organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o723-o724

Crystal structure of (E)-2-(4-meth­­oxy­styr­yl)-3-methyl-1-phenyl­sulfonyl-1H-indole

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2015; accepted 6 September 2015; online 12 September 2015)

In the title compound, C24H21NO3S, the dihedral angles between the indole ring system (r.m.s. deviation = 0.030 Å) and the sulfur and ethyl­ene-bonded benzene rings are 80.2 (2) and 49.29 (15)°, respectively. The dihedral angle between the pendant benzene rings is 37.7 (2)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and weak C—H⋯π and ππ [centroid-to-centroid distances = 3.549 (2) and 3.743 (3) Å] inter­actions, forming a three-dimensional network.

1. Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Kolocouris et al. (1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]). For the structures of related compounds, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H21NO3S

  • Mr = 403.48

  • Monoclinic, C 2/c

  • a = 27.373 (4) Å

  • b = 12.7232 (16) Å

  • c = 12.0881 (13) Å

  • β = 102.827 (6)°

  • V = 4104.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.964

  • 26597 measured reflections

  • 4852 independent reflections

  • 2432 reflections with I > 2σ(I)

  • Rint = 0.120

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.231

  • S = 1.00

  • 4852 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.46 3.249 (5) 143
C15—H15CCg4ii 0.96 2.82 3.759 (4) 167
C24—H24ACg3iii 0.96 2.84 3.634 (6) 140
C24—H24CCg2iii 0.96 2.88 3.520 (5) 125
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z-{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole derivatives exhibit antitumour (Andreani et al., 2001) and antiviral (Kolocouris et al., 1994) activities. The molecular structure of the title compound is illustrated in Fig. 1. The geometric parameters of the title molecule agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008). The torsion angles O1—S1—N1—C7 and O2—S1—N1—C14 [-48.0 (3)° and 38.3 (3)°, respectively] indicate the syn-conformation of the sulfonyl moiety.

In the crystal, the molecules are linked by C—H···O hydrogen bonds (Table 1 & Fig. 2) and the packing also features weak C—H···π (Table 1) and ππ [Cg1···Cg1i distance 3.549 (2) Å; Cg2···Cg2ii distance 3.743 (3) Å; (i) 1/2 - x,1/2 - y,1 - z; 1 - x,-y,1 - z; Cg1 and Cg2 are the centroids of the rings (N1/C7/C12/C13/C14) and (C1—C6), respectively] interactions in a three-dimensional network.

Related literature top

For the biological activity of indole derivatives, see: Andreani et al. (2001); Kolocouris et al. (1994). For the structures of related compounds, see: Chakkaravarthi et al. (2007, 2008).

Experimental top

To a suspension of sodium hydride (0.22 g, 4.74 mmol) in dry THF (10 ml) at -10°C, the solution of diethyl (3-methyl-1-(phenylsulfonyl)-1H-indol-2-yl)methylphosphonate (1 g, 2.37 mmol) in dry THF (10 ml) was slowly added under nitrogen atmosphere and stirred for 1 h at -10°C. Then, the solution of p-anisaldehyde (0.31 ml, 2.61 mmol) in dry THF (5 ml) was added and the stirring was continued at -10 to 0°C for another 2 h. After completion of the reaction (monitored by TLC), the yellow solution was poured over crushed ice (80 g) containing Conc. HCl (5 ml). The solid obtained was filtered, dried and recrystallized from methanol solution to afford the title compound in the form of colourless blocks.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl. The reflections (2 0 0) and (1 1 0) were omitted during refinement which were owing poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
(E)-2-(4-Methoxystyryl)-3-methyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C24H21NO3SF(000) = 1696
Mr = 403.48Dx = 1.306 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5639 reflections
a = 27.373 (4) Åθ = 2.6–24.6°
b = 12.7232 (16) ŵ = 0.18 mm1
c = 12.0881 (13) ÅT = 295 K
β = 102.827 (6)°Block, colourless
V = 4104.9 (9) Å30.28 × 0.24 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4852 independent reflections
Radiation source: fine-focus sealed tube2432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.120
ω and φ scanθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3635
Tmin = 0.951, Tmax = 0.964k = 1616
26597 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.109P)2 + 3.4059P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C24H21NO3SV = 4104.9 (9) Å3
Mr = 403.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.373 (4) ŵ = 0.18 mm1
b = 12.7232 (16) ÅT = 295 K
c = 12.0881 (13) Å0.28 × 0.24 × 0.20 mm
β = 102.827 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4852 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2432 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.964Rint = 0.120
26597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
4852 reflectionsΔρmin = 0.37 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40832 (12)0.0851 (3)0.4987 (3)0.0558 (9)
C20.44297 (16)0.1492 (3)0.5659 (4)0.0830 (12)
H20.43710.17780.63260.100*
C30.48806 (19)0.1704 (4)0.5304 (7)0.117 (2)
H30.51240.21330.57410.140*
C40.4957 (2)0.1274 (5)0.4313 (7)0.121 (2)
H40.52540.14120.40830.145*
C50.4609 (2)0.0657 (5)0.3678 (5)0.1072 (18)
H50.46670.03690.30110.129*
C60.41692 (15)0.0444 (3)0.3994 (3)0.0697 (10)
H60.39280.00240.35360.084*
C70.30101 (11)0.1982 (2)0.3861 (3)0.0467 (7)
C80.29070 (13)0.1401 (3)0.2867 (3)0.0583 (9)
H80.29520.06760.28820.070*
C90.27364 (14)0.1922 (4)0.1857 (3)0.0712 (11)
H90.26710.15420.11830.085*
C100.26607 (15)0.2987 (4)0.1820 (3)0.0748 (11)
H100.25370.33140.11260.090*
C110.27647 (13)0.3574 (3)0.2794 (3)0.0642 (10)
H110.27130.42970.27610.077*
C120.29493 (11)0.3081 (3)0.3841 (3)0.0496 (8)
C130.31014 (12)0.3465 (2)0.4972 (3)0.0516 (8)
C140.32558 (11)0.2641 (2)0.5673 (3)0.0480 (8)
C150.30517 (15)0.4586 (3)0.5297 (4)0.0736 (11)
H15A0.30760.46320.61000.110*
H15B0.27320.48530.49020.110*
H15C0.33140.49940.50970.110*
C160.34235 (13)0.2629 (3)0.6895 (3)0.0537 (8)
H160.32980.21100.72980.064*
C170.37458 (13)0.3316 (3)0.7474 (3)0.0556 (8)
H170.38870.37940.70540.067*
C180.38995 (12)0.3393 (3)0.8702 (3)0.0534 (8)
C190.42576 (14)0.4133 (3)0.9200 (3)0.0675 (10)
H190.44050.45530.87360.081*
C200.43979 (15)0.4256 (3)1.0354 (3)0.0734 (11)
H200.46350.47621.06570.088*
C210.41924 (13)0.3642 (3)1.1070 (3)0.0619 (9)
C220.38457 (12)0.2888 (3)1.0604 (3)0.0589 (9)
H220.37070.24571.10750.071*
C230.37042 (13)0.2769 (3)0.9445 (3)0.0602 (9)
H230.34700.22550.91480.072*
C240.4123 (2)0.3287 (4)1.2952 (4)0.1073 (17)
H24A0.37720.34541.28050.161*
H24B0.42780.34811.37170.161*
H24C0.41640.25471.28520.161*
N10.31802 (9)0.16882 (19)0.5006 (2)0.0477 (7)
O10.32587 (9)0.02048 (17)0.4661 (2)0.0633 (7)
O20.35975 (11)0.0507 (2)0.65544 (19)0.0733 (8)
O30.43465 (10)0.3842 (3)1.2199 (2)0.0862 (9)
S10.35144 (3)0.06038 (6)0.53598 (7)0.0512 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0529 (19)0.0443 (19)0.068 (2)0.0044 (15)0.0089 (17)0.0051 (16)
C20.071 (3)0.058 (3)0.112 (3)0.002 (2)0.005 (2)0.013 (2)
C30.064 (3)0.071 (3)0.204 (7)0.011 (2)0.008 (4)0.002 (4)
C40.082 (4)0.097 (4)0.199 (7)0.008 (3)0.065 (4)0.028 (4)
C50.088 (3)0.114 (4)0.138 (5)0.007 (3)0.064 (3)0.021 (4)
C60.066 (2)0.076 (3)0.071 (3)0.0089 (19)0.0230 (19)0.004 (2)
C70.0452 (17)0.0462 (19)0.0502 (19)0.0007 (14)0.0141 (14)0.0035 (15)
C80.065 (2)0.048 (2)0.061 (2)0.0047 (16)0.0105 (17)0.0074 (17)
C90.078 (3)0.081 (3)0.051 (2)0.007 (2)0.0066 (19)0.001 (2)
C100.079 (3)0.074 (3)0.068 (3)0.003 (2)0.009 (2)0.017 (2)
C110.063 (2)0.053 (2)0.076 (3)0.0011 (17)0.0119 (19)0.016 (2)
C120.0437 (17)0.0437 (19)0.063 (2)0.0011 (14)0.0156 (15)0.0046 (16)
C130.0476 (18)0.0409 (19)0.069 (2)0.0003 (14)0.0194 (16)0.0030 (17)
C140.0498 (18)0.0418 (18)0.057 (2)0.0044 (14)0.0227 (15)0.0097 (15)
C150.075 (3)0.044 (2)0.102 (3)0.0026 (18)0.021 (2)0.008 (2)
C160.063 (2)0.047 (2)0.057 (2)0.0032 (16)0.0262 (17)0.0063 (15)
C170.059 (2)0.053 (2)0.056 (2)0.0041 (16)0.0173 (16)0.0039 (16)
C180.0542 (19)0.046 (2)0.062 (2)0.0012 (15)0.0176 (16)0.0080 (16)
C190.074 (2)0.067 (2)0.066 (2)0.018 (2)0.026 (2)0.0078 (19)
C200.068 (2)0.079 (3)0.074 (3)0.025 (2)0.018 (2)0.019 (2)
C210.057 (2)0.066 (2)0.062 (2)0.0018 (18)0.0109 (18)0.0069 (19)
C220.057 (2)0.057 (2)0.063 (2)0.0004 (17)0.0147 (17)0.0087 (18)
C230.058 (2)0.050 (2)0.071 (2)0.0051 (16)0.0119 (18)0.0014 (18)
C240.148 (5)0.098 (4)0.067 (3)0.013 (3)0.005 (3)0.018 (3)
N10.0532 (15)0.0406 (15)0.0509 (16)0.0033 (12)0.0149 (12)0.0032 (12)
O10.0731 (16)0.0360 (13)0.0815 (17)0.0048 (11)0.0189 (13)0.0054 (11)
O20.113 (2)0.0603 (16)0.0497 (15)0.0094 (14)0.0244 (14)0.0132 (12)
O30.0832 (19)0.109 (2)0.0646 (18)0.0207 (17)0.0131 (15)0.0117 (16)
S10.0654 (6)0.0367 (5)0.0536 (5)0.0005 (4)0.0176 (4)0.0033 (4)
Geometric parameters (Å, º) top
C1—C21.372 (5)C14—C161.447 (4)
C1—C61.375 (5)C15—H15A0.9600
C1—S11.742 (4)C15—H15B0.9600
C2—C31.420 (7)C15—H15C0.9600
C2—H20.9300C16—C171.326 (4)
C3—C41.375 (8)C16—H160.9300
C3—H30.9300C17—C181.454 (5)
C4—C51.337 (8)C17—H170.9300
C4—H40.9300C18—C231.391 (5)
C5—C61.369 (6)C18—C191.395 (5)
C5—H50.9300C19—C201.372 (5)
C6—H60.9300C19—H190.9300
C7—C81.386 (4)C20—C211.376 (5)
C7—C121.407 (5)C20—H200.9300
C7—N11.409 (4)C21—O31.359 (4)
C8—C91.377 (5)C21—C221.379 (5)
C8—H80.9300C22—C231.377 (5)
C9—C101.370 (6)C22—H220.9300
C9—H90.9300C23—H230.9300
C10—C111.370 (5)C24—O31.396 (5)
C10—H100.9300C24—H24A0.9600
C11—C121.403 (5)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.424 (5)N1—S11.658 (3)
C13—C141.355 (4)O1—S11.414 (2)
C13—C151.494 (5)O2—S11.416 (2)
C14—N11.446 (4)
C2—C1—C6120.7 (4)H15A—C15—H15B109.5
C2—C1—S1119.6 (3)C13—C15—H15C109.5
C6—C1—S1119.6 (3)H15A—C15—H15C109.5
C1—C2—C3117.8 (5)H15B—C15—H15C109.5
C1—C2—H2121.1C17—C16—C14123.7 (3)
C3—C2—H2121.1C17—C16—H16118.2
C4—C3—C2120.0 (5)C14—C16—H16118.2
C4—C3—H3120.0C16—C17—C18126.3 (3)
C2—C3—H3120.0C16—C17—H17116.9
C5—C4—C3120.4 (5)C18—C17—H17116.9
C5—C4—H4119.8C23—C18—C19116.1 (3)
C3—C4—H4119.8C23—C18—C17123.7 (3)
C4—C5—C6121.0 (5)C19—C18—C17120.2 (3)
C4—C5—H5119.5C20—C19—C18121.8 (3)
C6—C5—H5119.5C20—C19—H19119.1
C5—C6—C1120.1 (5)C18—C19—H19119.1
C5—C6—H6120.0C19—C20—C21120.9 (4)
C1—C6—H6120.0C19—C20—H20119.5
C8—C7—C12121.0 (3)C21—C20—H20119.5
C8—C7—N1132.0 (3)O3—C21—C20116.5 (3)
C12—C7—N1107.0 (3)O3—C21—C22124.9 (3)
C9—C8—C7118.4 (3)C20—C21—C22118.6 (3)
C9—C8—H8120.8C23—C22—C21120.3 (3)
C7—C8—H8120.8C23—C22—H22119.9
C10—C9—C8121.6 (4)C21—C22—H22119.9
C10—C9—H9119.2C22—C23—C18122.2 (3)
C8—C9—H9119.2C22—C23—H23118.9
C9—C10—C11120.7 (4)C18—C23—H23118.9
C9—C10—H10119.7O3—C24—H24A109.5
C11—C10—H10119.7O3—C24—H24B109.5
C10—C11—C12119.7 (4)H24A—C24—H24B109.5
C10—C11—H11120.2O3—C24—H24C109.5
C12—C11—H11120.2H24A—C24—H24C109.5
C11—C12—C7118.6 (3)H24B—C24—H24C109.5
C11—C12—C13133.0 (3)C7—N1—C14107.5 (2)
C7—C12—C13108.4 (3)C7—N1—S1121.2 (2)
C14—C13—C12108.6 (3)C14—N1—S1123.5 (2)
C14—C13—C15127.4 (3)C21—O3—C24118.4 (3)
C12—C13—C15123.8 (3)O1—S1—O2119.45 (15)
C13—C14—N1108.3 (3)O1—S1—N1106.24 (14)
C13—C14—C16129.2 (3)O2—S1—N1106.86 (14)
N1—C14—C16122.3 (3)O1—S1—C1109.21 (16)
C13—C15—H15A109.5O2—S1—C1109.19 (17)
C13—C15—H15B109.5N1—S1—C1104.87 (14)
C6—C1—C2—C31.1 (6)C23—C18—C19—C201.8 (5)
S1—C1—C2—C3177.7 (3)C17—C18—C19—C20177.5 (3)
C1—C2—C3—C40.2 (7)C18—C19—C20—C210.7 (6)
C2—C3—C4—C50.2 (9)C19—C20—C21—O3178.4 (4)
C3—C4—C5—C60.3 (9)C19—C20—C21—C220.8 (6)
C4—C5—C6—C11.1 (7)O3—C21—C22—C23178.1 (3)
C2—C1—C6—C51.5 (6)C20—C21—C22—C231.1 (5)
S1—C1—C6—C5178.2 (3)C21—C22—C23—C180.1 (5)
C12—C7—C8—C90.9 (5)C19—C18—C23—C221.5 (5)
N1—C7—C8—C9179.2 (3)C17—C18—C23—C22177.7 (3)
C7—C8—C9—C101.0 (6)C8—C7—N1—C14175.9 (3)
C8—C9—C10—C111.6 (6)C12—C7—N1—C144.0 (3)
C9—C10—C11—C120.2 (6)C8—C7—N1—S125.9 (4)
C10—C11—C12—C71.7 (5)C12—C7—N1—S1154.0 (2)
C10—C11—C12—C13178.2 (3)C13—C14—N1—C74.5 (3)
C8—C7—C12—C112.2 (5)C16—C14—N1—C7179.0 (3)
N1—C7—C12—C11177.8 (3)C13—C14—N1—S1153.6 (2)
C8—C7—C12—C13177.7 (3)C16—C14—N1—S131.8 (4)
N1—C7—C12—C132.2 (3)C20—C21—O3—C24175.7 (4)
C11—C12—C13—C14179.4 (3)C22—C21—O3—C243.5 (6)
C7—C12—C13—C140.5 (4)C7—N1—S1—O148.0 (3)
C11—C12—C13—C155.1 (6)C14—N1—S1—O1166.9 (2)
C7—C12—C13—C15175.0 (3)C7—N1—S1—O2176.6 (2)
C12—C13—C14—N13.0 (3)C14—N1—S1—O238.3 (3)
C15—C13—C14—N1172.2 (3)C7—N1—S1—C167.6 (3)
C12—C13—C14—C16177.1 (3)C14—N1—S1—C177.5 (3)
C15—C13—C14—C161.8 (5)C2—C1—S1—O1170.2 (3)
C13—C14—C16—C1745.6 (5)C6—C1—S1—O113.1 (3)
N1—C14—C16—C17141.1 (3)C2—C1—S1—O237.9 (3)
C14—C16—C17—C18175.1 (3)C6—C1—S1—O2145.3 (3)
C16—C17—C18—C233.2 (5)C2—C1—S1—N176.3 (3)
C16—C17—C18—C19177.6 (3)C6—C1—S1—N1100.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.249 (5)143
C15—H15C···Cg4ii0.962.823.759 (4)167
C24—H24A···Cg3iii0.962.843.634 (6)140
C24—H24C···Cg2iii0.962.883.520 (5)125
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.249 (5)143
C15—H15C···Cg4ii0.962.823.759 (4)167
C24—H24A···Cg3iii0.962.843.634 (6)140
C24—H24C···Cg2iii0.962.883.520 (5)125
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o723-o724
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds