organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o764-o765

Crystal structure of 2-acetyl-5-(3,4-di­meth­­oxy­phen­yl)-6-eth­­oxy­carbonyl-3,7-di­methyl-5H-thia­zolo[3,2-a]pyrimidin-8-ium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2015; accepted 31 August 2015; online 17 September 2015)

The title mol­ecular salt, C21H25N2O5S+·Cl, crystallizes with two ion pairs in the asymmetric unit. The cations have similar conformations (r.m.s. overlay fit = 0.40 Å), with one of them showing disorder of the terminal methyl group of the ester in a 0.72 (2):0.28 (2) ratio. In the first cation, the 3,4-dimeth­oxy-substituted phenyl ring subtends a dihedral angle of 88.38 (7)° with the pyrimidine ring and 6.79 (8)° with the thia­zole ring. The equivalent data for the second cation are 89.97 (3) and 6.42 (7)°, respectively. The pyrimidine ring adopts a sofa conformation in each cation. In the crystal, the components are linked by N—H⋯Cl hydrogen bonds, generating isolated ion pairs. The ion pairs are are linked by C—H⋯O inter­actions, generating a three-dimensional network. In addition, a weak C—H⋯π inter­action is observed.

1. Related literature

For the pharmacological properties of pyrimidine derivatives, see: Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]); Alam et al. (2010[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245-1258.]); Kulakov et al. (2009[Kulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856-859.]); Zhi et al. (2008[Zhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). ARKIVOC, xiii, 266-277.]). For conformational effects on biological activity, see: Rovnyak et al. (1995[Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M. & McCarthy, J. P. (1995). J. Med. Chem. 38, 119-129.]). For related structures, see: Prasad et al. (2014[Prasad, N. L., Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1204.]); Nagarajaiah et al. (2012[Nagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847-855.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H25N2O5S+·Cl

  • Mr = 452.94

  • Triclinic, [P \overline 1]

  • a = 9.9000 (6) Å

  • b = 11.8563 (7) Å

  • c = 19.0377 (11) Å

  • α = 80.827 (2)°

  • β = 83.999 (2)°

  • γ = 86.071 (2)°

  • V = 2190.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.40 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.953

  • 26782 measured reflections

  • 7693 independent reflections

  • 4545 reflections with I > 2σ(I)

  • Rint = 0.077

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.134

  • S = 0.97

  • 7693 reflections

  • 565 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9B–C14B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl1A 0.88 2.20 2.993 (1) 151
N1B—H1B⋯Cl1Bi 0.88 2.20 2.992 (2) 150
C11A—H11A⋯O5Bii 0.95 2.58 3.523 (1) 173
C15B—H15C⋯O5Aiii 0.98 2.58 3.456 (6) 148
C21A—H21D⋯O3Biii 0.98 2.50 3.459 (6) 166
C4A—H4A2⋯Cg3 0.98 2.63 3.551 (2) 157
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Pyrimidine derivatives are of interest because of their useful biological and therapeutic activities (Ashok et al., 2007). The presence of both pyrimidine and thiazole rings results in enhanced activity (Alam et al., 2010; Kulakov et al., 2009). Thiazolo [3,2-a]pyrimidine derivatives generate enzyme inhibitors as novel therapeutical entities for severe neurodegenerative diseases (Zhi et al., 2008). In continuation to our research interests on thiazolo[3,2-a]pyrimidine derivatives (Prasad et al., 2014; Nagarajaiah et al., 2012), we report the crystal structure of the title compound. During the synthesis of one of the thiazolopyrimidine derivatives, an intermediate [C21H25N2O5S]+ Cl- (I) was isolated and the structure was confirmed by X-ray diffraction.

The molecular structure of the compound is shown in Fig. 1. The title compound, [C21H25N2O5S]+ Cl-, crystallizes in the triclinic space group with two molecules in the asymmetric unit. In molecules A and B, the 3,4- dimethoxy substituted phenyl ring form dihedral angle of 88.38 (7)° / 89.97 (3)° with mean plane of the pyrimidine ring and 6.79 (8)° / 6.42 (7)° with thiazole ring respectively. The two values separated by / corresponds to the two molecules in the asymmetric unit. The pyrimidine ring adopts a sofa conformation with atom C5A displaced by -0.2637 (3) Å from the mean plane of the other five atoms (N1A/C2A/N2A/C6A/C7A). The carbonyl group of the exocyclic ester at C6A and C6B adopts a cis orientation with respect to C6A=C7A and C6B=C6B double bond and the 3,4-dimethoxy substituted phenyl ring shows an syn periplanar conformation with respect to C5A—H5A and C5B—H5B bond of the pyrimidine ring. Phenyl ring at C5A and C5B in both the molecules shows antagonist (aryl-group up) conformation (Rovnyak et al., 1995). The packing features C—H···O interactions. The weak C11A—H11A···O5B hydrogen bonds forms supramolecular assembly along the crystallographic [101], which are inturn linked by another two C—H···O interactions (C15B—H15C···O5A & C21A—H21D···O3B) resulting in a ring with the graph set R22(7) notation (Table. 1; Fig. 2). The crystal packing also features N1A—H1A···Cl1A & N1B—H1B···Cl1B interactions. In addition, a weak C—H···π interaction of the type C4A-H4A2···Cg (Cg being the centroid of the phenyl ring) at a distance of 2.628 Å is also observed (Fig. 3).

Related literature top

For the pharmacological properties of pyrimidine derivatives, see: Ashok et al. (2007); Alam et al. (2010); Kulakov et al. (2009); Zhi et al. (2008). For conformational effects on biological activity, see: Rovnyak et al. (1995). For related structures, see: Prasad et al. (2014); Nagarajaiah et al. (2012).

Experimental top

A mixture of 4-(3,4-dimethoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro- pyrimidine-5-carboxylic acid ethyl ester (10 mmol) and 3-chloro-2,4- pentanedione (10 mmol) was refluxed in dry ethanol (20 mmol) for 12 h. The excess of solvent was distilled off and the solid hydrochloride salt that separated was collected by filtration, suspended in water and neutralized by aqueous sodium carbonate solution to yield the free base. The solution was filtered, the solid washed with water, dried and recrystallized from ethyl acetate to give the title compound (74% yield, mp 385 K). The compound was recrystallized by slow evaporation from 1:1 mixture of ethyl acetate and methanol, yielding pale yellow blocks.

Refinement top

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.95° A, 1.00 ° A and 0.96 ° A for aromatic, methyne and methyl H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing of the title compound showing C—H···O and N—H···Cl interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit-cell packing depicting the intermolecular C—H···π interactions with dotted lines.
2-Acetyl-5-(3,4-dimethoxyphenyl)-6-ethoxycarbonyl-3,7-dimethyl-5H-thiazolo[3,2-a]pyrimidin-8-ium chloride top
Crystal data top
C21H25N2O5S+·ClZ = 4
Mr = 452.94F(000) = 952
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9000 (6) ÅCell parameters from 7693 reflections
b = 11.8563 (7) Åθ = 2.1–25.0°
c = 19.0377 (11) ŵ = 0.31 mm1
α = 80.827 (2)°T = 100 K
β = 83.999 (2)°Block, colorless
γ = 86.071 (2)°0.40 × 0.35 × 0.30 mm
V = 2190.9 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
7693 independent reflections
Radiation source: fine-focus sealed tube4545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.947, Tmax = 0.953k = 1414
26782 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
7693 reflections(Δ/σ)max = 0.001
565 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C21H25N2O5S+·Clγ = 86.071 (2)°
Mr = 452.94V = 2190.9 (2) Å3
Triclinic, P1Z = 4
a = 9.9000 (6) ÅMo Kα radiation
b = 11.8563 (7) ŵ = 0.31 mm1
c = 19.0377 (11) ÅT = 100 K
α = 80.827 (2)°0.40 × 0.35 × 0.30 mm
β = 83.999 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4545 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.953Rint = 0.077
26782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.97Δρmax = 0.46 e Å3
7693 reflectionsΔρmin = 0.39 e Å3
565 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.55372 (9)0.82102 (7)0.06988 (5)0.0231 (2)
S1B1.58661 (9)0.56682 (7)0.41046 (5)0.0236 (2)
Cl1A0.26054 (8)0.98395 (7)0.07281 (4)0.0258 (2)
O3B1.1844 (2)0.61890 (18)0.07522 (11)0.0219 (6)
O3A0.9580 (2)0.78589 (18)0.40798 (11)0.0233 (6)
N1A0.5318 (3)1.0231 (2)0.11824 (14)0.0216 (7)
H1A0.44281.02050.11990.026*
N2A0.7460 (3)0.9302 (2)0.10151 (13)0.0183 (7)
O4A1.1459 (2)0.82817 (19)0.30585 (12)0.0274 (6)
O4B0.9931 (2)0.58909 (18)0.17602 (11)0.0248 (6)
O2A0.9189 (2)1.20032 (18)0.15574 (12)0.0255 (6)
N2B1.3831 (3)0.4659 (2)0.38338 (13)0.0183 (6)
C11A0.7792 (3)0.8628 (3)0.33236 (17)0.0200 (8)
H11A0.70910.84370.36960.024*
O5A0.6313 (2)0.61710 (19)0.01754 (13)0.0312 (6)
N1B1.5897 (3)0.3652 (2)0.36194 (14)0.0243 (7)
H1B1.67890.36580.35540.029*
C9A0.8485 (3)0.9473 (3)0.21133 (16)0.0165 (8)
O5B1.5264 (2)0.7675 (2)0.46921 (13)0.0330 (6)
C14A0.9846 (3)0.9182 (3)0.22318 (17)0.0192 (8)
H14A1.05480.93760.18610.023*
O1A0.7242 (2)1.2983 (2)0.18268 (13)0.0312 (6)
C11B1.3560 (3)0.5287 (3)0.15165 (17)0.0211 (8)
H11B1.42780.54240.11460.025*
C13B1.1196 (3)0.5473 (3)0.19403 (17)0.0188 (8)
C10A0.7475 (3)0.9186 (3)0.26544 (17)0.0200 (8)
H10A0.65500.93710.25710.024*
C2B1.5186 (3)0.4558 (3)0.38183 (17)0.0220 (8)
C17B1.3250 (3)0.5635 (3)0.40926 (16)0.0197 (8)
C5A0.8131 (3)1.0096 (3)0.13895 (17)0.0174 (8)
H5A0.89931.03300.10970.021*
C9B1.2801 (3)0.4514 (3)0.27319 (17)0.0181 (8)
C19B1.4225 (3)0.6284 (3)0.42452 (17)0.0204 (8)
C6A0.7208 (3)1.1153 (3)0.14404 (16)0.0185 (8)
C2A0.6109 (3)0.9356 (3)0.09945 (16)0.0185 (8)
C21B1.2888 (3)0.8079 (3)0.46114 (18)0.0283 (9)
H21A1.22980.77110.50170.042*
H21B1.24300.81440.41740.042*
H21C1.30810.88440.46950.042*
C14B1.1472 (3)0.4909 (3)0.26048 (17)0.0196 (8)
H14B1.07570.47890.29780.024*
C12A0.9138 (3)0.8359 (3)0.34386 (17)0.0197 (8)
C13A1.0166 (3)0.8614 (3)0.28869 (17)0.0184 (8)
C12B1.2245 (3)0.5658 (3)0.13895 (17)0.0178 (8)
C17A0.8121 (3)0.8373 (3)0.07323 (17)0.0197 (8)
C20A0.7354 (4)0.6582 (3)0.02851 (17)0.0237 (8)
C7A0.5872 (3)1.1187 (3)0.13521 (17)0.0200 (8)
C10B1.3838 (3)0.4711 (3)0.21867 (17)0.0220 (8)
H10B1.47450.44520.22700.026*
C5B1.3078 (3)0.3898 (3)0.34687 (17)0.0204 (8)
H5B1.21870.37400.37550.025*
C20B1.4185 (4)0.7379 (3)0.45335 (17)0.0257 (9)
C3A0.7829 (3)1.2151 (3)0.16276 (17)0.0202 (8)
C6B1.3908 (4)0.2779 (3)0.34601 (17)0.0218 (8)
C7B1.5250 (4)0.2687 (3)0.35115 (17)0.0252 (9)
C1A0.4850 (3)1.2162 (3)0.14002 (19)0.0277 (9)
H1A10.44661.21430.18970.042*
H1A20.41221.21000.11000.042*
H1A30.52911.28850.12350.042*
C19A0.7212 (3)0.7669 (3)0.05676 (17)0.0210 (8)
C16B0.8851 (3)0.5858 (3)0.23198 (18)0.0323 (10)
H16A0.86780.50610.25170.048*
H16B0.80270.62390.21290.048*
H16C0.91060.62530.26970.048*
C18A0.9630 (3)0.8299 (3)0.06129 (17)0.0222 (8)
H18A0.99980.77610.10010.033*
H18B0.99770.90560.06030.033*
H18C0.99080.80300.01560.033*
C15B1.2870 (3)0.6565 (3)0.01999 (18)0.0291 (9)
H15A1.34090.71230.03590.044*
H15B1.24430.69210.02290.044*
H15C1.34640.59080.00890.044*
C1B1.6186 (4)0.1652 (3)0.34882 (19)0.0339 (10)
H1B11.58670.10380.38640.051*
H1B21.71050.18360.35650.051*
H1B31.62020.14030.30210.051*
C18B1.1749 (3)0.5825 (3)0.41897 (18)0.0243 (9)
H18D1.14930.61790.46200.036*
H18E1.13230.50910.42420.036*
H18F1.14390.63320.37720.036*
C15A0.8599 (4)0.7449 (3)0.46416 (18)0.0349 (10)
H15D0.79580.80800.47490.052*
H15E0.90560.71350.50680.052*
H15F0.81050.68490.44960.052*
O2B1.1810 (3)0.1986 (2)0.35168 (14)0.0473 (8)
O1B1.3641 (3)0.0864 (2)0.32700 (16)0.0561 (9)
C16A1.2520 (3)0.8421 (3)0.24971 (19)0.0390 (11)
H16D1.23280.80070.21160.058*
H16E1.33830.81180.26800.058*
H16F1.25840.92360.23070.058*
C21A0.8716 (3)0.6000 (3)0.01681 (19)0.0322 (10)
H21D0.86230.52900.00200.048*
H21E0.91250.58240.06220.048*
H21F0.92980.65040.01760.048*
C8A0.9939 (3)1.2897 (3)0.17477 (19)0.0288 (9)
H8A10.96701.30050.22490.035*
H8A20.97651.36310.14320.035*
C4A1.1415 (3)1.2505 (3)0.16523 (19)0.0299 (9)
H4A11.15841.18140.19960.045*
H4A21.19801.31100.17340.045*
H4A31.16421.23360.11650.045*
C3B1.3152 (4)0.1763 (3)0.34012 (19)0.0322 (10)
C8B1.0940 (5)0.1052 (4)0.3517 (3)0.0723 (16)
H8B11.02460.12960.31780.087*
H8B21.14910.03960.33560.087*
C4B1.0291 (12)0.0708 (9)0.4207 (6)0.053 (3)0.72 (2)
H4B10.98330.13760.43900.080*0.72 (2)
H4B21.09690.03590.45270.080*0.72 (2)
H4B30.96190.01490.41820.080*0.72 (2)
C4B'0.975 (2)0.1130 (18)0.3817 (19)0.045 (8)0.28 (2)
H4B40.92860.04320.38010.068*0.28 (2)
H4B50.92500.17900.35670.068*0.28 (2)
H4B60.97850.12310.43150.068*0.28 (2)
Cl1B0.87338 (9)0.39271 (8)0.39496 (5)0.0349 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0175 (5)0.0254 (5)0.0285 (5)0.0026 (4)0.0046 (4)0.0088 (4)
S1B0.0202 (5)0.0268 (5)0.0254 (5)0.0032 (4)0.0064 (4)0.0050 (4)
Cl1A0.0188 (5)0.0344 (6)0.0240 (5)0.0049 (4)0.0049 (4)0.0001 (4)
O3B0.0190 (13)0.0284 (14)0.0164 (13)0.0025 (11)0.0002 (11)0.0012 (11)
O3A0.0181 (13)0.0334 (15)0.0160 (13)0.0020 (11)0.0025 (11)0.0039 (11)
N1A0.0111 (15)0.0268 (18)0.0286 (17)0.0015 (13)0.0022 (13)0.0096 (14)
N2A0.0165 (16)0.0194 (16)0.0196 (16)0.0015 (13)0.0049 (13)0.0035 (13)
O4A0.0138 (13)0.0422 (16)0.0225 (14)0.0025 (11)0.0031 (12)0.0056 (11)
O4B0.0176 (14)0.0328 (15)0.0211 (13)0.0024 (11)0.0013 (11)0.0027 (11)
O2A0.0155 (13)0.0244 (14)0.0400 (15)0.0045 (10)0.0040 (12)0.0127 (11)
N2B0.0184 (17)0.0186 (17)0.0177 (16)0.0011 (13)0.0037 (13)0.0009 (13)
C11A0.020 (2)0.024 (2)0.0153 (19)0.0058 (16)0.0018 (16)0.0019 (15)
O5A0.0253 (15)0.0298 (15)0.0424 (16)0.0015 (12)0.0096 (13)0.0130 (12)
N1B0.0200 (17)0.0266 (18)0.0275 (17)0.0002 (14)0.0050 (14)0.0064 (14)
C9A0.0164 (19)0.0173 (19)0.0161 (19)0.0024 (15)0.0009 (16)0.0036 (15)
O5B0.0264 (15)0.0367 (16)0.0397 (16)0.0065 (12)0.0062 (13)0.0135 (13)
C14A0.0156 (19)0.022 (2)0.020 (2)0.0028 (15)0.0014 (16)0.0027 (16)
O1A0.0237 (14)0.0276 (16)0.0455 (17)0.0033 (12)0.0050 (13)0.0161 (13)
C11B0.022 (2)0.023 (2)0.018 (2)0.0075 (16)0.0024 (16)0.0017 (16)
C13B0.018 (2)0.018 (2)0.021 (2)0.0011 (15)0.0058 (17)0.0037 (15)
C10A0.0190 (19)0.021 (2)0.022 (2)0.0003 (15)0.0073 (17)0.0043 (16)
C2B0.020 (2)0.028 (2)0.018 (2)0.0010 (17)0.0063 (17)0.0013 (16)
C17B0.025 (2)0.021 (2)0.0122 (18)0.0003 (16)0.0020 (16)0.0006 (15)
C5A0.0119 (18)0.020 (2)0.0215 (19)0.0001 (15)0.0024 (16)0.0062 (15)
C9B0.021 (2)0.019 (2)0.0145 (19)0.0051 (15)0.0007 (16)0.0014 (15)
C19B0.019 (2)0.025 (2)0.0164 (19)0.0001 (16)0.0058 (16)0.0009 (16)
C6A0.023 (2)0.018 (2)0.0150 (18)0.0010 (15)0.0026 (16)0.0019 (15)
C2A0.018 (2)0.025 (2)0.0139 (19)0.0012 (16)0.0033 (16)0.0035 (15)
C21B0.031 (2)0.028 (2)0.026 (2)0.0024 (18)0.0024 (18)0.0051 (17)
C14B0.018 (2)0.022 (2)0.019 (2)0.0057 (15)0.0015 (16)0.0055 (16)
C12A0.024 (2)0.019 (2)0.017 (2)0.0028 (15)0.0078 (17)0.0004 (15)
C13A0.0152 (19)0.019 (2)0.020 (2)0.0012 (15)0.0021 (17)0.0009 (15)
C12B0.025 (2)0.0124 (19)0.017 (2)0.0024 (15)0.0081 (17)0.0011 (15)
C17A0.0191 (19)0.020 (2)0.0196 (19)0.0037 (16)0.0041 (16)0.0025 (16)
C20A0.026 (2)0.026 (2)0.020 (2)0.0009 (17)0.0056 (17)0.0050 (16)
C7A0.024 (2)0.018 (2)0.0186 (19)0.0032 (16)0.0040 (17)0.0020 (15)
C10B0.018 (2)0.025 (2)0.025 (2)0.0026 (16)0.0078 (17)0.0042 (16)
C5B0.021 (2)0.021 (2)0.019 (2)0.0047 (16)0.0042 (16)0.0015 (15)
C20B0.033 (2)0.029 (2)0.014 (2)0.0074 (18)0.0012 (18)0.0004 (16)
C3A0.020 (2)0.022 (2)0.0182 (19)0.0014 (16)0.0044 (17)0.0012 (16)
C6B0.031 (2)0.021 (2)0.0134 (19)0.0059 (17)0.0053 (17)0.0001 (15)
C7B0.035 (2)0.026 (2)0.0145 (19)0.0016 (18)0.0071 (17)0.0030 (16)
C1A0.022 (2)0.028 (2)0.035 (2)0.0023 (17)0.0065 (18)0.0086 (18)
C19A0.020 (2)0.024 (2)0.020 (2)0.0003 (16)0.0057 (16)0.0027 (16)
C16B0.021 (2)0.047 (3)0.028 (2)0.0037 (18)0.0008 (19)0.0043 (19)
C18A0.0162 (19)0.026 (2)0.025 (2)0.0006 (15)0.0026 (16)0.0060 (16)
C15B0.031 (2)0.035 (2)0.021 (2)0.0071 (18)0.0069 (18)0.0009 (17)
C1B0.041 (2)0.029 (2)0.032 (2)0.0058 (19)0.011 (2)0.0054 (18)
C18B0.021 (2)0.029 (2)0.025 (2)0.0015 (16)0.0047 (17)0.0079 (17)
C15A0.030 (2)0.053 (3)0.018 (2)0.010 (2)0.0044 (19)0.0081 (18)
O2B0.0406 (18)0.0509 (19)0.057 (2)0.0283 (15)0.0087 (15)0.0242 (15)
O1B0.062 (2)0.0254 (18)0.086 (2)0.0040 (15)0.0212 (18)0.0155 (16)
C16A0.016 (2)0.062 (3)0.031 (2)0.0072 (19)0.0007 (19)0.010 (2)
C21A0.031 (2)0.032 (2)0.040 (2)0.0078 (18)0.015 (2)0.0190 (19)
C8A0.027 (2)0.025 (2)0.038 (2)0.0073 (17)0.0041 (19)0.0133 (18)
C4A0.022 (2)0.029 (2)0.041 (2)0.0012 (17)0.0060 (19)0.0137 (18)
C3B0.048 (3)0.028 (3)0.021 (2)0.010 (2)0.009 (2)0.0003 (18)
C8B0.071 (4)0.080 (4)0.078 (4)0.057 (3)0.011 (3)0.040 (3)
C4B0.055 (6)0.031 (5)0.072 (7)0.016 (4)0.007 (5)0.008 (4)
C4B'0.034 (12)0.013 (10)0.09 (2)0.003 (8)0.003 (12)0.013 (10)
Cl1B0.0262 (5)0.0494 (7)0.0274 (5)0.0088 (5)0.0059 (4)0.0044 (5)
Geometric parameters (Å, º) top
S1A—C2A1.702 (3)C12A—C13A1.396 (4)
S1A—C19A1.744 (3)C17A—C19A1.361 (4)
S1B—C2B1.706 (3)C17A—C18A1.485 (4)
S1B—C19B1.747 (3)C20A—C19A1.466 (4)
O3B—C12B1.360 (3)C20A—C21A1.484 (4)
O3B—C15B1.423 (4)C7A—C1A1.491 (4)
O3A—C12A1.371 (4)C10B—H10B0.9500
O3A—C15A1.416 (4)C5B—C6B1.514 (4)
N1A—C2A1.330 (4)C5B—H5B1.0000
N1A—C7A1.389 (4)C6B—C7B1.339 (4)
N1A—H1A0.8800C6B—C3B1.486 (5)
N2A—C2A1.339 (4)C7B—C1B1.490 (4)
N2A—C17A1.396 (4)C1A—H1A10.9800
N2A—C5A1.495 (4)C1A—H1A20.9800
O4A—C13A1.370 (4)C1A—H1A30.9800
O4A—C16A1.417 (4)C16B—H16A0.9800
O4B—C13B1.372 (4)C16B—H16B0.9800
O4B—C16B1.426 (4)C16B—H16C0.9800
O2A—C3A1.341 (4)C18A—H18A0.9800
O2A—C8A1.447 (3)C18A—H18B0.9800
N2B—C2B1.336 (4)C18A—H18C0.9800
N2B—C17B1.395 (4)C15B—H15A0.9800
N2B—C5B1.501 (4)C15B—H15B0.9800
C11A—C12A1.380 (4)C15B—H15C0.9800
C11A—C10A1.395 (4)C1B—H1B10.9800
C11A—H11A0.9500C1B—H1B20.9800
O5A—C20A1.220 (4)C1B—H1B30.9800
N1B—C2B1.328 (4)C18B—H18D0.9800
N1B—C7B1.401 (4)C18B—H18E0.9800
N1B—H1B0.8800C18B—H18F0.9800
C9A—C10A1.377 (4)C15A—H15D0.9800
C9A—C14A1.400 (4)C15A—H15E0.9800
C9A—C5A1.520 (4)C15A—H15F0.9800
O5B—C20B1.229 (4)O2B—C3B1.339 (4)
C14A—C13A1.376 (4)O2B—C8B1.449 (4)
C14A—H14A0.9500O1B—C3B1.192 (4)
O1A—C3A1.204 (4)C16A—H16D0.9800
C11B—C12B1.379 (4)C16A—H16E0.9800
C11B—C10B1.392 (4)C16A—H16F0.9800
C11B—H11B0.9500C21A—H21D0.9800
C13B—C14B1.378 (4)C21A—H21E0.9800
C13B—C12B1.399 (4)C21A—H21F0.9800
C10A—H10A0.9500C8A—C4A1.504 (4)
C17B—C19B1.356 (4)C8A—H8A10.9900
C17B—C18B1.485 (4)C8A—H8A20.9900
C5A—C6A1.510 (4)C4A—H4A10.9800
C5A—H5A1.0000C4A—H4A20.9800
C9B—C10B1.385 (4)C4A—H4A30.9800
C9B—C14B1.399 (4)C8B—C4B'1.259 (16)
C9B—C5B1.517 (4)C8B—C4B1.411 (9)
C19B—C20B1.485 (4)C8B—H8B10.9900
C6A—C7A1.347 (4)C8B—H8B20.9900
C6A—C3A1.478 (4)C4B—H4B10.9800
C21B—C20B1.488 (4)C4B—H4B20.9800
C21B—H21A0.9800C4B—H4B30.9800
C21B—H21B0.9800C4B'—H4B40.9800
C21B—H21C0.9800C4B'—H4B50.9800
C14B—H14B0.9500C4B'—H4B60.9800
C2A—S1A—C19A89.49 (15)O1A—C3A—C6A126.9 (3)
C2B—S1B—C19B88.95 (16)O2A—C3A—C6A110.1 (3)
C12B—O3B—C15B118.0 (2)C7B—C6B—C3B120.8 (3)
C12A—O3A—C15A118.4 (3)C7B—C6B—C5B122.6 (3)
C2A—N1A—C7A121.1 (3)C3B—C6B—C5B116.5 (3)
C2A—N1A—H1A119.5C6B—C7B—N1B118.5 (3)
C7A—N1A—H1A119.5C6B—C7B—C1B128.0 (3)
C2A—N2A—C17A113.5 (3)N1B—C7B—C1B113.5 (3)
C2A—N2A—C5A121.4 (3)C7A—C1A—H1A1109.5
C17A—N2A—C5A124.7 (3)C7A—C1A—H1A2109.5
C13A—O4A—C16A117.1 (3)H1A1—C1A—H1A2109.5
C13B—O4B—C16B117.6 (3)C7A—C1A—H1A3109.5
C3A—O2A—C8A116.4 (3)H1A1—C1A—H1A3109.5
C2B—N2B—C17B113.9 (3)H1A2—C1A—H1A3109.5
C2B—N2B—C5B120.8 (3)C17A—C19A—C20A133.4 (3)
C17B—N2B—C5B124.2 (3)C17A—C19A—S1A112.3 (3)
C12A—C11A—C10A119.2 (3)C20A—C19A—S1A114.3 (2)
C12A—C11A—H11A120.4O4B—C16B—H16A109.5
C10A—C11A—H11A120.4O4B—C16B—H16B109.5
C2B—N1B—C7B121.2 (3)H16A—C16B—H16B109.5
C2B—N1B—H1B119.4O4B—C16B—H16C109.5
C7B—N1B—H1B119.4H16A—C16B—H16C109.5
C10A—C9A—C14A119.6 (3)H16B—C16B—H16C109.5
C10A—C9A—C5A120.4 (3)C17A—C18A—H18A109.5
C14A—C9A—C5A119.9 (3)C17A—C18A—H18B109.5
C13A—C14A—C9A119.9 (3)H18A—C18A—H18B109.5
C13A—C14A—H14A120.0C17A—C18A—H18C109.5
C9A—C14A—H14A120.0H18A—C18A—H18C109.5
C12B—C11B—C10B120.1 (3)H18B—C18A—H18C109.5
C12B—C11B—H11B120.0O3B—C15B—H15A109.5
C10B—C11B—H11B120.0O3B—C15B—H15B109.5
O4B—C13B—C14B124.8 (3)H15A—C15B—H15B109.5
O4B—C13B—C12B115.0 (3)O3B—C15B—H15C109.5
C14B—C13B—C12B120.2 (3)H15A—C15B—H15C109.5
C9A—C10A—C11A120.8 (3)H15B—C15B—H15C109.5
C9A—C10A—H10A119.6C7B—C1B—H1B1109.5
C11A—C10A—H10A119.6C7B—C1B—H1B2109.5
N1B—C2B—N2B121.8 (3)H1B1—C1B—H1B2109.5
N1B—C2B—S1B124.8 (3)C7B—C1B—H1B3109.5
N2B—C2B—S1B113.4 (2)H1B1—C1B—H1B3109.5
C19B—C17B—N2B110.8 (3)H1B2—C1B—H1B3109.5
C19B—C17B—C18B128.9 (3)C17B—C18B—H18D109.5
N2B—C17B—C18B120.3 (3)C17B—C18B—H18E109.5
N2A—C5A—C6A109.0 (2)H18D—C18B—H18E109.5
N2A—C5A—C9A109.4 (2)C17B—C18B—H18F109.5
C6A—C5A—C9A113.1 (3)H18D—C18B—H18F109.5
N2A—C5A—H5A108.4H18E—C18B—H18F109.5
C6A—C5A—H5A108.4O3A—C15A—H15D109.5
C9A—C5A—H5A108.4O3A—C15A—H15E109.5
C10B—C9B—C14B119.3 (3)H15D—C15A—H15E109.5
C10B—C9B—C5B121.5 (3)O3A—C15A—H15F109.5
C14B—C9B—C5B119.2 (3)H15D—C15A—H15F109.5
C17B—C19B—C20B133.4 (3)H15E—C15A—H15F109.5
C17B—C19B—S1B112.9 (3)C3B—O2B—C8B116.9 (3)
C20B—C19B—S1B113.6 (2)O4A—C16A—H16D109.5
C7A—C6A—C3A120.8 (3)O4A—C16A—H16E109.5
C7A—C6A—C5A122.6 (3)H16D—C16A—H16E109.5
C3A—C6A—C5A116.5 (3)O4A—C16A—H16F109.5
N1A—C2A—N2A122.3 (3)H16D—C16A—H16F109.5
N1A—C2A—S1A124.5 (2)H16E—C16A—H16F109.5
N2A—C2A—S1A113.2 (2)C20A—C21A—H21D109.5
C20B—C21B—H21A109.5C20A—C21A—H21E109.5
C20B—C21B—H21B109.5H21D—C21A—H21E109.5
H21A—C21B—H21B109.5C20A—C21A—H21F109.5
C20B—C21B—H21C109.5H21D—C21A—H21F109.5
H21A—C21B—H21C109.5H21E—C21A—H21F109.5
H21B—C21B—H21C109.5O2A—C8A—C4A105.8 (3)
C13B—C14B—C9B120.2 (3)O2A—C8A—H8A1110.6
C13B—C14B—H14B119.9C4A—C8A—H8A1110.6
C9B—C14B—H14B119.9O2A—C8A—H8A2110.6
O3A—C12A—C11A124.6 (3)C4A—C8A—H8A2110.6
O3A—C12A—C13A115.0 (3)H8A1—C8A—H8A2108.7
C11A—C12A—C13A120.4 (3)C8A—C4A—H4A1109.5
O4A—C13A—C14A124.7 (3)C8A—C4A—H4A2109.5
O4A—C13A—C12A115.2 (3)H4A1—C4A—H4A2109.5
C14A—C13A—C12A120.0 (3)C8A—C4A—H4A3109.5
O3B—C12B—C11B125.3 (3)H4A1—C4A—H4A3109.5
O3B—C12B—C13B114.9 (3)H4A2—C4A—H4A3109.5
C11B—C12B—C13B119.7 (3)O1B—C3B—O2B123.3 (4)
C19A—C17A—N2A111.1 (3)O1B—C3B—C6B126.1 (4)
C19A—C17A—C18A129.0 (3)O2B—C3B—C6B110.5 (3)
N2A—C17A—C18A119.8 (3)C4B'—C8B—C4B43.9 (13)
O5A—C20A—C19A117.3 (3)C4B'—C8B—O2B117.6 (8)
O5A—C20A—C21A122.3 (3)C4B—C8B—O2B110.9 (4)
C19A—C20A—C21A120.3 (3)C4B'—C8B—H8B166.5
C6A—C7A—N1A119.4 (3)C4B—C8B—H8B1109.5
C6A—C7A—C1A128.0 (3)O2B—C8B—H8B1109.5
N1A—C7A—C1A112.6 (3)C4B'—C8B—H8B2131.7
C9B—C10B—C11B120.5 (3)C4B—C8B—H8B2109.5
C9B—C10B—H10B119.8O2B—C8B—H8B2109.5
C11B—C10B—H10B119.8H8B1—C8B—H8B2108.0
N2B—C5B—C6B108.0 (3)C8B—C4B—H4B1109.5
N2B—C5B—C9B109.2 (2)C8B—C4B—H4B2109.5
C6B—C5B—C9B113.9 (3)C8B—C4B—H4B3109.5
N2B—C5B—H5B108.5C8B—C4B'—H4B4109.5
C6B—C5B—H5B108.5C8B—C4B'—H4B5109.5
C9B—C5B—H5B108.5H4B4—C4B'—H4B5109.5
O5B—C20B—C19B116.9 (3)C8B—C4B'—H4B6109.5
O5B—C20B—C21B122.5 (3)H4B4—C4B'—H4B6109.5
C19B—C20B—C21B120.6 (3)H4B5—C4B'—H4B6109.5
O1A—C3A—O2A123.0 (3)
C10A—C9A—C14A—C13A0.1 (5)O4B—C13B—C12B—O3B2.2 (4)
C5A—C9A—C14A—C13A179.8 (3)C14B—C13B—C12B—O3B178.0 (3)
C16B—O4B—C13B—C14B7.6 (4)O4B—C13B—C12B—C11B179.1 (3)
C16B—O4B—C13B—C12B172.3 (3)C14B—C13B—C12B—C11B0.8 (5)
C14A—C9A—C10A—C11A1.2 (5)C2A—N2A—C17A—C19A6.3 (4)
C5A—C9A—C10A—C11A179.1 (3)C5A—N2A—C17A—C19A166.5 (3)
C12A—C11A—C10A—C9A0.3 (5)C2A—N2A—C17A—C18A170.4 (3)
C7B—N1B—C2B—N2B9.0 (5)C5A—N2A—C17A—C18A16.7 (5)
C7B—N1B—C2B—S1B168.6 (2)C3A—C6A—C7A—N1A179.4 (3)
C17B—N2B—C2B—N1B176.7 (3)C5A—C6A—C7A—N1A2.3 (5)
C5B—N2B—C2B—N1B14.4 (5)C3A—C6A—C7A—C1A1.8 (5)
C17B—N2B—C2B—S1B1.1 (4)C5A—C6A—C7A—C1A178.9 (3)
C5B—N2B—C2B—S1B167.7 (2)C2A—N1A—C7A—C6A10.8 (5)
C19B—S1B—C2B—N1B178.0 (3)C2A—N1A—C7A—C1A168.1 (3)
C19B—S1B—C2B—N2B0.2 (3)C14B—C9B—C10B—C11B0.6 (5)
C2B—N2B—C17B—C19B2.3 (4)C5B—C9B—C10B—C11B179.5 (3)
C5B—N2B—C17B—C19B166.1 (3)C12B—C11B—C10B—C9B0.5 (5)
C2B—N2B—C17B—C18B175.7 (3)C2B—N2B—C5B—C6B28.3 (4)
C5B—N2B—C17B—C18B15.9 (4)C17B—N2B—C5B—C6B164.0 (3)
C2A—N2A—C5A—C6A22.7 (4)C2B—N2B—C5B—C9B96.1 (3)
C17A—N2A—C5A—C6A164.9 (3)C17B—N2B—C5B—C9B71.6 (4)
C2A—N2A—C5A—C9A101.4 (3)C10B—C9B—C5B—N2B70.5 (4)
C17A—N2A—C5A—C9A70.9 (4)C14B—C9B—C5B—N2B108.3 (3)
C10A—C9A—C5A—N2A70.4 (4)C10B—C9B—C5B—C6B50.4 (4)
C14A—C9A—C5A—N2A109.3 (3)C14B—C9B—C5B—C6B130.8 (3)
C10A—C9A—C5A—C6A51.4 (4)C17B—C19B—C20B—O5B171.4 (3)
C14A—C9A—C5A—C6A128.9 (3)S1B—C19B—C20B—O5B5.7 (4)
N2B—C17B—C19B—C20B179.4 (3)C17B—C19B—C20B—C21B9.5 (6)
C18B—C17B—C19B—C20B1.6 (6)S1B—C19B—C20B—C21B173.4 (2)
N2B—C17B—C19B—S1B2.4 (4)C8A—O2A—C3A—O1A1.1 (5)
C18B—C17B—C19B—S1B175.4 (3)C8A—O2A—C3A—C6A177.9 (3)
C2B—S1B—C19B—C17B1.5 (3)C7A—C6A—C3A—O1A12.5 (5)
C2B—S1B—C19B—C20B179.2 (3)C5A—C6A—C3A—O1A164.8 (3)
N2A—C5A—C6A—C7A17.6 (4)C7A—C6A—C3A—O2A168.6 (3)
C9A—C5A—C6A—C7A104.3 (3)C5A—C6A—C3A—O2A14.1 (4)
N2A—C5A—C6A—C3A165.2 (3)N2B—C5B—C6B—C7B23.1 (4)
C9A—C5A—C6A—C3A72.9 (3)C9B—C5B—C6B—C7B98.5 (4)
C7A—N1A—C2A—N2A5.6 (5)N2B—C5B—C6B—C3B156.1 (3)
C7A—N1A—C2A—S1A173.7 (2)C9B—C5B—C6B—C3B82.4 (4)
C17A—N2A—C2A—N1A174.1 (3)C3B—C6B—C7B—N1B175.3 (3)
C5A—N2A—C2A—N1A12.8 (5)C5B—C6B—C7B—N1B3.8 (5)
C17A—N2A—C2A—S1A5.3 (4)C3B—C6B—C7B—C1B2.9 (5)
C5A—N2A—C2A—S1A167.9 (2)C5B—C6B—C7B—C1B178.0 (3)
C19A—S1A—C2A—N1A177.2 (3)C2B—N1B—C7B—C6B14.3 (5)
C19A—S1A—C2A—N2A2.2 (3)C2B—N1B—C7B—C1B164.2 (3)
O4B—C13B—C14B—C9B179.8 (3)N2A—C17A—C19A—C20A177.7 (3)
C12B—C13B—C14B—C9B0.3 (5)C18A—C17A—C19A—C20A5.9 (6)
C10B—C9B—C14B—C13B1.0 (5)N2A—C17A—C19A—S1A4.6 (4)
C5B—C9B—C14B—C13B179.9 (3)C18A—C17A—C19A—S1A171.8 (3)
C15A—O3A—C12A—C11A8.8 (5)O5A—C20A—C19A—C17A178.0 (3)
C15A—O3A—C12A—C13A172.5 (3)C21A—C20A—C19A—C17A4.3 (6)
C10A—C11A—C12A—O3A177.0 (3)O5A—C20A—C19A—S1A0.3 (4)
C10A—C11A—C12A—C13A1.7 (5)C21A—C20A—C19A—S1A178.1 (3)
C16A—O4A—C13A—C14A7.3 (5)C2A—S1A—C19A—C17A1.5 (3)
C16A—O4A—C13A—C12A174.0 (3)C2A—S1A—C19A—C20A179.7 (3)
C9A—C14A—C13A—O4A179.5 (3)C3A—O2A—C8A—C4A177.7 (3)
C9A—C14A—C13A—C12A1.9 (5)C8B—O2B—C3B—O1B3.4 (6)
O3A—C12A—C13A—O4A2.8 (4)C8B—O2B—C3B—C6B176.6 (3)
C11A—C12A—C13A—O4A178.5 (3)C7B—C6B—C3B—O1B13.9 (6)
O3A—C12A—C13A—C14A176.0 (3)C5B—C6B—C3B—O1B166.9 (3)
C11A—C12A—C13A—C14A2.8 (5)C7B—C6B—C3B—O2B166.1 (3)
C15B—O3B—C12B—C11B10.9 (4)C5B—C6B—C3B—O2B13.0 (4)
C15B—O3B—C12B—C13B170.4 (3)C3B—O2B—C8B—C4B'160 (2)
C10B—C11B—C12B—O3B177.4 (3)C3B—O2B—C8B—C4B112.4 (8)
C10B—C11B—C12B—C13B1.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl1A0.882.202.993 (1)151
N1B—H1B···Cl1Bi0.882.202.992 (2)150
C11A—H11A···O5Bii0.952.583.523 (1)173
C15B—H15C···O5Aiii0.982.583.456 (6)148
C21A—H21D···O3Biii0.982.503.459 (6)166
C4A—H4A2···Cg30.982.633.551 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl1A0.882.202.993 (1)151
N1B—H1B···Cl1Bi0.882.202.992 (2)150
C11A—H11A···O5Bii0.952.583.523 (1)173
C15B—H15C···O5Aiii0.982.583.456 (6)148
C21A—H21D···O3Biii0.982.503.459 (6)166
C4A—H4A2···Cg30.982.633.551 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z.
 

Acknowledgements

NLP thanks for the University Grants Commission (UGC), India, for a CSIR–NET fellowship and MSK thanks the UGC for a UGC–BSR Meritorious fellowship.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856–859.  CrossRef CAS Google Scholar
First citationNagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, N. L., Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1204.  CSD CrossRef IUCr Journals Google Scholar
First citationRovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M. & McCarthy, J. P. (1995). J. Med. Chem. 38, 119–129.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZhi, H., Lan-mei, C., Lin-lin, Z., Si-jie, L., David, C. C. W., Huang-quan, L. & Chun, H. (2008). ARKIVOC, xiii, 266–277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o764-o765
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds