organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o747-o748

Crystal structure of bis­­{2-[amino(iminium­yl)meth­yl]-1,1-di­methyl­guanidine} carbonate methanol disolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: dongjinlong20123@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 September 2015; accepted 8 September 2015; online 12 September 2015)

In the title solvated mol­ecular salt, 2C4H12N5+·CO32−·2CH3OH, the complete carbonate ion is generated by crystallographic twofold symmetry, with the C atom and one O atom lying on the rotation axis. The cation is twisted about the central C—N bond [C—N—C—N = −137.7 (6)°]. In the crystal, the components are linked by N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular network.

1. Related literature

For background to and medical applications of metformin (systematic name: N,N-di­methyl­imidodicarbonimidic di­amide), see: Castagnolo et al. (2011[Castagnolo, D., Schenone, S. & Botta, M. (2011). Chem. Rev. 111, 5247-5300.]); De Jager et al. (2005[Jager, J., Kooy, A., Lehert, P. B., Bets, D., Wulffelé, M. G., Teerlink, T., Scheffer, P. G., Schalkwijk, C. G., Donker, A. J. M. & Stehouwer, C. D. A. (2005). J. Intern. Med. 257, 100-109.]); Pérez-Fernández et al. (2013[Pérez-Fernández, R., Fresno, N., Goya, P., Elguero, J., Menéndez-Taboada, L., García-Granda, S. & Marco, C. (2013). Cryst. Growth Des. 13, 1780-1785.]); Yardımcı & Özaltın (2005[Yardımcı, C. & Özaltın, N. (2005). Anal. Chim. Acta, 549, 88-95.]); Xi et al. (2008[Xi, P. X., Xu, Z. H., Liu, X. H., Cheng, F. J. & Zeng, Z. Z. (2008). Spectrochim. Acta Part A, 71, 523-528.]); Li et al. (2005[Li, N., Deng, C., Yao, N., Shen, X. & Zhang, X. (2005). Anal. Chim. Acta, 540, 317-323.]). For a related structure, see: Huang et al. (2008[Huang, L., Xi, P., Xu, M., Liu, T. & Zeng, Z. (2008). Anal. Sci.. 24, x289-x290.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C4H12N5+·CO32−·2CH4O

  • Mr = 384.46

  • Monoclinic, C 2/c

  • a = 13.5726 (12) Å

  • b = 10.5634 (8) Å

  • c = 13.9825 (13) Å

  • β = 90.386 (1)°

  • V = 2004.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.32 × 0.29 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.971

  • 4837 measured reflections

  • 1749 independent reflections

  • 947 reflections with I > 2σ(I)

  • Rint = 0.065

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.280

  • S = 1.02

  • 1749 reflections

  • 123 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.04 2.883 (5) 166
N1—H1B⋯N3ii 0.86 2.21 3.069 (6) 175
N2—H2A⋯O1iii 0.86 1.96 2.818 (5) 178
N2—H2B⋯O3iv 0.86 2.08 2.896 (6) 159
N5—H5A⋯O1iv 0.86 1.95 2.728 (4) 150
O3—H3⋯O2 0.82 1.77 2.591 (5) 177
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+2, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

Metformin, an oral anti­diabetic drug, has been extensively used throughout the world over the last five decades to treat type-2 diabetes mellitus[Castagnolo et al. , 2011; De Jager et al. , 2005; Pérez-Fernández et al. , 2013 ], in particular, in overweight and obese people. Metformin has a distinct advantage of lowering serum glucose levels without causing hyper-insulinemia and subsequent risk of hypoglycemia [Yardimci et al. , 2005; Xi et al. , 2008; Liu et al. , 2005]. In order to find a substance that enhances the therapeutic effects of metformin, and exhibits additional pancreas-protecting effects, we synthesized the title compound (Fig. 1). Some examples of related structures already appear in the literature[Pérez-Fernández et al. , 2013; Huamg et al. , 2008]. The structure of the title compound contains two metformin molecules, one methanol molecule and carbonate ion (Fig. 1). In the crystal, N—H···O, N—H···N and O—H···O hydrogen bonds connect molecules to form a two-dimensional network parallel to (001) (Fig. 2).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.The N—H hydrogen atom was located in a difference Fourier map and freely refined: N—H = 0.86 Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 Å with Uiso (H) = 1.2 or 1.5Ueq (C).

Synthesis and crystallization top

A methanol solution (20 ml) of sodium carbonate (485 mg, 3.03 mmol) and metformin hydro­chloride (500 mg, 3.03 mmol) was stirred for 12 h at room temperature. The solid part (sodium chloride) was filtered off. The rest of the solution was slowly evaporated at room temperature, yielding colourless blocks of the title compound.

Related literature top

For background to and medical applications of metformin (systematic name: N,N-dimethylimidodicarbonimidic diamide), see: Castagnolo et al. (2011); De Jager et al. (2005); Pérez-Fernández et al. (2013); Yardımcı & Özaltın (2005); Xi et al. (2008); Li et al. (2005). For a related structure, see: Huang et al. (2008). .

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with the hydrogen bonds drawn as dashed lines.
Bis{2-[amino(iminiumyl)methyl]-1,1-dimethylguanidine} carbonate methanol disolvate top
Crystal data top
2C4H12N5+·CO32·2CH4OF(000) = 832
Mr = 384.46Dx = 1.274 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.5726 (12) ÅCell parameters from 1052 reflections
b = 10.5634 (8) Åθ = 2.8–22.8°
c = 13.9825 (13) ŵ = 0.10 mm1
β = 90.386 (1)°T = 298 K
V = 2004.7 (3) Å3Block, colourless
Z = 40.40 × 0.32 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
947 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
φ and ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1615
Tmin = 0.961, Tmax = 0.971k = 1211
4837 measured reflectionsl = 1616
1749 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.280 w = 1/[σ2(Fo2) + (0.1395P)2 + 3.7847P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1749 reflectionsΔρmax = 0.64 e Å3
123 parametersΔρmin = 0.29 e Å3
Crystal data top
2C4H12N5+·CO32·2CH4OV = 2004.7 (3) Å3
Mr = 384.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.5726 (12) ŵ = 0.10 mm1
b = 10.5634 (8) ÅT = 298 K
c = 13.9825 (13) Å0.40 × 0.32 × 0.29 mm
β = 90.386 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1749 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
947 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.971Rint = 0.065
4837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0836 restraints
wR(F2) = 0.280H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
1749 reflectionsΔρmin = 0.29 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9937 (3)0.6120 (4)0.3964 (3)0.0764 (14)
H1A1.01800.66640.35740.092*
H1B1.03120.57520.43770.092*
N20.8445 (3)0.6436 (4)0.3289 (3)0.0651 (12)
H2A0.87090.69750.29080.078*
H2B0.78240.62790.32500.078*
N30.8641 (3)0.5040 (4)0.4562 (3)0.0753 (14)
N40.7163 (3)0.4414 (5)0.5183 (3)0.0787 (14)
N50.7482 (3)0.3984 (4)0.3619 (3)0.0663 (12)
H5A0.69340.35780.35790.080*
H5B0.78570.40440.31280.080*
O10.43093 (19)0.6744 (3)0.7084 (2)0.0513 (9)
O20.50000.4941 (4)0.75000.0802 (17)
O30.3680 (3)0.3385 (6)0.6850 (5)0.143 (2)
H30.41100.38540.70630.214*
C10.8990 (3)0.5850 (5)0.3931 (3)0.0584 (12)
C20.7748 (3)0.4516 (5)0.4435 (3)0.0627 (14)
C30.6269 (4)0.3681 (7)0.5153 (4)0.095 (2)
H3A0.58000.40850.47370.143*
H3B0.60010.36210.57850.143*
H3C0.64100.28470.49170.143*
C40.7393 (6)0.5018 (9)0.6077 (5)0.127 (3)
H4A0.80000.54760.60200.191*
H4B0.74580.43890.65680.191*
H4C0.68730.55940.62400.191*
C50.3996 (9)0.2845 (15)0.6049 (14)0.279 (10)
H5D0.34420.26440.56460.419*
H5E0.43490.20840.62030.419*
H5F0.44240.34190.57190.419*
C60.50000.6130 (5)0.75000.0422 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.055 (2)0.092 (3)0.082 (3)0.035 (2)0.022 (2)0.034 (2)
N20.050 (2)0.079 (3)0.067 (3)0.0205 (19)0.0089 (19)0.017 (2)
N30.065 (3)0.104 (3)0.056 (2)0.049 (2)0.0220 (19)0.023 (2)
N40.076 (3)0.108 (4)0.051 (3)0.041 (3)0.000 (2)0.003 (2)
N50.058 (2)0.093 (3)0.047 (2)0.034 (2)0.0063 (17)0.000 (2)
O10.0389 (15)0.0469 (17)0.068 (2)0.0007 (12)0.0176 (13)0.0020 (14)
O20.060 (3)0.037 (3)0.144 (5)0.0000.032 (3)0.000
O30.063 (3)0.135 (4)0.230 (7)0.016 (3)0.011 (3)0.097 (4)
C10.051 (3)0.076 (3)0.048 (2)0.024 (2)0.009 (2)0.006 (2)
C20.059 (3)0.079 (3)0.050 (3)0.032 (2)0.012 (2)0.015 (2)
C30.076 (4)0.133 (5)0.077 (4)0.048 (4)0.007 (3)0.010 (4)
C40.140 (6)0.180 (8)0.062 (4)0.046 (6)0.006 (4)0.028 (5)
C50.153 (9)0.254 (15)0.43 (2)0.090 (10)0.122 (12)0.223 (16)
C60.029 (3)0.039 (3)0.059 (4)0.0000.007 (2)0.000
Geometric parameters (Å, º) top
N1—C11.317 (6)C6—O11.276 (4)
N1—H1A0.8600C6—O21.257 (7)
N1—H1B0.8600O3—C51.330 (13)
N2—C11.314 (6)O3—H30.8200
N2—H2A0.8600C3—H3A0.9600
N2—H2B0.8600C3—H3B0.9600
N3—C11.319 (6)C3—H3C0.9600
N3—C21.344 (5)C4—H4A0.9600
N4—C21.321 (6)C4—H4B0.9600
N4—C41.436 (8)C4—H4C0.9600
N4—C31.440 (6)C5—H5D0.9600
N5—C21.320 (6)C5—H5E0.9600
N5—H5A0.8600C5—H5F0.9600
N5—H5B0.8600C6—O1i1.276 (4)
C1—N1—H1A120.0N4—C3—H3B109.5
C1—N1—H1B120.0H3A—C3—H3B109.5
H1A—N1—H1B120.0N4—C3—H3C109.5
C1—N2—H2A120.0H3A—C3—H3C109.5
C1—N2—H2B120.0H3B—C3—H3C109.5
H2A—N2—H2B120.0N4—C4—H4A109.5
C1—N3—C2120.4 (4)N4—C4—H4B109.5
C2—N4—C4121.7 (5)H4A—C4—H4B109.5
C2—N4—C3122.1 (4)N4—C4—H4C109.5
C4—N4—C3116.2 (5)H4A—C4—H4C109.5
C2—N5—H5A120.0H4B—C4—H4C109.5
C2—N5—H5B120.0O3—C5—H5D109.5
H5A—N5—H5B120.0O3—C5—H5E109.5
C5—O3—H3109.5H5D—C5—H5E109.5
N2—C1—N1117.9 (4)O3—C5—H5F109.5
N2—C1—N3124.0 (4)H5D—C5—H5F109.5
N1—C1—N3118.1 (4)H5E—C5—H5F109.5
N5—C2—N4119.2 (4)O2—C6—O1i120.5 (2)
N5—C2—N3122.0 (4)O2—C6—O1120.5 (2)
N4—C2—N3118.4 (4)O1i—C6—O1119.0 (5)
N4—C3—H3A109.5
C2—N3—C1—N217.2 (8)C4—N4—C2—N39.8 (9)
C2—N3—C1—N1165.0 (5)C3—N4—C2—N3169.3 (6)
C4—N4—C2—N5177.3 (7)C1—N3—C2—N549.6 (8)
C3—N4—C2—N53.6 (9)C1—N3—C2—N4137.7 (6)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.042.883 (5)166
N1—H1B···N3iii0.862.213.069 (6)175
N2—H2A···O1iv0.861.962.818 (5)178
N2—H2B···O3v0.862.082.896 (6)159
N5—H5A···O1v0.861.952.728 (4)150
O3—H3···O20.821.772.591 (5)177
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x+2, y+1, z+1; (iv) x+1/2, y+3/2, z1/2; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.883 (5)166
N1—H1B···N3ii0.862.213.069 (6)175
N2—H2A···O1iii0.861.962.818 (5)178
N2—H2B···O3iv0.862.082.896 (6)159
N5—H5A···O1iv0.861.952.728 (4)150
O3—H3···O20.821.772.591 (5)177
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+2, y+1, z+1; (iii) x+1/2, y+3/2, z1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are very grateful for financial support from the National Natural Science Foundation of PR China (Nos. 21271122 and 21571117) and a Research Project Supported by Shanxi Scholarship Council of China (2013–018).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastagnolo, D., Schenone, S. & Botta, M. (2011). Chem. Rev. 111, 5247–5300.  CrossRef CAS PubMed Google Scholar
First citationHuang, L., Xi, P., Xu, M., Liu, T. & Zeng, Z. (2008). Anal. Sci.. 24, x289–x290.  CrossRef Google Scholar
First citationJager, J., Kooy, A., Lehert, P. B., Bets, D., Wulffelé, M. G., Teerlink, T., Scheffer, P. G., Schalkwijk, C. G., Donker, A. J. M. & Stehouwer, C. D. A. (2005). J. Intern. Med. 257, 100–109.  CrossRef PubMed Google Scholar
First citationLi, N., Deng, C., Yao, N., Shen, X. & Zhang, X. (2005). Anal. Chim. Acta, 540, 317–323.  CrossRef CAS Google Scholar
First citationPérez-Fernández, R., Fresno, N., Goya, P., Elguero, J., Menéndez-Taboada, L., García-Granda, S. & Marco, C. (2013). Cryst. Growth Des. 13, 1780–1785.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, P. X., Xu, Z. H., Liu, X. H., Cheng, F. J. & Zeng, Z. Z. (2008). Spectrochim. Acta Part A, 71, 523–528.  CrossRef Google Scholar
First citationYardımcı, C. & Özaltın, N. (2005). Anal. Chim. Acta, 549, 88–95.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o747-o748
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds