16)
O44T0.0156 (18)0.027 (2)0.0215 (19)0.0048 (15)0.0002 (14)0.0134 (16)
O45T0.0208 (19)0.031 (2)0.025 (2)0.0141 (16)0.0094 (15)0.0179 (17)
O46T0.036 (2)0.0189 (19)0.025 (2)0.0033 (16)0.0065 (16)0.0082 (16)
O47T0.026 (2)0.0193 (19)0.0133 (18)0.0052 (15)0.0020 (14)0.0045 (15)
O48T0.0179 (18)0.0215 (19)0.0121 (17)0.0015 (14)0.0030 (13)0.0069 (15)
O1W0.028 (2)0.034 (2)0.019 (2)0.0081 (18)0.0076 (16)0.0033 (17)
O2W0.021 (2)0.032 (2)0.026 (2)0.0052 (17)0.0003 (16)0.0175 (18)
O3W0.027 (2)0.027 (2)0.023 (2)0.0053 (17)0.0023 (16)0.0141 (17)
O4W0.045 (3)0.027 (2)0.030 (2)0.0024 (19)0.0093 (19)0.0144 (18)
O5W0.018 (2)0.044 (3)0.053 (3)0.0046 (19)0.0056 (19)0.039 (2)
O6W0.0196 (19)0.021 (2)0.0224 (19)0.0023 (15)0.0023 (15)0.0101 (16)
O7W0.022 (2)0.028 (2)0.035 (2)0.0009 (17)0.0071 (17)0.0165 (18)
O8W0.029 (2)0.025 (2)0.024 (2)0.0001 (17)0.0029 (16)0.0139 (17)
O9W0.046 (3)0.039 (3)0.026 (2)0.014 (2)0.0111 (18)0.0095 (19)
O10W0.047 (3)0.062 (3)0.030 (2)0.006 (2)0.003 (2)0.015 (2)
O11W0.0184 (19)0.032 (2)0.036 (2)0.0039 (17)0.0055 (16)0.0239 (18)
O12W0.033 (3)0.122 (5)0.047 (3)0.013 (3)0.003 (2)0.059 (3)
O13W0.031 (2)0.038 (2)0.029 (2)0.0038 (18)0.0092 (17)0.0140 (18)
O14W0.0219 (19)0.026 (2)0.025 (2)0.0024 (16)0.0042 (15)0.0134 (17)
O15W0.0180 (18)0.030 (2)0.0205 (19)0.0008 (16)0.0039 (15)0.0124 (17)
O16W0.029 (3)0.104 (4)0.052 (3)0.008 (3)0.001 (2)0.050 (3)
O17W0.025 (2)0.025 (2)0.023 (2)0.0075 (17)0.0051 (16)0.0021 (17)
O18W0.024 (2)0.024 (2)0.028 (2)0.0037 (17)0.0076 (17)0.0068 (18)
O19W0.022 (2)0.025 (2)0.036 (2)0.0005 (17)0.0053 (17)0.0087 (19)
O20W0.086 (5)0.045 (3)0.084 (5)0.003 (3)0.015 (3)0.026 (3)
O21W0.056 (3)0.109 (5)0.033 (3)0.002 (3)0.007 (2)0.024 (3)
O22W0.051 (3)0.056 (3)0.063 (3)0.013 (2)0.022 (3)0.041 (3)
O23W0.033 (2)0.077 (3)0.044 (3)0.017 (2)0.004 (2)0.037 (3)
O24W0.065 (3)0.042 (3)0.029 (2)0.008 (2)0.023 (2)0.014 (2)
O25W0.059 (3)0.052 (3)0.046 (3)0.027 (2)0.021 (2)0.033 (3)
O26W0.047 (3)0.050 (3)0.069 (3)0.005 (2)0.011 (2)0.037 (3)
O27W0.041 (3)0.038 (3)0.034 (2)0.007 (2)0.0026 (19)0.015 (2)
O28W0.024 (2)0.036 (2)0.034 (2)0.0010 (18)0.0077 (18)0.0154 (19)
O29W0.032 (3)0.036 (3)0.071 (3)0.003 (2)0.019 (2)0.022 (3)
Geometric parameters (Å, º) top
Mo1—O1C2.114 (3)Na4—O10Wv2.428 (5)
Mo6—O1C2.198 (3)Na4—O13W2.495 (4)
Mo1—O2C2.216 (3)Na4—O11Wii2.534 (4)
Mo2—O2C2.246 (3)Na5—O18Wvi2.322 (4)
Mo2—O3C2.245 (3)Na5—O41T2.364 (4)
Mo3—O3C2.336 (3)Na5—O12Wvii2.373 (4)
Mo3—O4C2.267 (3)Na5—O39Tiv2.406 (4)
Mo4—O4C2.283 (3)Na5—O17W2.419 (4)
Mo4—O5C2.312 (3)Na5—O14Wvii2.478 (4)
Mo5—O5C2.280 (3)Na6—O45Tviii2.363 (4)
Mo5—O6C2.358 (3)Na6—O16Wvii2.386 (5)
Mo6—O6C2.287 (3)Na6—O5W2.387 (5)
Mo7—O25C2.186 (3)Na6—O44T2.390 (4)
Mo12—O25C2.084 (3)Na6—O5Wviii2.436 (5)
Mo7—O26C2.297 (3)Na6—O20Wvii2.437 (6)
Mo8—O26C2.305 (3)O2C—O30C2.595 (5)
Mo8—O27C2.272 (3)O2C—H20.86 (3)
Mo9—O27C2.302 (3)O3C—H30.86 (3)
Mo9—O28C2.307 (3)O4C—H40.85 (3)
Mo10—O28C2.302 (3)O5C—H50.86 (3)
Mo10—O29C2.196 (3)O6C—H60.86 (3)
Mo11—O29C2.122 (3)O7B—H70.84 (3)
Mo11—O30C2.359 (3)O13T—Na1i2.483 (4)
Mo12—O30C2.340 (3)O15T—Na2i2.369 (4)
Mo1—O7B2.098 (3)O21T—Na3iii2.379 (4)
Mo6—O7B2.076 (3)O26C—H260.82 (3)
Mo1—O8B1.883 (3)O27C—H270.87 (3)
Mo2—O8B1.963 (3)O28C—H280.86 (3)
Mo2—O9B1.924 (3)O30C—H300.84 (3)
Mo3—O9B1.953 (3)O31B—H310.82 (3)
Mo3—O10B1.927 (3)O39T—Na5iv2.406 (4)
Mo4—O10B1.947 (3)O42T—Na4iv2.394 (4)
Mo4—O11B1.916 (3)O45T—Na6viii2.363 (4)
Mo5—O11B1.935 (3)O1W—H1A0.87 (3)
Mo5—O12B1.947 (3)O1W—H1B0.84 (3)
Mo6—O12B1.906 (3)O2W—H2A0.86 (3)
Mo7—O31B2.072 (3)O2W—H2B0.87 (3)
Mo12—O31B2.090 (3)O3W—Na3iii2.424 (4)
Mo7—O32B1.899 (3)O3W—H3A0.87 (3)
Mo8—O32B1.935 (3)O3W—H3B0.86 (3)
Mo8—O33B1.959 (3)O4W—Na3ix2.299 (4)
Mo9—O33B1.932 (3)O4W—Na4ix2.330 (4)
Mo9—O34B1.925 (3)O4W—H4A0.88 (3)
Mo10—O34B1.961 (3)O4W—H4B0.82 (3)
Mo10—O35B1.988 (3)O5W—Na6viii2.436 (5)
Mo11—O35B1.947 (3)O5W—H5A0.85 (3)
Mo11—O36B1.970 (3)O5W—H5B0.81 (3)
Mo12—O36B1.870 (3)O6W—H6A0.86 (3)
Pt1—O1C1.978 (3)O6W—H6B0.87 (3)
Pt1—O6C1.980 (3)O7W—H7A0.82 (3)
Pt1—O2C1.984 (3)O7W—H7B0.82 (3)
Pt1—O3C1.992 (3)O8W—H8A0.87 (3)
Pt1—O4C2.018 (3)O8W—H8B0.87 (3)
Pt1—O5C2.029 (3)O9W—Na4ix2.395 (4)
Pt1—Mo13.1985 (4)O9W—H9A0.83 (3)
Pt2—O29C1.977 (3)O9W—H9B0.86 (3)
Pt2—O25C1.993 (3)O10W—Na4x2.428 (5)
Pt2—O30C1.995 (3)O10W—H10A0.84 (3)
Pt2—O26C2.002 (3)O10W—H10B0.86 (3)
Pt2—O28C2.006 (3)O11W—Na4ix2.534 (4)
Pt2—O27C2.011 (3)O11W—H11A0.85 (3)
Mo1—O15T1.707 (3)O11W—H11B0.85 (3)
Mo1—O16T1.734 (3)O12W—Na5xi2.373 (4)
Mo2—O18T1.696 (3)O12W—H12A0.9800
Mo2—O17T1.729 (3)O12W—H12B0.9800
Mo3—O20T1.698 (3)O13W—H13A0.9900
Mo3—O19T1.713 (3)O13W—H13B0.9900
Mo4—O21T1.697 (3)O14W—Na5xi2.478 (4)
Mo4—O22T1.708 (3)O14W—H14A0.9799
Mo5—O24T1.697 (3)O14W—H14B0.9801
Mo5—O23T1.701 (3)O15W—O11Wxi2.738 (5)
Mo6—O13T1.696 (3)O15W—O19W2.738 (5)
Mo6—O14T1.696 (3)O15W—H15A0.83 (3)
Mo7—O39T1.695 (3)O15W—H15B0.86 (3)
Mo7—O40T1.697 (4)O16W—Na6xi2.386 (5)
Mo8—O42T1.696 (3)O16W—O24Wi2.842 (6)
Mo8—O41T1.696 (3)O16W—O7Bi3.068 (6)
Mo9—O44T1.688 (3)O16W—H16A0.89 (3)
Mo9—O43T1.719 (3)O16W—H16B0.85 (3)
Mo10—O46T1.693 (3)O17W—H17A0.81 (3)
Mo10—O45T1.701 (3)O17W—H17B0.84 (3)
Mo10—Mo113.2096 (5)O18W—Na5xii2.322 (4)
Mo11—O47T1.699 (3)O18W—H18A0.83 (3)
Mo11—O48T1.735 (3)O18W—H18B0.81 (3)
Mo12—O37T1.694 (3)O19W—H19A0.85 (3)
Mo12—O38T1.750 (3)O19W—H19B0.80 (3)
Na1—O24T2.326 (4)O20W—Na6xi2.437 (6)
Na1—O6W2.349 (4)O20W—H20A0.88 (3)
Na1—O2W2.377 (4)O20W—H20B0.85 (3)
Na1—O1W2.380 (4)O21W—H21A0.89 (3)
Na1—O19W2.443 (4)O21W—H21B0.86 (3)
Na1—O13Ti2.483 (4)O22W—H22A0.88 (3)
Na2—O15Ti2.369 (4)O22W—H22B0.85 (3)
Na2—O7W2.377 (4)O23W—H23A0.87 (3)
Na2—O6W2.388 (4)O23W—H23B0.85 (3)
Na2—O15W2.393 (4)O24W—H24A0.84 (3)
Na2—O8W2.408 (4)O24W—H24B0.89 (3)
Na2—O2W2.434 (4)O25W—H25A0.83 (3)
Na3—O4Wii2.299 (4)O25W—H25B0.86 (3)
Na3—O3W2.347 (4)O26W—H26A0.87 (3)
Na3—O20T2.348 (4)O26W—H26B0.87 (3)
Na3—O21Tiii2.379 (4)O27W—H27A0.86 (3)
Na3—O13W2.390 (4)O27W—H27B0.87 (3)
Na3—O3Wiii2.424 (4)O28W—H28A0.86 (3)
Na3—Na3iii3.379 (4)O28W—H28B0.86 (3)
Na4—O4Wii2.330 (4)O29W—H29A0.86 (3)
Na4—O42Tiv2.394 (4)O29W—H29B0.84 (3)
Na4—O9Wii2.395 (4)
Mo1—O1C—Mo6104.42 (13)O46T—Mo10—O35B101.20 (15)
Mo1—O2C—Mo293.27 (12)O45T—Mo10—O35B94.06 (15)
Mo2—O3C—Mo392.61 (11)O34B—Mo10—O35B152.77 (13)
Mo3—O4C—Mo494.36 (12)O46T—Mo10—O29C93.58 (15)
Mo5—O5C—Mo493.05 (11)O45T—Mo10—O29C157.99 (15)
Mo6—O6C—Mo591.98 (11)O34B—Mo10—O29C86.01 (12)
Mo6—O7B—Mo1109.51 (15)O35B—Mo10—O29C73.14 (12)
Mo1—O8B—Mo2115.01 (15)O46T—Mo10—O28C161.08 (15)
Mo2—O9B—Mo3117.38 (16)O45T—Mo10—O28C90.14 (15)
Mo3—O10B—Mo4118.97 (16)O34B—Mo10—O28C70.72 (12)
Mo4—O11B—Mo5119.86 (16)O35B—Mo10—O28C85.87 (12)
Mo6—O12B—Mo5120.24 (16)O29C—Mo10—O28C71.49 (11)
Mo12—O25C—Mo7104.38 (13)O46T—Mo10—Mo1188.46 (12)
Mo7—O26C—Mo892.23 (11)O45T—Mo10—Mo11128.96 (12)
Mo8—O27C—Mo993.67 (11)O34B—Mo10—Mo11127.13 (9)
Mo10—O28C—Mo993.85 (11)O35B—Mo10—Mo1134.92 (9)
Mo11—O29C—Mo1096.01 (12)O29C—Mo10—Mo1141.12 (8)
Mo12—O30C—Mo1190.63 (11)O28C—Mo10—Mo1187.55 (8)
Mo7—O31B—Mo12108.35 (15)O47T—Mo11—O48T105.57 (15)
Mo7—O32B—Mo8119.84 (16)O47T—Mo11—O35B101.45 (15)
Mo9—O33B—Mo8118.01 (15)O48T—Mo11—O35B95.26 (14)
Mo9—O34B—Mo10120.01 (16)O47T—Mo11—O36B97.92 (15)
Mo11—O35B—Mo10109.31 (15)O48T—Mo11—O36B97.46 (14)
Mo12—O36B—Mo11120.93 (15)O35B—Mo11—O36B153.01 (13)
O1C—Pt1—O6C82.75 (13)O47T—Mo11—O29C97.13 (14)
O1C—Pt1—O2C83.08 (12)O48T—Mo11—O29C156.88 (14)
O6C—Pt1—O2C98.53 (13)O35B—Mo11—O29C75.62 (12)
O1C—Pt1—O3C98.76 (13)O36B—Mo11—O29C83.51 (12)
O6C—Pt1—O3C177.87 (12)O47T—Mo11—O30C165.79 (14)
O2C—Pt1—O3C83.17 (13)O48T—Mo11—O30C86.13 (14)
O1C—Pt1—O4C178.01 (12)O35B—Mo11—O30C85.13 (12)
O6C—Pt1—O4C95.27 (13)O36B—Mo11—O30C72.13 (12)
O2C—Pt1—O4C97.15 (13)O29C—Mo11—O30C72.11 (11)
O3C—Pt1—O4C83.22 (13)O47T—Mo11—Mo1090.36 (11)
O1C—Pt1—O5C97.43 (12)O48T—Mo11—Mo10131.02 (11)
O6C—Pt1—O5C82.98 (13)O35B—Mo11—Mo1035.77 (9)
O2C—Pt1—O5C178.47 (12)O36B—Mo11—Mo10126.38 (9)
O3C—Pt1—O5C95.32 (13)O29C—Mo11—Mo1042.87 (8)
O4C—Pt1—O5C82.39 (13)O30C—Mo11—Mo1087.77 (7)
O1C—Pt1—Mo140.13 (8)O37T—Mo12—O38T105.28 (16)
O6C—Pt1—Mo193.90 (9)O37T—Mo12—O36B102.09 (16)
O2C—Pt1—Mo143.18 (9)O38T—Mo12—O36B102.12 (15)
O3C—Pt1—Mo188.22 (9)O37T—Mo12—O25C95.72 (14)
O4C—Pt1—Mo1140.25 (9)O38T—Mo12—O25C152.97 (13)
O5C—Pt1—Mo1137.18 (9)O36B—Mo12—O25C89.63 (12)
O29C—Pt2—O25C97.99 (13)O37T—Mo12—O31B97.63 (15)
O29C—Pt2—O30C83.50 (13)O38T—Mo12—O31B88.31 (14)
O25C—Pt2—O30C83.64 (12)O36B—Mo12—O31B154.25 (13)
O29C—Pt2—O26C177.72 (12)O25C—Mo12—O31B71.95 (12)
O25C—Pt2—O26C81.67 (12)O37T—Mo12—O30C168.56 (14)
O30C—Pt2—O26C98.68 (13)O38T—Mo12—O30C86.14 (14)
O29C—Pt2—O28C82.62 (13)O36B—Mo12—O30C74.22 (12)
O25C—Pt2—O28C178.26 (11)O25C—Mo12—O30C73.62 (11)
O30C—Pt2—O28C98.06 (13)O31B—Mo12—O30C83.21 (12)
O26C—Pt2—O28C97.66 (13)O24T—Na1—O6W169.39 (16)
O29C—Pt2—O27C95.84 (13)O24T—Na1—O2W91.74 (14)
O25C—Pt2—O27C96.06 (12)O6W—Na1—O2W90.55 (14)
O30C—Pt2—O27C179.23 (13)O24T—Na1—O1W87.12 (14)
O26C—Pt2—O27C81.97 (13)O6W—Na1—O1W91.11 (14)
O28C—Pt2—O27C82.25 (12)O2W—Na1—O1W176.82 (17)
O15T—Mo1—O16T105.41 (15)O24T—Na1—O19W99.77 (14)
O15T—Mo1—O8B100.56 (15)O6W—Na1—O19W90.84 (14)
O16T—Mo1—O8B101.85 (15)O2W—Na1—O19W79.87 (14)
O15T—Mo1—O7B95.79 (15)O1W—Na1—O19W97.40 (15)
O16T—Mo1—O7B88.94 (15)O24T—Na1—O13Ti82.35 (14)
O8B—Mo1—O7B157.14 (13)O6W—Na1—O13Ti87.56 (14)
O15T—Mo1—O1C91.61 (14)O2W—Na1—O13Ti84.58 (13)
O16T—Mo1—O1C155.61 (13)O1W—Na1—O13Ti98.20 (14)
O8B—Mo1—O1C91.78 (13)O19W—Na1—O13Ti164.35 (15)
O7B—Mo1—O1C71.77 (12)O15Ti—Na2—O7W91.66 (14)
O15T—Mo1—O2C165.40 (14)O15Ti—Na2—O6W95.56 (13)
O16T—Mo1—O2C89.18 (14)O7W—Na2—O6W91.55 (14)
O8B—Mo1—O2C75.40 (12)O15Ti—Na2—O15W171.51 (15)
O7B—Mo1—O2C84.78 (13)O7W—Na2—O15W96.52 (14)
O1C—Mo1—O2C74.66 (11)O6W—Na2—O15W82.00 (13)
O15T—Mo1—Pt1128.03 (11)O15Ti—Na2—O8W92.83 (13)
O16T—Mo1—Pt1125.74 (11)O7W—Na2—O8W90.84 (14)
O8B—Mo1—Pt179.21 (9)O6W—Na2—O8W171.21 (15)
O7B—Mo1—Pt178.14 (9)O15W—Na2—O8W89.33 (13)
O1C—Mo1—Pt137.08 (8)O15Ti—Na2—O2W91.24 (14)
O2C—Mo1—Pt137.78 (8)O7W—Na2—O2W177.09 (15)
O18T—Mo2—O17T105.58 (15)O6W—Na2—O2W88.28 (14)
O18T—Mo2—O9B100.97 (15)O15W—Na2—O2W80.57 (14)
O17T—Mo2—O9B99.27 (14)O8W—Na2—O2W88.91 (14)
O18T—Mo2—O8B95.89 (15)O4Wii—Na3—O3W174.07 (17)
O17T—Mo2—O8B99.65 (14)O4Wii—Na3—O20T87.99 (15)
O9B—Mo2—O8B150.17 (13)O3W—Na3—O20T87.55 (14)
O18T—Mo2—O3C88.95 (14)O4Wii—Na3—O21Tiii103.88 (16)
O17T—Mo2—O3C164.86 (13)O3W—Na3—O21Tiii80.97 (14)
O9B—Mo2—O3C73.24 (12)O20T—Na3—O21Tiii166.84 (15)
O8B—Mo2—O3C82.72 (12)O4Wii—Na3—O13W86.52 (14)
O18T—Mo2—O2C158.87 (14)O3W—Na3—O13W96.38 (14)
O17T—Mo2—O2C94.25 (14)O20T—Na3—O13W78.05 (13)
O9B—Mo2—O2C82.57 (13)O21Tiii—Na3—O13W96.75 (14)
O8B—Mo2—O2C73.23 (12)O4Wii—Na3—O3Wiii87.20 (14)
O3C—Mo2—O2C71.99 (11)O3W—Na3—O3Wiii89.82 (14)
O20T—Mo3—O19T106.27 (17)O20T—Na3—O3Wiii101.04 (14)
O20T—Mo3—O10B101.86 (15)O21Tiii—Na3—O3Wiii85.43 (14)
O19T—Mo3—O10B99.45 (15)O13W—Na3—O3Wiii173.68 (16)
O20T—Mo3—O9B97.79 (15)O4Wii—Na4—O42Tiv156.09 (16)
O19T—Mo3—O9B100.12 (15)O4Wii—Na4—O9Wii92.04 (16)
O10B—Mo3—O9B147.01 (13)O42Tiv—Na4—O9Wii102.56 (15)
O20T—Mo3—O4C91.34 (15)O4Wii—Na4—O10Wv83.94 (16)
O19T—Mo3—O4C161.54 (14)O42Tiv—Na4—O10Wv85.19 (15)
O10B—Mo3—O4C70.87 (12)O9Wii—Na4—O10Wv167.83 (18)
O9B—Mo3—O4C82.51 (13)O4Wii—Na4—O13W83.45 (14)
O20T—Mo3—O3C159.41 (15)O42Tiv—Na4—O13W78.16 (13)
O19T—Mo3—O3C92.80 (14)O9Wii—Na4—O13W88.64 (15)
O10B—Mo3—O3C82.12 (12)O10Wv—Na4—O13W102.26 (16)
O9B—Mo3—O3C70.67 (12)O4Wii—Na4—O11Wii123.93 (15)
O4C—Mo3—O3C70.67 (11)O42Tiv—Na4—O11Wii74.82 (13)
O21T—Mo4—O22T106.64 (17)O9Wii—Na4—O11Wii92.35 (14)
O21T—Mo4—O11B97.82 (16)O10Wv—Na4—O11Wii80.51 (15)
O22T—Mo4—O11B102.09 (15)O13W—Na4—O11Wii152.51 (14)
O21T—Mo4—O10B101.48 (15)O18Wvi—Na5—O41T169.60 (16)
O22T—Mo4—O10B96.38 (15)O18Wvi—Na5—O12Wvii106.16 (18)
O11B—Mo4—O10B148.14 (13)O41T—Na5—O12Wvii81.20 (16)
O21T—Mo4—O4C93.57 (15)O18Wvi—Na5—O39Tiv92.76 (15)
O22T—Mo4—O4C157.85 (14)O41T—Na5—O39Tiv79.54 (14)
O11B—Mo4—O4C83.58 (13)O12Wvii—Na5—O39Tiv91.39 (15)
O10B—Mo4—O4C70.20 (12)O18Wvi—Na5—O17W93.24 (15)
O21T—Mo4—O5C161.20 (15)O41T—Na5—O17W80.61 (13)
O22T—Mo4—O5C90.59 (14)O12Wvii—Na5—O17W159.22 (19)
O11B—Mo4—O5C70.61 (12)O39Tiv—Na5—O17W95.08 (14)
O10B—Mo4—O5C83.57 (12)O18Wvi—Na5—O14Wvii97.57 (14)
O4C—Mo4—O5C70.91 (11)O41T—Na5—O14Wvii90.15 (14)
O24T—Mo5—O23T106.92 (18)O12Wvii—Na5—O14Wvii86.13 (15)
O24T—Mo5—O11B97.36 (16)O39Tiv—Na5—O14Wvii169.66 (15)
O23T—Mo5—O11B101.02 (16)O17W—Na5—O14Wvii83.98 (13)
O24T—Mo5—O12B101.20 (15)O45Tviii—Na6—O16Wvii84.88 (15)
O23T—Mo5—O12B99.38 (15)O45Tviii—Na6—O5W94.17 (14)
O11B—Mo5—O12B146.97 (13)O16Wvii—Na6—O5W177.0 (2)
O24T—Mo5—O5C157.91 (15)O45Tviii—Na6—O44T171.00 (16)
O23T—Mo5—O5C93.95 (15)O16Wvii—Na6—O44T97.15 (15)
O11B—Mo5—O5C71.01 (12)O5W—Na6—O44T83.36 (14)
O12B—Mo5—O5C81.93 (12)O45Tviii—Na6—O5Wviii86.65 (14)
O24T—Mo5—O6C90.40 (15)O16Wvii—Na6—O5Wviii93.72 (18)
O23T—Mo5—O6C161.60 (15)O5W—Na6—O5Wviii83.36 (15)
O11B—Mo5—O6C82.37 (12)O44T—Na6—O5Wviii84.47 (14)
O12B—Mo5—O6C70.49 (12)O45Tviii—Na6—O20Wvii101.56 (18)
O5C—Mo5—O6C69.85 (11)O16Wvii—Na6—O20Wvii81.7 (2)
O13T—Mo6—O14T107.19 (18)O5W—Na6—O20Wvii101.3 (2)
O13T—Mo6—O12B100.66 (15)O44T—Na6—O20Wvii87.42 (18)
O14T—Mo6—O12B103.65 (15)O5Wviii—Na6—O20Wvii170.2 (2)
O13T—Mo6—O7B98.18 (15)Pt1—O1C—Mo1102.79 (13)
O14T—Mo6—O7B90.40 (15)Pt1—O1C—Mo6104.47 (13)
O12B—Mo6—O7B151.86 (13)Pt1—O2C—Mo199.04 (13)
O13T—Mo6—O1C93.47 (15)Pt1—O2C—Mo2102.52 (14)
O14T—Mo6—O1C153.85 (15)Pt1—O2C—O30C116.35 (16)
O12B—Mo6—O1C87.60 (12)Pt1—O3C—Mo2102.31 (13)
O7B—Mo6—O1C70.51 (12)Pt1—O3C—Mo3102.23 (13)
O13T—Mo6—O6C163.39 (15)Pt1—O4C—Mo3103.81 (13)
O14T—Mo6—O6C89.30 (15)Pt1—O4C—Mo4104.05 (13)
O12B—Mo6—O6C72.79 (12)Pt1—O5C—Mo5104.17 (14)
O7B—Mo6—O6C83.29 (12)Pt1—O5C—Mo4102.66 (13)
O1C—Mo6—O6C71.32 (11)Pt1—O6C—Mo6101.23 (13)
O39T—Mo7—O40T107.31 (19)Pt1—O6C—Mo5103.00 (13)
O39T—Mo7—O32B101.06 (15)Pt2—O25C—Mo12105.47 (13)
O40T—Mo7—O32B104.07 (15)Pt2—O25C—Mo7105.62 (13)
O39T—Mo7—O31B97.15 (15)Mo1—O2C—O30C122.10 (17)
O40T—Mo7—O31B89.78 (15)Mo2—O2C—O30C119.13 (16)
O32B—Mo7—O31B152.51 (13)Pt2—O26C—Mo7101.33 (13)
O39T—Mo7—O25C93.78 (15)Pt2—O26C—Mo8103.45 (13)
O40T—Mo7—O25C152.78 (15)Pt2—O27C—Mo8104.35 (13)
O32B—Mo7—O25C88.06 (13)Pt2—O27C—Mo9103.89 (13)
O31B—Mo7—O25C70.25 (12)Pt2—O28C—Mo10100.58 (13)
O39T—Mo7—O26C163.50 (15)Pt2—O28C—Mo9103.89 (13)
O40T—Mo7—O26C89.09 (15)Pt2—O29C—Mo11106.63 (14)
O32B—Mo7—O26C72.35 (12)Pt2—O29C—Mo10105.30 (13)
O31B—Mo7—O26C84.45 (12)Pt2—O30C—Mo1296.59 (13)
O25C—Mo7—O26C71.22 (11)Pt2—O30C—Mo1197.72 (13)
O42T—Mo8—O41T107.11 (17)Pt2—O30C—O2C117.78 (16)
O42T—Mo8—O32B98.16 (15)Mo12—O30C—O2C124.51 (17)
O41T—Mo8—O32B102.73 (15)Mo11—O30C—O2C122.82 (16)
O42T—Mo8—O33B99.95 (15)H1A—O1W—H1B109 (4)
O41T—Mo8—O33B96.08 (15)H2A—O2W—H2B104 (3)
O32B—Mo8—O33B148.67 (13)H3A—O3W—H3B110 (4)
O42T—Mo8—O27C93.34 (14)H4A—O4W—H4B110 (4)
O41T—Mo8—O27C157.72 (15)H5A—O5W—H5B111 (4)
O32B—Mo8—O27C82.48 (12)H6A—O6W—H6B107 (3)
O33B—Mo8—O27C71.16 (12)H7A—O7W—H7B112 (4)
O42T—Mo8—O26C161.29 (14)H8A—O8W—H8B105 (3)
O41T—Mo8—O26C90.66 (15)H9A—O9W—H9B113 (4)
O32B—Mo8—O26C71.58 (12)H10A—O10W—H10B112 (4)
O33B—Mo8—O26C83.51 (12)H11A—O11W—H11B111 (4)
O27C—Mo8—O26C70.22 (11)H12A—O12W—H12B109.5
O44T—Mo9—O43T105.42 (16)H13A—O13W—H13B110.8
O44T—Mo9—O34B101.22 (15)H14A—O14W—H14B109.5
O43T—Mo9—O34B97.29 (15)H15A—O15W—H15B115 (4)
O44T—Mo9—O33B98.74 (15)H16A—O16W—H16B105 (4)
O43T—Mo9—O33B101.57 (15)H17A—O17W—H17B115 (4)
O34B—Mo9—O33B147.68 (13)H18A—O18W—H18B112 (4)
O44T—Mo9—O27C159.33 (14)H19A—O19W—H19B112 (4)
O43T—Mo9—O27C94.36 (14)H20A—O20W—H20B111 (5)
O34B—Mo9—O27C81.75 (12)H21A—O21W—H21B105 (4)
O33B—Mo9—O27C70.92 (12)H22A—O22W—H22B108 (4)
O44T—Mo9—O28C91.45 (14)H23A—O23W—H23B106 (4)
O43T—Mo9—O28C161.38 (14)H24A—O24W—H24B108 (4)
O34B—Mo9—O28C71.21 (12)H25A—O25W—H25B111 (4)
O33B—Mo9—O28C83.19 (12)H26A—O26W—H26B107 (4)
O27C—Mo9—O28C69.96 (11)H27A—O27W—H27B109 (4)
O46T—Mo10—O45T106.66 (18)H28A—O28W—H28B107 (4)
O46T—Mo10—O34B97.33 (15)H29A—O29W—H29B110 (4)
O45T—Mo10—O34B99.56 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+2, z+1; (iv) x, y+2, z; (v) x1, y+1, z; (vi) x, y+1, z1; (vii) x, y, z1; (viii) x+1, y+1, z; (ix) x, y1, z; (x) x+1, y1, z; (xi) x, y, z+1; (xii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O30C0.86 (3)1.84 (6)2.595 (5)145 (9)
O3C—H3···O14Wxiii0.86 (3)1.74 (3)2.586 (5)164 (4)
O4C—H4···O38T0.85 (3)1.72 (3)2.576 (4)178 (5)
O5C—H5···O29W0.86 (3)1.79 (3)2.595 (5)156 (5)
O6C—H6···O48T0.86 (3)1.72 (3)2.569 (4)171 (5)
O7B—H7···O35B0.84 (3)1.94 (3)2.785 (5)175 (5)
O26C—H26···O17T0.82 (3)1.73 (3)2.556 (4)178 (5)
O27C—H27···O15Wxiv0.87 (3)1.70 (3)2.548 (5)164 (5)
O28C—H28···O16T0.86 (3)1.73 (3)2.575 (4)166 (5)
O30C—H30···O2C0.84 (3)1.76 (3)2.595 (5)172 (9)
O31B—H31···O9B0.82 (3)1.95 (3)2.763 (4)171 (5)
O1W—H1A···O36Bxiv0.87 (3)1.96 (3)2.830 (5)173 (5)
O1W—H1B···O48T0.84 (3)2.22 (3)3.023 (5)161 (5)
O2W—H2A···O16W0.86 (3)1.87 (3)2.731 (6)175 (5)
O2W—H2B···O43Txi0.87 (3)2.17 (3)3.031 (5)169 (5)
O3W—H3A···O22W0.87 (3)2.10 (3)2.969 (6)175 (5)
O3W—H3B···O38T0.86 (3)2.13 (3)2.980 (5)176 (5)
O4W—H4A···O26W0.88 (3)1.98 (3)2.857 (6)175 (5)
O4W—H4B···O25W0.82 (3)1.99 (3)2.806 (6)176 (6)
O5W—H5A···O16T0.85 (3)2.08 (3)2.930 (5)178 (6)
O6W—H6A···O25Cxiv0.86 (3)2.04 (3)2.880 (5)167 (5)
O6W—H6B···O18W0.87 (3)1.97 (3)2.831 (6)173 (5)
O7W—H7A···O17Wxii0.82 (3)1.98 (3)2.804 (5)175 (6)
O7W—H7B···O32Bxiv0.82 (3)2.02 (3)2.842 (5)174 (5)
O8W—H8A···O34Bxi0.87 (3)2.21 (3)3.064 (5)168 (5)
O8W—H8B···O9Wxi0.87 (3)1.89 (3)2.750 (6)169 (5)
O9W—H9A···O19Tix0.83 (3)2.22 (3)3.046 (5)178 (5)
O9W—H9B···O7Wvii0.86 (3)1.91 (3)2.720 (5)156 (6)
O10W—H10A···O25Wxv0.84 (3)2.23 (4)2.924 (7)140 (5)
O10W—H10B···O21Wi0.86 (3)2.02 (3)2.874 (7)174 (7)
O11W—H11A···O34B0.85 (3)1.93 (3)2.723 (5)155 (5)
O11W—H11B···O43Txvi0.85 (3)2.08 (3)2.867 (5)154 (5)
O12W—H12A···O22T0.982.252.904 (5)123
O12W—H12A···O21W0.982.313.141 (8)142
O13W—H13A···O12Wiii0.991.802.766 (6)164
O13W—H13B···O31B0.992.533.396 (5)146
O14W—H14A···O27Wxi0.981.762.737 (6)177
O14W—H14B···O23W0.981.962.796 (6)142
O15W—H15A···O19W0.83 (3)1.97 (3)2.738 (5)154 (5)
O16W—H16A···O20W0.89 (3)2.45 (6)3.156 (7)137 (7)
O16W—H16B···O24Wi0.85 (3)2.17 (6)2.842 (6)136 (6)
O17W—H17A···O8Bxvii0.81 (3)1.98 (3)2.790 (5)173 (5)
O17W—H17B···O17T0.84 (3)2.22 (3)3.027 (5)160 (5)
O18W—H18A···O28W0.83 (3)2.18 (4)2.907 (5)146 (5)
O18W—H18B···O1Ci0.81 (3)1.99 (3)2.798 (5)176 (5)
O19W—H19A···O29Cxiv0.85 (3)2.01 (3)2.842 (5)164 (5)
O19W—H19B···O10Wi0.80 (3)2.14 (3)2.920 (6)164 (6)
O20W—H20B···O23W0.85 (3)2.46 (7)3.121 (8)135 (8)
O21W—H21A···O23T0.89 (3)2.24 (4)3.064 (6)155 (7)
O21W—H21B···O33Bxi0.86 (3)2.17 (3)2.972 (5)155 (6)
O22W—H22A···O28Wxiv0.88 (3)2.28 (5)3.007 (6)140 (5)
O22W—H22B···O26Wxiv0.85 (3)1.96 (3)2.805 (7)169 (6)
O23W—H23A···O22T0.87 (3)2.30 (5)2.970 (6)134 (6)
O23W—H23B···O10Bxiii0.85 (3)1.95 (3)2.775 (5)162 (7)
O24W—H24A···O28W0.84 (3)2.02 (3)2.854 (6)173 (6)
O24W—H24B···O35B0.89 (3)2.05 (3)2.911 (5)163 (5)
O25W—H25A···O38Txiv0.83 (3)2.52 (6)3.119 (6)130 (7)
O25W—H25B···O47T0.86 (3)2.01 (3)2.834 (5)161 (7)
O26W—H26A···O24W0.87 (3)1.93 (5)2.723 (6)150 (7)
O26W—H26B···O19Tix0.87 (3)2.23 (4)2.920 (5)135 (5)
O27W—H27A···O18Txvii0.86 (3)2.33 (5)2.945 (5)129 (5)
O27W—H27B···O33B0.87 (3)2.10 (4)2.846 (5)144 (5)
O28W—H28A···O12Bi0.86 (3)1.93 (3)2.775 (5)168 (6)
O28W—H28B···O1W0.86 (3)1.96 (3)2.817 (6)171 (6)
O29W—H29A···O22Txiii0.86 (3)2.26 (5)2.895 (5)131 (5)
O29W—H29B···O22Wxv0.84 (3)2.03 (3)2.844 (6)165 (7)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+2, z+1; (vii) x, y, z1; (ix) x, y1, z; (xi) x, y, z+1; (xii) x, y1, z+1; (xiii) x+1, y+2, z+1; (xiv) x, y+1, z+1; (xv) x+1, y, z; (xvi) x, y+1, z; (xvii) x+1, y+2, z.
Selected geometric parameters (Å, º) top
Mo1—O1C2.114 (3)Mo1—O7B2.098 (3)
Mo6—O1C2.198 (3)Mo6—O7B2.076 (3)
Mo1—O2C2.216 (3)Mo1—O8B1.883 (3)
Mo2—O2C2.246 (3)Mo2—O8B1.963 (3)
Mo2—O3C2.245 (3)Mo2—O9B1.924 (3)
Mo3—O3C2.336 (3)Mo3—O9B1.953 (3)
Mo3—O4C2.267 (3)Mo3—O10B1.927 (3)
Mo4—O4C2.283 (3)Mo4—O10B1.947 (3)
Mo4—O5C2.312 (3)Mo4—O11B1.916 (3)
Mo5—O5C2.280 (3)Mo5—O11B1.935 (3)
Mo5—O6C2.358 (3)Mo5—O12B1.947 (3)
Mo6—O6C2.287 (3)Mo6—O12B1.906 (3)
Mo7—O25C2.186 (3)Mo7—O31B2.072 (3)
Mo12—O25C2.084 (3)Mo12—O31B2.090 (3)
Mo7—O26C2.297 (3)Mo7—O32B1.899 (3)
Mo8—O26C2.305 (3)Mo8—O32B1.935 (3)
Mo8—O27C2.272 (3)Mo8—O33B1.959 (3)
Mo9—O27C2.302 (3)Mo9—O33B1.932 (3)
Mo9—O28C2.307 (3)Mo9—O34B1.925 (3)
Mo10—O28C2.302 (3)Mo10—O34B1.961 (3)
Mo10—O29C2.196 (3)Mo10—O35B1.988 (3)
Mo11—O29C2.122 (3)Mo11—O35B1.947 (3)
Mo11—O30C2.359 (3)Mo11—O36B1.970 (3)
Mo12—O30C2.340 (3)Mo12—O36B1.870 (3)
Mo1—O1C—Mo6104.42 (13)Mo12—O25C—Mo7104.38 (13)
Mo1—O2C—Mo293.27 (12)Mo7—O26C—Mo892.23 (11)
Mo2—O3C—Mo392.61 (11)Mo8—O27C—Mo993.67 (11)
Mo3—O4C—Mo494.36 (12)Mo10—O28C—Mo993.85 (11)
Mo5—O5C—Mo493.05 (11)Mo11—O29C—Mo1096.01 (12)
Mo6—O6C—Mo591.98 (11)Mo12—O30C—Mo1190.63 (11)
Mo6—O7B—Mo1109.51 (15)Mo7—O31B—Mo12108.35 (15)
Mo1—O8B—Mo2115.01 (15)Mo7—O32B—Mo8119.84 (16)
Mo2—O9B—Mo3117.38 (16)Mo9—O33B—Mo8118.01 (15)
Mo3—O10B—Mo4118.97 (16)Mo9—O34B—Mo10120.01 (16)
Mo4—O11B—Mo5119.86 (16)Mo11—O35B—Mo10109.31 (15)
Mo6—O12B—Mo5120.24 (16)Mo12—O36B—Mo11120.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O30C0.86 (3)1.84 (6)2.595 (5)145 (9)
O3C—H3···O14Wi0.86 (3)1.74 (3)2.586 (5)164 (4)
O4C—H4···O38T0.85 (3)1.72 (3)2.576 (4)178 (5)
O5C—H5···O29W0.86 (3)1.79 (3)2.595 (5)156 (5)
O6C—H6···O48T0.86 (3)1.72 (3)2.569 (4)171 (5)
O7B—H7···O35B0.84 (3)1.94 (3)2.785 (5)175 (5)
O26C—H26···O17T0.82 (3)1.73 (3)2.556 (4)178 (5)
O27C—H27···O15Wii0.87 (3)1.70 (3)2.548 (5)164 (5)
O28C—H28···O16T0.86 (3)1.73 (3)2.575 (4)166 (5)
O30C—H30···O2C0.84 (3)1.76 (3)2.595 (5)172 (9)
O31B—H31···O9B0.82 (3)1.95 (3)2.763 (4)171 (5)
O1W—H1A···O36Bii0.87 (3)1.96 (3)2.830 (5)173 (5)
O1W—H1B···O48T0.84 (3)2.22 (3)3.023 (5)161 (5)
O2W—H2A···O16W0.86 (3)1.87 (3)2.731 (6)175 (5)
O2W—H2B···O43Tiii0.87 (3)2.17 (3)3.031 (5)169 (5)
O3W—H3A···O22W0.87 (3)2.10 (3)2.969 (6)175 (5)
O3W—H3B···O38T0.86 (3)2.13 (3)2.980 (5)176 (5)
O4W—H4A···O26W0.88 (3)1.98 (3)2.857 (6)175 (5)
O4W—H4B···O25W0.82 (3)1.99 (3)2.806 (6)176 (6)
O5W—H5A···O16T0.85 (3)2.08 (3)2.930 (5)178 (6)
O6W—H6A···O25Cii0.86 (3)2.04 (3)2.880 (5)167 (5)
O6W—H6B···O18W0.87 (3)1.97 (3)2.831 (6)173 (5)
O7W—H7A···O17Wiv0.82 (3)1.98 (3)2.804 (5)175 (6)
O7W—H7B···O32Bii0.82 (3)2.02 (3)2.842 (5)174 (5)
O8W—H8A···O34Biii0.87 (3)2.21 (3)3.064 (5)168 (5)
O8W—H8B···O9Wiii0.87 (3)1.89 (3)2.750 (6)169 (5)
O9W—H9A···O19Tv0.83 (3)2.22 (3)3.046 (5)178 (5)
O9W—H9B···O7Wvi0.86 (3)1.91 (3)2.720 (5)156 (6)
O10W—H10A···O25Wvii0.84 (3)2.23 (4)2.924 (7)140 (5)
O10W—H10B···O21Wviii0.86 (3)2.02 (3)2.874 (7)174 (7)
O11W—H11A···O34B0.85 (3)1.93 (3)2.723 (5)155 (5)
O11W—H11B···O43Tix0.85 (3)2.08 (3)2.867 (5)154 (5)
O12W—H12A···O22T0.982.252.904 (5)123.4
O12W—H12A···O21W0.982.313.141 (8)142.4
O13W—H13A···O12Wx0.991.802.766 (6)164.3
O13W—H13B···O31B0.992.533.396 (5)146.2
O14W—H14A···O27Wiii0.981.762.737 (6)176.5
O14W—H14B···O23W0.981.962.796 (6)141.6
O15W—H15A···O19W0.83 (3)1.97 (3)2.738 (5)154 (5)
O16W—H16A···O20W0.89 (3)2.45 (6)3.156 (7)137 (7)
O16W—H16B···O24Wviii0.85 (3)2.17 (6)2.842 (6)136 (6)
O17W—H17A···O8Bxi0.81 (3)1.98 (3)2.790 (5)173 (5)
O17W—H17B···O17T0.84 (3)2.22 (3)3.027 (5)160 (5)
O18W—H18A···O28W0.83 (3)2.18 (4)2.907 (5)146 (5)
O18W—H18B···O1Cviii0.81 (3)1.99 (3)2.798 (5)176 (5)
O19W—H19A···O29Cii0.85 (3)2.01 (3)2.842 (5)164 (5)
O19W—H19B···O10Wviii0.80 (3)2.14 (3)2.920 (6)164 (6)
O20W—H20B···O23W0.85 (3)2.46 (7)3.121 (8)135 (8)
O21W—H21A···O23T0.89 (3)2.24 (4)3.064 (6)155 (7)
O21W—H21B···O33Biii0.86 (3)2.17 (3)2.972 (5)155 (6)
O22W—H22A···O28Wii0.88 (3)2.28 (5)3.007 (6)140 (5)
O22W—H22B···O26Wii0.85 (3)1.96 (3)2.805 (7)169 (6)
O23W—H23A···O22T0.87 (3)2.30 (5)2.970 (6)134 (6)
O23W—H23B···O10Bi0.85 (3)1.95 (3)2.775 (5)162 (7)
O24W—H24A···O28W0.84 (3)2.02 (3)2.854 (6)173 (6)
O24W—H24B···O35B0.89 (3)2.05 (3)2.911 (5)163 (5)
O25W—H25A···O38Tii0.83 (3)2.52 (6)3.119 (6)130 (7)
O25W—H25B···O47T0.86 (3)2.01 (3)2.834 (5)161 (7)
O26W—H26A···O24W0.87 (3)1.93 (5)2.723 (6)150 (7)
O26W—H26B···O19Tv0.87 (3)2.23 (4)2.920 (5)135 (5)
O27W—H27A···O18Txi0.86 (3)2.33 (5)2.945 (5)129 (5)
O27W—H27B···O33B0.87 (3)2.10 (4)2.846 (5)144 (5)
O28W—H28A···O12Bviii0.86 (3)1.93 (3)2.775 (5)168 (6)
O28W—H28B···O1W0.86 (3)1.96 (3)2.817 (6)171 (6)
O29W—H29A···O22Ti0.86 (3)2.26 (5)2.895 (5)131 (5)
O29W—H29B···O22Wvii0.84 (3)2.03 (3)2.844 (6)165 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y1, z+1; (v) x, y1, z; (vi) x, y, z1; (vii) x+1, y, z; (viii) x+1, y+1, z+1; (ix) x, y+1, z; (x) x, y+2, z+1; (xi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaH6Mo6O24Pt·H4Mo6O24Pt·29(H2O)·6(Na)
Mr2979.85
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)14.0384 (6), 15.7969 (6), 16.7235 (6)
α, β, γ (°)72.825 (2), 75.522 (2), 89.168 (2)
V3)3423.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.36
Crystal size (mm)0.67 × 0.44 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.234, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
58415, 14940, 12688
Rint0.057
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.06
No. of reflections14940
No. of parameters1064
No. of restraints114
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)1.73, 2.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998).

 

References

First citationAnderson, J. S. (1937). Nature, 140, 850.  CrossRef Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, V. W., Goloboy, J. C. & Klemperer, W. G. (2009). Eur. J. Inorg. Chem. pp. 5079–5087.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIzarova, N. V., Pope, M. T. & Kortz, U. (2012). Angew. Chem. Int. Ed. 51, 9492–9510.  Web of Science CrossRef CAS Google Scholar
First citationJoo, H.-C. & Lee, U. (2015). Acta Cryst. E71, 647–649.  CSD CrossRef IUCr Journals Google Scholar
First citationJoo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015a). Acta Cryst. E71, 268–271.  CSD CrossRef IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015b). Acta Cryst. E71, 786–790.  CSD CrossRef IUCr Journals Google Scholar
First citationKeggin, J. F. (1934). Proc. R. Soc. London Ser. A, 114, 75.  CrossRef Google Scholar
First citationLee, U. (1988). Bull. Korean Chem. Soc., 9, 256–257.  CAS Google Scholar
First citationLee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311–e312.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i61–i63.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231–i233.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241–i243.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2010). Acta Cryst. E66, i8–i9.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2010). Acta Cryst. E66, i25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793–796.  Web of Science CrossRef CAS Google Scholar
First citationLee, U., Joo, H.-C., Park, K.-M. & Ozeki, T. (2003). Acta Cryst. C59, m152–m155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc., 15, 37–45.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1250-1254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds