organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o701-o702

Crystal structure of 2-meth­­oxy-1-nitro­naphthalene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
*Correspondence e-mail: m.khouili@usms.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 August 2015; accepted 28 August 2015; online 12 September 2015)

The asymmetric unit of the title compound, C11H9NO3, contains two mol­ecules, A and B. In mol­ecule A, the dihedral angle between the planes of the naphthalene ring system (r.m.s. deviation = 0.003 Å) and the nitro group is 89.9 (2)°, and the C atom of the meth­oxy group deviates from the naphthyl plane by 0.022 (2) Å. Equivalent data for mol­ecule B are 0.008 Å, 65.9 (2)° and −0.198 (2) Å, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming [100] chains of alternating A and B mol­ecules. Weak aromatic ππ stacking contacts, with a range of centroid–centroid distances from 3.5863 (9) to 3.8048 (9) Å, are also observed.

1. Related literature

For biological activities of naphthalene derivatives, see: Wright et al. (2000[Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42-45.]); Rokade & Sayyed (2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980]); Upadhayaya et al. (2010[Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854-1867.]). For the title compound as an inter­mediate in the synthesis of anti­pyretic drugs, see: Stoylkova et al. (2000[Stoylkova, T. Y., Chanev, C. D., Lechert, H. T. & Bezouhanova, C. P. (2000). Catal. Lett. 69, 109-112.]); Govindarajana et al. (2011[Govindarajan, M., Ganasan, K., Periandy, S. & Karabacak, M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 646-653.]); Kirumakki et al. (2004[Kirumakki, S. R., Nagaraju, N., Chary, K. V. R. & Narayanan, S. (2004). J. Catal. 221, 549-559.]); Yadav et al. (1998[Yadav, G. D. & Krishnan, S. (1998). Ind. Eng. Chem. Res. 37, 3358-3365.]). For a related structure, see: Wannalerse et al. (2013[Wannalerse, B., Pannil, W., Loriang, J., Tuntulani, T. & Duangthongyou, T. (2013). Acta Cryst. E69, o682.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H9NO3

  • Mr = 203.19

  • Triclinic, [P \overline 1]

  • a = 9.1291 (4) Å

  • b = 10.2456 (4) Å

  • c = 10.5215 (4) Å

  • α = 86.390 (2)°

  • β = 82.964 (2)°

  • γ = 85.801 (2)°

  • V = 972.63 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.39 × 0.32 × 0.24 mm

2.2. Data collection

  • Bruker X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 0.746

  • 34901 measured reflections

  • 5450 independent reflections

  • 3446 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 1.04

  • 5450 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 0.93 2.57 3.409 (2) 150
C11—H11A⋯O5ii 0.96 2.60 3.462 (3) 150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Naphthalene derivatives have been extensively employed in many fields, for example, as a colorant, explosive, disinfectant, insecticide, auxin plant hormone and play a role in the chemical defence against biological (Wright et al., 2000) and have diverse and interesting antibiotic properties (Rokade & Sayyed, 2009; Upadhayaya et al. 2010). 2-Methoxynaphthalene is an important intermediate used in the production of naproxen. It is widely used a non-steroidal anti-inflammatory, analgesic and antipyretic drug (Stoylkova et al., 2000, Govindarajana et al., 2011, Kirumakki et al., 2004; Yadav et al., 1998). Nitration of 1-methoxynaphthalene with bismuth nitrate in CH2Cl2 gives a compound (I) and describes its structure here.

The asymmetric unit of the title compound consists of two crystallographically independent molecules of nearly similar geometry as shown in Fig. 1. Bond lengths and angles of the title compound are comparable with that found in the similar structure (Wannalerse et al., 2013). In the first (O1O2O3N1C1–C11) and second (O4O5O6N2C12–C22) molecules, the dihedral angles between the nitro group and the attached naphthalene system are 89.9 (2)° and 65.9 (2)°, respectively. The two naphthalene rings belonging to the both molecules form a dihedral angle of 72.02 (5)°.

In the crystal, the molecules are linked together by weak C—H···O interactions. Moreover, the ππ contacts between the naphthalene rings, may further consolidate the structure, with range of centroid– centroid distances = 3.5863 (9)—3.8048 (9) Å.

Related literature top

For biological activities of naphthalene derivatives, see: Wright et al. (2000); Rokade & Sayyed (2009); Upadhayaya et al. (2010). For the title compound as an intermediate in the synthesis of antipyretic drugs, see: Stoylkova et al. (2000); Govindarajana et al. (2011); Kirumakki et al. (2004); Yadav et al. (1998). For a related structure, see: Wannalerse et al. (2013).

Experimental top

2-Methoxynaphtalene (500 mg, 3.164 mmol) and silica gel (500 mg) was added to a suspension of bismuth nitrate pentahydrate (1.2 eqv.) in CH2Cl2 (20 ml). The mixture was refluxed for 6 h. After cooling to room temperature, the reaction mixture was filtered and watched with CH2Cl2, the filtrate obtained was concentrated, and the resulting residue was purified by column chromatography using EtOAc-Hexane (1:9 v/v). The title compound was recrystallized from the solvent mixture ethyl acetate/hexane to yield orange block crystals (yield: 74%).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93–0.96 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq for aromatic and Uiso(H) = 1.5 Ueq (C) for methyl. Two outlier reflections, (-7 3 0) and (-1 - 3 2), were omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : A view of the molecule of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial crystal packing for the title compound showing molecules linked by hydrogen bonds as blue dashed lines and ππ contacts between the naphthalene rings (red dashed lines).
2-Methoxy-1-nitronaphthalene top
Crystal data top
C11H9NO3Z = 4
Mr = 203.19F(000) = 424
Triclinic, P1Dx = 1.388 Mg m3
a = 9.1291 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2456 (4) ÅCell parameters from 3506 reflections
c = 10.5215 (4) Åθ = 1.7–30.0°
α = 86.390 (2)°µ = 0.10 mm1
β = 82.964 (2)°T = 296 K
γ = 85.801 (2)°Block, orange
V = 972.63 (7) Å30.39 × 0.32 × 0.24 mm
Data collection top
Bruker X8 APEXII CCD
diffractometer
5450 independent reflections
Radiation source: fine-focus sealed tube3446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 29.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.676, Tmax = 0.746k = 1414
34901 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2462P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
5450 reflectionsΔρmin = 0.15 e Å3
272 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (2)
Crystal data top
C11H9NO3γ = 85.801 (2)°
Mr = 203.19V = 972.63 (7) Å3
Triclinic, P1Z = 4
a = 9.1291 (4) ÅMo Kα radiation
b = 10.2456 (4) ŵ = 0.10 mm1
c = 10.5215 (4) ÅT = 296 K
α = 86.390 (2)°0.39 × 0.32 × 0.24 mm
β = 82.964 (2)°
Data collection top
Bruker X8 APEXII CCD
diffractometer
5450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3446 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.746Rint = 0.038
34901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
5450 reflectionsΔρmin = 0.15 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82138 (17)0.83303 (15)0.59386 (15)0.0445 (3)
C20.76837 (19)0.92960 (16)0.67524 (16)0.0512 (4)
C30.8714 (2)0.99956 (17)0.72711 (17)0.0582 (4)
H30.83891.06500.78320.070*
C41.0189 (2)0.97177 (17)0.69542 (16)0.0562 (4)
H41.08541.02010.72980.067*
C51.07461 (18)0.87266 (15)0.61254 (15)0.0464 (4)
C60.97310 (17)0.79982 (14)0.55904 (14)0.0416 (3)
C71.02802 (19)0.70018 (16)0.47545 (16)0.0515 (4)
H70.96250.65190.43980.062*
C81.1760 (2)0.67452 (19)0.44694 (18)0.0605 (5)
H81.21070.60850.39200.073*
C91.2771 (2)0.7456 (2)0.49869 (19)0.0633 (5)
H91.37820.72660.47810.076*
C101.2280 (2)0.84240 (19)0.57914 (18)0.0580 (5)
H101.29610.88950.61280.070*
C110.5602 (3)1.0473 (2)0.7849 (2)0.0859 (7)
H11A0.45421.05180.79140.129*
H11B0.59511.13110.75430.129*
H11C0.59121.02420.86780.129*
C120.12086 (16)0.31177 (13)0.90308 (14)0.0391 (3)
C130.19472 (16)0.40531 (14)0.82703 (14)0.0411 (3)
C140.11092 (19)0.51331 (15)0.77661 (15)0.0477 (4)
H140.15810.57790.72420.057*
C150.03834 (18)0.52299 (15)0.80456 (15)0.0483 (4)
H150.09150.59590.77210.058*
C160.11572 (17)0.42663 (14)0.88090 (14)0.0424 (3)
C170.03443 (16)0.31586 (14)0.93202 (14)0.0391 (3)
C180.11305 (19)0.22006 (16)1.00938 (17)0.0515 (4)
H180.06180.14751.04460.062*
C190.2632 (2)0.23339 (18)1.0326 (2)0.0612 (5)
H190.31350.16901.08270.073*
C200.34344 (19)0.34223 (19)0.9822 (2)0.0618 (5)
H200.44600.34970.99900.074*
C210.27129 (18)0.43676 (17)0.90895 (18)0.0532 (4)
H210.32510.50930.87670.064*
C220.4201 (2)0.47481 (19)0.71352 (18)0.0615 (5)
H22A0.52440.45160.70730.092*
H22B0.40100.56290.74030.092*
H22C0.38620.46880.63140.092*
N10.20980 (15)0.20198 (13)0.95773 (14)0.0483 (3)
N20.71338 (16)0.76148 (15)0.53852 (16)0.0571 (4)
O10.6734 (2)0.8025 (2)0.43824 (19)0.1118 (7)
O20.6708 (2)0.66298 (17)0.5941 (2)0.1043 (6)
O30.61970 (14)0.95078 (14)0.69777 (14)0.0703 (4)
O40.29054 (17)0.22522 (13)1.03577 (15)0.0785 (4)
O50.19774 (17)0.09259 (12)0.92409 (16)0.0767 (4)
O60.34371 (12)0.38730 (11)0.80514 (11)0.0537 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (8)0.0428 (8)0.0464 (8)0.0077 (6)0.0072 (7)0.0025 (6)
C20.0539 (10)0.0513 (9)0.0462 (9)0.0005 (7)0.0013 (7)0.0027 (7)
C30.0772 (13)0.0527 (9)0.0447 (9)0.0034 (9)0.0046 (9)0.0084 (7)
C40.0708 (12)0.0557 (10)0.0465 (9)0.0177 (8)0.0179 (8)0.0006 (7)
C50.0510 (9)0.0486 (8)0.0410 (8)0.0110 (7)0.0117 (7)0.0069 (7)
C60.0441 (8)0.0415 (7)0.0393 (8)0.0064 (6)0.0076 (6)0.0052 (6)
C70.0527 (10)0.0499 (9)0.0526 (10)0.0041 (7)0.0081 (8)0.0046 (7)
C80.0582 (11)0.0624 (11)0.0580 (11)0.0062 (8)0.0016 (8)0.0027 (8)
C90.0455 (10)0.0768 (13)0.0640 (12)0.0008 (9)0.0028 (8)0.0118 (10)
C100.0499 (10)0.0688 (11)0.0578 (11)0.0170 (8)0.0169 (8)0.0122 (9)
C110.0839 (16)0.0823 (15)0.0800 (15)0.0233 (12)0.0198 (12)0.0064 (12)
C120.0404 (8)0.0360 (7)0.0417 (8)0.0007 (6)0.0080 (6)0.0039 (6)
C130.0390 (8)0.0445 (8)0.0403 (8)0.0033 (6)0.0047 (6)0.0046 (6)
C140.0524 (9)0.0456 (8)0.0442 (8)0.0048 (7)0.0055 (7)0.0049 (6)
C150.0522 (9)0.0444 (8)0.0483 (9)0.0032 (7)0.0121 (7)0.0036 (7)
C160.0413 (8)0.0445 (8)0.0431 (8)0.0009 (6)0.0099 (6)0.0089 (6)
C170.0392 (8)0.0386 (7)0.0409 (8)0.0042 (6)0.0070 (6)0.0069 (6)
C180.0493 (9)0.0441 (8)0.0611 (10)0.0087 (7)0.0048 (8)0.0001 (7)
C190.0505 (10)0.0582 (10)0.0746 (12)0.0188 (8)0.0041 (9)0.0067 (9)
C200.0370 (9)0.0710 (12)0.0785 (13)0.0071 (8)0.0011 (8)0.0203 (10)
C210.0411 (9)0.0570 (10)0.0636 (11)0.0021 (7)0.0125 (8)0.0125 (8)
C220.0487 (10)0.0745 (12)0.0592 (11)0.0146 (9)0.0053 (8)0.0020 (9)
N10.0435 (7)0.0412 (7)0.0595 (8)0.0011 (5)0.0071 (6)0.0016 (6)
N20.0450 (8)0.0572 (9)0.0709 (10)0.0085 (6)0.0111 (7)0.0039 (7)
O10.1262 (16)0.1253 (15)0.1010 (13)0.0526 (12)0.0681 (12)0.0190 (11)
O20.1055 (13)0.0811 (11)0.1351 (16)0.0523 (10)0.0365 (11)0.0232 (10)
O30.0542 (8)0.0768 (9)0.0753 (9)0.0099 (6)0.0049 (6)0.0104 (7)
O40.0826 (10)0.0663 (8)0.0944 (11)0.0031 (7)0.0500 (9)0.0107 (7)
O50.0839 (10)0.0403 (7)0.1082 (12)0.0091 (6)0.0230 (8)0.0139 (7)
O60.0394 (6)0.0609 (7)0.0585 (7)0.0050 (5)0.0002 (5)0.0050 (5)
Geometric parameters (Å, º) top
C1—C21.372 (2)C12—N11.4678 (19)
C1—C61.411 (2)C13—O61.3524 (18)
C1—N21.466 (2)C13—C141.412 (2)
C2—O31.353 (2)C14—C151.356 (2)
C2—C31.404 (3)C14—H140.9300
C3—C41.360 (3)C15—C161.408 (2)
C3—H30.9300C15—H150.9300
C4—C51.406 (2)C16—C211.412 (2)
C4—H40.9300C16—C171.423 (2)
C5—C101.418 (2)C17—C181.414 (2)
C5—C61.419 (2)C18—C191.361 (2)
C6—C71.413 (2)C18—H180.9300
C7—C81.358 (2)C19—C201.400 (3)
C7—H70.9300C19—H190.9300
C8—C91.396 (3)C20—C211.357 (3)
C8—H80.9300C20—H200.9300
C9—C101.360 (3)C21—H210.9300
C9—H90.9300C22—O61.427 (2)
C10—H100.9300C22—H22A0.9600
C11—O31.424 (2)C22—H22B0.9600
C11—H11A0.9600C22—H22C0.9600
C11—H11B0.9600N1—O51.2129 (17)
C11—H11C0.9600N1—O41.2136 (18)
C12—C131.371 (2)N2—O11.200 (2)
C12—C171.411 (2)N2—O21.200 (2)
C2—C1—C6124.01 (15)O6—C13—C14124.40 (14)
C2—C1—N2117.77 (15)C12—C13—C14118.16 (14)
C6—C1—N2118.21 (14)C15—C14—C13120.05 (14)
O3—C2—C1116.87 (16)C15—C14—H14120.0
O3—C2—C3125.16 (16)C13—C14—H14120.0
C1—C2—C3117.96 (16)C14—C15—C16122.34 (14)
C4—C3—C2120.12 (16)C14—C15—H15118.8
C4—C3—H3119.9C16—C15—H15118.8
C2—C3—H3119.9C15—C16—C21122.11 (14)
C3—C4—C5122.44 (16)C15—C16—C17118.92 (14)
C3—C4—H4118.8C21—C16—C17118.97 (14)
C5—C4—H4118.8C12—C17—C18124.80 (14)
C4—C5—C10123.00 (16)C12—C17—C16116.68 (13)
C4—C5—C6118.74 (15)C18—C17—C16118.51 (14)
C10—C5—C6118.27 (16)C19—C18—C17120.38 (16)
C1—C6—C7124.13 (14)C19—C18—H18119.8
C1—C6—C5116.72 (14)C17—C18—H18119.8
C7—C6—C5119.15 (15)C18—C19—C20121.21 (17)
C8—C7—C6120.33 (16)C18—C19—H19119.4
C8—C7—H7119.8C20—C19—H19119.4
C6—C7—H7119.8C21—C20—C19119.91 (16)
C7—C8—C9121.14 (18)C21—C20—H20120.0
C7—C8—H8119.4C19—C20—H20120.0
C9—C8—H8119.4C20—C21—C16121.01 (16)
C10—C9—C8120.03 (18)C20—C21—H21119.5
C10—C9—H9120.0C16—C21—H21119.5
C8—C9—H9120.0O6—C22—H22A109.5
C9—C10—C5121.09 (17)O6—C22—H22B109.5
C9—C10—H10119.5H22A—C22—H22B109.5
C5—C10—H10119.5O6—C22—H22C109.5
O3—C11—H11A109.5H22A—C22—H22C109.5
O3—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5O5—N1—O4123.26 (14)
O3—C11—H11C109.5O5—N1—C12118.58 (14)
H11A—C11—H11C109.5O4—N1—C12118.15 (13)
H11B—C11—H11C109.5O1—N2—O2122.74 (17)
C13—C12—C17123.81 (13)O1—N2—C1118.59 (15)
C13—C12—N1117.52 (13)O2—N2—C1118.65 (16)
C17—C12—N1118.66 (13)C2—O3—C11118.58 (17)
O6—C13—C12117.43 (13)C13—O6—C22117.88 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.573.409 (2)150
C11—H11A···O5ii0.962.603.462 (3)150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.573.409 (2)150
C11—H11A···O5ii0.962.603.462 (3)150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGovindarajan, M., Ganasan, K., Periandy, S. & Karabacak, M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 646–653.  CrossRef CAS PubMed Google Scholar
First citationKirumakki, S. R., Nagaraju, N., Chary, K. V. R. & Narayanan, S. (2004). J. Catal. 221, 549–559.  CrossRef CAS Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoylkova, T. Y., Chanev, C. D., Lechert, H. T. & Bezouhanova, C. P. (2000). Catal. Lett. 69, 109–112.  CrossRef CAS Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWannalerse, B., Pannil, W., Loriang, J., Tuntulani, T. & Duangthongyou, T. (2013). Acta Cryst. E69, o682.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.  Web of Science CrossRef CAS Google Scholar
First citationYadav, G. D. & Krishnan, S. (1998). Ind. Eng. Chem. Res. 37, 3358–3365.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o701-o702
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds