organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o790-o791

Crystal structure of (4-hy­dr­oxy­piperidin-1-yl)[4-(tri­fluoro­meth­yl)phen­yl]methanone

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, cSCRI, Anna Hospital Campus, Chennai-106, Tamilnadu, India, and dAnna Siddha Medical College, Chennai-106, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 August 2015; accepted 21 September 2015; online 26 September 2015)

The title compound, C13H14NO2F3, crystallises with two mol­ecules, A and B, in the asymmetric unit, with similar conformations. The dihedral angles between the piperidine and phenyl rings are 83.76 (2) and 75.23 (2)° in mol­ecules A and B, respectively. The bond-angle sums around the N atoms [359.1 and 359.7° for mol­ecules A and B, respectively] indicate sp2 hybridization for these atoms. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into separate [100] chains of A and B mol­ecules. The chains are cross-linked by C—H⋯O inter­actions, generating alternating (001) sheets of A and B mol­ecules.

1. Related literature

For the synthesis, see: Revathi et al. (2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.]). For the biological activities of piperdine derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]); Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]); Lee et al. (2001[Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483-3486.]); Parthiban et al. (2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.]). For a related structure, see: Prathebha et al. (2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H14F3NO2

  • Mr = 273.25

  • Orthorhombic, P n a 21

  • a = 16.1328 (14) Å

  • b = 6.8283 (6) Å

  • c = 23.017 (2) Å

  • V = 2535.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.969

  • 26641 measured reflections

  • 4823 independent reflections

  • 2950 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.190

  • S = 1.07

  • 4823 reflections

  • 343 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1A⋯O1i 0.82 2.01 2.819 (4) 169
O4—H3⋯O3ii 0.82 1.96 2.775 (5) 173
C3—H9⋯O1iii 0.93 2.55 3.367 (6) 147
C18—H21⋯O2iv 0.93 2.58 3.445 (7) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) x, y-1, z; (iv) [-x+2, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The motivation for the biological trial arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological/ biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011). Heterocycles with piperidine sub-structures are being used as synthons in the construction of alkaloid natural products (Lee et al., 2001). Piperidine derivatives exhibit a broad-spectrum of biological activities such as anti- bacterial and anti-cancer (Parthiban et al., 2005).

In the title compound,the C—N distances of piperidine ring in molecule A(C8—C12/N1) & B(C21—C25/N2) are in the range[1.318 (6)–1.462 (6) Å] and [1.329 (6)–1.458 (6) Å] are in good agreement with values of a similar reported structure (Revathi et al., 2015). The C—O distance in molecule A & B are [1.242 (6) Å & 1.227 (6) Å], it indicates double bond character and are comparable with the value reported previously (Prathebha et al., 2015). The dihedral angle between piperidine ring and phenyl ring in molecule A & B are 83.76 (2)° and 75.23 (2)°. The Piperidine rings are in equatorial (eq) orientation with the corresponding phenyl rings. The sum of the bond angles around the N1 & N2 atoms are [359.1 (4)° and 359.7 (4)°, respectively], shows sP2 hybridization of the atoms. The piperidine ring in the molecule A adopts a chair conformation with puckering parameters of q2 = 0.051 (5) Å, Phi2 = 138.01°, q3 = -0.537 (6) Å, QT = 0.539 (6) Å and theta2 = 174.53 (5)°. The piperidine ring in the molecule B adopts a chair conformation with puckering parameters of q2 = 0.048 (6) Å, Phi2 = 159.33°, q3 = -0.561 (6) Å, QT = 0.563 (6) Å and theta2 = 175.12 (6)°.

Related literature top

For the synthesis, see: Revathi et al. (2015). For the biological activities of piperdine derivatives, see: Ramalingan et al. (2004); Ramachandran et al. (2011); Lee et al. (2001); Parthiban et al. (2005). For a related structure, see: Prathebha et al. (2015).

Experimental top

The title compound was synthesized following a published procedure (Revathi et al., 2015). In a 250 ml round-bottomed flask, 100 ml of ethylmethylketone was added to 4-hydroxypiperidiene (0.03 mol) and stirred at room temperature. After a span of about 5 min, triethylamine (0.03 mol) was added and the mixture was stirred for a time frame of 10 min. 4-Trifloromethylbenzoyl chloride (0.03 mol) was added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethylammonium chloride was produced, which was filtered and the filtrate was evaporated to get the crude product. Two recrystallizations from ethylmethylketone solution gave colourless blocks of the title compound (yield: 87%).

Refinement top

Hydrogen atoms other then hydroxy H atoms were positioned geometrically and treated as riding on their parent atoms and hydroxy H-atoms were located from difference Fourier maps and refined with,C—H distance of 0.93–0.98 Å, with Uiso(H)= 1.5 Ueq(c-methyl), Uiso(H)= 1.2Ueq(C,O) for other H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
(4-Hydroxypiperidin-1-yl)[4-(trifluoromethyl)phenyl]methanone top
Crystal data top
C13H14F3NO2F(000) = 1136
Mr = 273.25Dx = 1.432 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nθ = 1.8–25.7°
a = 16.1328 (14) ŵ = 0.13 mm1
b = 6.8283 (6) ÅT = 293 K
c = 23.017 (2) ÅBlock, colorless
V = 2535.5 (4) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4823 independent reflections
Radiation source: fine-focus sealed tube2950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 25.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1919
Tmin = 0.957, Tmax = 0.969k = 87
26641 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0905P)2 + 1.4379P]
where P = (Fo2 + 2Fc2)/3
4823 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C13H14F3NO2V = 2535.5 (4) Å3
Mr = 273.25Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 16.1328 (14) ŵ = 0.13 mm1
b = 6.8283 (6) ÅT = 293 K
c = 23.017 (2) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2950 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.969Rint = 0.046
26641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
4823 reflectionsΔρmin = 0.26 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C101.0836 (3)0.3171 (9)0.0067 (2)0.0622 (13)
H11.11810.40720.02940.075*
C91.0108 (3)0.4279 (8)0.0181 (3)0.0649 (14)
H2A0.98440.50210.01270.078*
H2B1.03080.52030.04690.078*
C80.9480 (3)0.2956 (8)0.0457 (2)0.0593 (13)
H3A0.90080.37190.05870.071*
H3B0.97220.23160.07930.071*
C120.9885 (3)0.0264 (7)0.0177 (2)0.0523 (11)
H4A1.01210.04780.01420.063*
H4B0.96730.06570.04620.063*
C111.0551 (3)0.1530 (8)0.0453 (2)0.0580 (13)
H5A1.03380.20780.08120.070*
H5B1.10230.07140.05500.070*
C70.8449 (3)0.1543 (6)0.0173 (2)0.0448 (10)
C10.8174 (3)0.0056 (7)0.06151 (19)0.0450 (11)
C20.8144 (3)0.1940 (7)0.0494 (2)0.0495 (11)
H80.83480.24110.01420.059*
C30.7815 (3)0.3204 (7)0.0891 (2)0.0485 (11)
H90.77800.45300.08020.058*
C40.7532 (3)0.2536 (7)0.1427 (2)0.0502 (12)
C50.7564 (3)0.0557 (7)0.1542 (2)0.0606 (13)
H110.73720.00910.18970.073*
C60.7873 (3)0.0733 (7)0.1142 (2)0.0570 (13)
H120.78810.20660.12240.068*
C130.7202 (3)0.3921 (7)0.1854 (2)0.0589 (12)
C230.6591 (3)0.3211 (8)0.3540 (2)0.0612 (13)
H140.62600.41540.33180.073*
C220.6845 (3)0.1537 (8)0.3146 (2)0.0602 (13)
H15A0.70850.20670.27940.072*
H15B0.63550.07950.30390.072*
C210.7469 (3)0.0165 (7)0.3433 (2)0.0577 (13)
H16A0.72060.05280.37520.069*
H16B0.76610.07950.31530.069*
C250.7932 (3)0.2784 (9)0.4071 (3)0.0730 (17)
H17A0.84210.34650.42090.088*
H17B0.76600.21790.44010.088*
C240.7348 (3)0.4220 (8)0.3779 (3)0.0737 (16)
H18A0.71790.52050.40580.088*
H18B0.76380.48780.34650.088*
C200.8949 (3)0.1163 (8)0.3466 (2)0.0552 (12)
C170.9167 (3)0.0342 (7)0.3019 (2)0.0492 (11)
C180.9246 (3)0.2314 (8)0.3153 (2)0.0548 (13)
H210.91020.27640.35210.066*
C190.9537 (3)0.3609 (7)0.2742 (2)0.0574 (12)
H220.96050.49260.28330.069*
C140.9728 (3)0.2926 (7)0.2193 (2)0.0528 (12)
C150.9639 (3)0.1019 (8)0.2054 (2)0.0688 (15)
H240.97660.05860.16810.083*
C160.9363 (4)0.0281 (8)0.2465 (2)0.0688 (15)
H250.93060.15970.23690.083*
C261.0021 (3)0.4353 (8)0.1751 (2)0.0635 (14)
N10.9207 (2)0.1482 (6)0.00380 (16)0.0494 (10)
N20.8169 (2)0.1289 (7)0.36505 (17)0.0552 (11)
O21.13070 (19)0.2418 (6)0.04018 (18)0.0719 (11)
H1A1.17810.21940.02920.108*
O10.79406 (18)0.2827 (5)0.00270 (16)0.0574 (9)
O40.6124 (2)0.2524 (6)0.40139 (18)0.0712 (10)
H30.56290.25530.39320.107*
O30.9492 (2)0.2285 (7)0.36352 (19)0.0842 (14)
F10.6669 (2)0.5173 (6)0.16460 (16)0.1029 (13)
F20.6821 (3)0.3078 (6)0.22995 (16)0.1089 (14)
F30.7790 (2)0.5065 (6)0.20861 (18)0.1101 (14)
F41.0566 (2)0.5623 (6)0.19448 (16)0.1038 (13)
F51.0359 (3)0.3537 (6)0.12899 (16)0.1165 (15)
F60.9416 (2)0.5492 (6)0.15396 (18)0.1028 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.044 (3)0.079 (3)0.063 (3)0.006 (3)0.005 (3)0.000 (3)
C90.047 (3)0.063 (3)0.085 (4)0.002 (2)0.001 (3)0.020 (3)
C80.041 (3)0.080 (3)0.057 (3)0.003 (2)0.001 (2)0.028 (3)
C120.046 (2)0.054 (3)0.057 (3)0.014 (2)0.003 (2)0.010 (2)
C110.044 (3)0.080 (3)0.050 (3)0.010 (2)0.002 (2)0.011 (3)
C70.037 (2)0.048 (2)0.049 (3)0.003 (2)0.003 (2)0.000 (2)
C10.039 (2)0.049 (3)0.047 (3)0.005 (2)0.002 (2)0.002 (2)
C20.052 (3)0.054 (3)0.042 (3)0.001 (2)0.004 (2)0.001 (2)
C30.054 (3)0.043 (2)0.048 (3)0.005 (2)0.003 (2)0.007 (2)
C40.042 (3)0.064 (3)0.044 (3)0.008 (2)0.001 (2)0.001 (2)
C50.071 (3)0.057 (3)0.055 (3)0.012 (3)0.015 (3)0.008 (3)
C60.069 (3)0.047 (3)0.054 (3)0.003 (2)0.013 (2)0.008 (2)
C130.061 (3)0.063 (3)0.052 (3)0.008 (3)0.002 (2)0.001 (3)
C230.048 (3)0.077 (3)0.058 (3)0.003 (3)0.001 (3)0.001 (3)
C220.049 (3)0.075 (3)0.056 (3)0.008 (2)0.001 (2)0.009 (3)
C210.041 (3)0.065 (3)0.067 (3)0.014 (2)0.002 (2)0.014 (3)
C250.046 (3)0.102 (4)0.071 (4)0.003 (3)0.005 (3)0.044 (4)
C240.062 (3)0.067 (3)0.093 (4)0.009 (3)0.019 (3)0.027 (3)
C200.038 (2)0.072 (3)0.056 (3)0.000 (2)0.004 (2)0.016 (3)
C170.034 (2)0.061 (3)0.052 (3)0.000 (2)0.002 (2)0.008 (2)
C180.050 (3)0.068 (3)0.046 (3)0.013 (2)0.004 (2)0.006 (2)
C190.065 (3)0.054 (3)0.053 (3)0.003 (2)0.002 (2)0.002 (3)
C140.045 (2)0.066 (3)0.047 (3)0.008 (2)0.006 (2)0.005 (2)
C150.080 (4)0.078 (4)0.048 (3)0.008 (3)0.017 (3)0.001 (3)
C160.089 (4)0.055 (3)0.062 (3)0.008 (3)0.013 (3)0.002 (3)
C260.057 (3)0.071 (3)0.063 (3)0.010 (3)0.003 (3)0.012 (3)
N10.040 (2)0.058 (2)0.050 (2)0.0036 (18)0.0025 (17)0.0156 (19)
N20.034 (2)0.076 (3)0.056 (3)0.0026 (18)0.0028 (17)0.026 (2)
O20.0471 (19)0.108 (3)0.061 (2)0.003 (2)0.0028 (17)0.005 (2)
O10.0420 (18)0.059 (2)0.071 (2)0.0078 (15)0.0006 (16)0.0096 (17)
O40.0499 (19)0.096 (3)0.067 (3)0.0026 (19)0.0084 (18)0.006 (2)
O30.0412 (18)0.107 (3)0.105 (3)0.013 (2)0.0003 (19)0.053 (3)
F10.110 (3)0.116 (3)0.082 (2)0.065 (2)0.004 (2)0.014 (2)
F20.155 (4)0.095 (2)0.076 (2)0.016 (2)0.057 (2)0.002 (2)
F30.087 (2)0.127 (3)0.116 (3)0.004 (2)0.009 (2)0.069 (3)
F40.097 (3)0.119 (3)0.096 (3)0.053 (2)0.008 (2)0.029 (2)
F50.168 (4)0.109 (3)0.072 (2)0.004 (3)0.060 (3)0.012 (2)
F60.079 (2)0.119 (3)0.110 (3)0.003 (2)0.001 (2)0.059 (3)
Geometric parameters (Å, º) top
C10—O21.417 (7)C23—C241.508 (7)
C10—C111.501 (8)C23—C221.514 (7)
C10—C91.509 (7)C23—H140.9800
C10—H10.9800C22—C211.526 (7)
C9—C81.499 (8)C22—H15A0.9700
C9—H2A0.9700C22—H15B0.9700
C9—H2B0.9700C21—N21.455 (6)
C8—N11.462 (6)C21—H16A0.9700
C8—H3A0.9700C21—H16B0.9700
C8—H3B0.9700C25—N21.457 (6)
C12—N11.460 (6)C25—C241.516 (9)
C12—C111.519 (7)C25—H17A0.9700
C12—H4A0.9700C25—H17B0.9700
C12—H4B0.9700C24—H18A0.9700
C11—H5A0.9700C24—H18B0.9700
C11—H5B0.9700C20—O31.228 (6)
C7—O11.247 (5)C20—N21.330 (6)
C7—N11.316 (6)C20—C171.496 (7)
C7—C11.505 (6)C17—C161.381 (8)
C1—C61.386 (6)C17—C181.387 (7)
C1—C21.392 (7)C18—C191.378 (7)
C2—C31.364 (7)C18—H210.9300
C2—H80.9300C19—C141.380 (7)
C3—C41.394 (7)C19—H220.9300
C3—H90.9300C14—C151.349 (7)
C4—C51.378 (7)C14—C261.486 (7)
C4—C131.464 (7)C15—C161.372 (7)
C5—C61.368 (7)C15—H240.9300
C5—H110.9300C16—H250.9300
C6—H120.9300C26—F41.313 (6)
C13—F11.304 (6)C26—F51.317 (7)
C13—F21.327 (6)C26—F61.339 (6)
C13—F31.339 (6)O2—H1A0.8200
C23—O41.407 (6)O4—H30.8200
O2—C10—C11110.1 (5)C24—C23—H14109.4
O2—C10—C9108.1 (5)C22—C23—H14109.4
C11—C10—C9111.1 (4)C23—C22—C21112.6 (4)
O2—C10—H1109.2C23—C22—H15A109.1
C11—C10—H1109.2C21—C22—H15A109.1
C9—C10—H1109.2C23—C22—H15B109.1
C8—C9—C10112.6 (5)C21—C22—H15B109.1
C8—C9—H2A109.1H15A—C22—H15B107.8
C10—C9—H2A109.1N2—C21—C22109.7 (4)
C8—C9—H2B109.1N2—C21—H16A109.7
C10—C9—H2B109.1C22—C21—H16A109.7
H2A—C9—H2B107.8N2—C21—H16B109.7
N1—C8—C9109.8 (4)C22—C21—H16B109.7
N1—C8—H3A109.7H16A—C21—H16B108.2
C9—C8—H3A109.7N2—C25—C24108.8 (5)
N1—C8—H3B109.7N2—C25—H17A109.9
C9—C8—H3B109.7C24—C25—H17A109.9
H3A—C8—H3B108.2N2—C25—H17B109.9
N1—C12—C11110.3 (4)C24—C25—H17B109.9
N1—C12—H4A109.6H17A—C25—H17B108.3
C11—C12—H4A109.6C23—C24—C25111.7 (5)
N1—C12—H4B109.6C23—C24—H18A109.3
C11—C12—H4B109.6C25—C24—H18A109.3
H4A—C12—H4B108.1C23—C24—H18B109.3
C10—C11—C12113.2 (4)C25—C24—H18B109.3
C10—C11—H5A108.9H18A—C24—H18B107.9
C12—C11—H5A108.9O3—C20—N2122.3 (4)
C10—C11—H5B108.9O3—C20—C17118.5 (4)
C12—C11—H5B108.9N2—C20—C17119.1 (4)
H5A—C11—H5B107.7C16—C17—C18118.8 (5)
O1—C7—N1122.3 (4)C16—C17—C20118.5 (5)
O1—C7—C1117.6 (4)C18—C17—C20122.4 (5)
N1—C7—C1120.1 (4)C19—C18—C17120.2 (5)
C6—C1—C2119.3 (4)C19—C18—H21119.9
C6—C1—C7118.1 (4)C17—C18—H21119.9
C2—C1—C7122.4 (4)C18—C19—C14119.2 (5)
C3—C2—C1119.9 (5)C18—C19—H22120.4
C3—C2—H8120.0C14—C19—H22120.4
C1—C2—H8120.0C15—C14—C19121.3 (5)
C2—C3—C4120.9 (4)C15—C14—C26120.3 (5)
C2—C3—H9119.5C19—C14—C26118.4 (5)
C4—C3—H9119.5C14—C15—C16119.7 (5)
C5—C4—C3118.6 (5)C14—C15—H24120.2
C5—C4—C13121.2 (5)C16—C15—H24120.2
C3—C4—C13120.2 (4)C15—C16—C17120.8 (5)
C6—C5—C4121.1 (5)C15—C16—H25119.6
C6—C5—H11119.5C17—C16—H25119.6
C4—C5—H11119.5F4—C26—F5106.0 (5)
C5—C6—C1120.1 (5)F4—C26—F6103.2 (4)
C5—C6—H12119.9F5—C26—F6104.7 (5)
C1—C6—H12119.9F4—C26—C14114.5 (5)
F1—C13—F2105.2 (5)F5—C26—C14114.0 (5)
F1—C13—F3103.4 (4)F6—C26—C14113.4 (4)
F2—C13—F3105.8 (4)C7—N1—C12126.1 (4)
F1—C13—C4114.7 (4)C7—N1—C8120.0 (4)
F2—C13—C4114.0 (4)C12—N1—C8113.0 (4)
F3—C13—C4112.8 (4)C20—N2—C21126.2 (4)
O4—C23—C24107.6 (4)C20—N2—C25120.3 (4)
O4—C23—C22110.9 (5)C21—N2—C25113.2 (4)
C24—C23—C22110.1 (4)C10—O2—H1A109.5
O4—C23—H14109.4C23—O4—H3109.5
O2—C10—C9—C870.2 (6)O3—C20—C17—C18106.8 (6)
C11—C10—C9—C850.8 (7)N2—C20—C17—C1875.7 (6)
C10—C9—C8—N155.5 (6)C16—C17—C18—C191.8 (7)
O2—C10—C11—C1271.0 (5)C20—C17—C18—C19172.8 (4)
C9—C10—C11—C1248.7 (6)C17—C18—C19—C141.7 (7)
N1—C12—C11—C1051.7 (6)C18—C19—C14—C150.5 (8)
O1—C7—C1—C655.1 (6)C18—C19—C14—C26178.5 (4)
N1—C7—C1—C6123.6 (5)C19—C14—C15—C160.6 (8)
O1—C7—C1—C2119.0 (5)C26—C14—C15—C16179.5 (5)
N1—C7—C1—C262.2 (6)C14—C15—C16—C170.5 (9)
C6—C1—C2—C30.4 (7)C18—C17—C16—C150.8 (8)
C7—C1—C2—C3173.7 (4)C20—C17—C16—C15174.1 (5)
C1—C2—C3—C42.2 (7)C15—C14—C26—F4137.5 (5)
C2—C3—C4—C52.3 (7)C19—C14—C26—F443.5 (7)
C2—C3—C4—C13178.3 (4)C15—C14—C26—F515.3 (8)
C3—C4—C5—C60.6 (8)C19—C14—C26—F5165.7 (5)
C13—C4—C5—C6180.0 (5)C15—C14—C26—F6104.4 (6)
C4—C5—C6—C11.1 (8)C19—C14—C26—F674.6 (6)
C2—C1—C6—C51.2 (7)O1—C7—N1—C12168.7 (4)
C7—C1—C6—C5175.6 (4)C1—C7—N1—C1210.0 (7)
C5—C4—C13—F1132.1 (5)O1—C7—N1—C80.2 (7)
C3—C4—C13—F147.2 (7)C1—C7—N1—C8178.5 (4)
C5—C4—C13—F210.8 (7)C11—C12—N1—C7111.8 (5)
C3—C4—C13—F2168.6 (5)C11—C12—N1—C857.4 (5)
C5—C4—C13—F3109.9 (6)C9—C8—N1—C7110.3 (5)
C3—C4—C13—F370.7 (6)C9—C8—N1—C1259.5 (6)
O4—C23—C22—C2167.9 (5)O3—C20—N2—C21173.3 (5)
C24—C23—C22—C2151.1 (6)C17—C20—N2—C214.0 (8)
C23—C22—C21—N253.0 (5)O3—C20—N2—C250.5 (9)
O4—C23—C24—C2567.5 (6)C17—C20—N2—C25177.9 (5)
C22—C23—C24—C2553.5 (6)C22—C21—N2—C20115.5 (6)
N2—C25—C24—C2357.8 (6)C22—C21—N2—C2558.7 (6)
O3—C20—C17—C1667.8 (7)C24—C25—N2—C20113.5 (5)
N2—C20—C17—C16109.6 (6)C24—C25—N2—C2161.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1A···O1i0.822.012.819 (4)169
O4—H3···O3ii0.821.962.775 (5)173
C3—H9···O1iii0.932.553.367 (6)147
C18—H21···O2iv0.932.583.445 (7)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1A···O1i0.822.012.819 (4)169
O4—H3···O3ii0.821.962.775 (5)173
C3—H9···O1iii0.932.553.367 (6)147
C18—H21···O2iv0.932.583.445 (7)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+2, y, z+1/2.
 

Acknowledgements

The authors thank Central Instrumentation Facility, Queen Mary's College, Chennai-4, for the computing facility and the SAIF, IIT, Madras, for the X-ray data-collection facility.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o790-o791
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds