organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [(2S,3R)-3-hy­dr­oxy-3-phenyl­butan-2-yl]pyrrolidinium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Queen Mary's College, Chennai 600 004, Tamilnadu, India, bDepartment of Physics, Government College of Engineering, Salem 636 011, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2015; accepted 9 September 2015; online 17 September 2015)

In the title mol­ecular salt, C14H22NO+·Cl, the pyrrolidinium ring adopts a twisted conformation about one of the N—C bonds. It is oriented at a dihedral angle of 42.0 (1)° with respect to the benzene ring. The torsion angle for the central N—C—C—Car (ar = aromatic) linkage is 163.74 (15)°. In the crystal, the components are linked via N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming zigzig chains along the b-axis direction. These chains are connected along the c axis by very weak C—H⋯π inter­actions, forming a two-dimensional supra­molecular network.

1. Related literature

For background to pyrrolidinium-based ionic liquids, see: Henderson et al. (2006[Henderson, W. A., Young, V. G. Jr, Pearson, W., Passerini, S., De Long, H. C. & Trulove, P. C. (2006). J. Phys. Condens. Matter, 18, 10377-10390.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H22NO+·Cl

  • Mr = 255.78

  • Orthorhombic, P 21 21 21

  • a = 7.3912 (14) Å

  • b = 9.7002 (17) Å

  • c = 19.727 (4) Å

  • V = 1414.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.16 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.960

  • 6666 measured reflections

  • 3163 independent reflections

  • 2750 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.02

  • 3163 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1235 Friedel pairs

  • Absolute structure parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.89 (2) 2.24 (2) 3.0804 (19) 158.0 (2)
O1—H1A⋯Cl1ii 0.82 2.28 3.0456 (14) 156
C3—H3⋯Cgiii 0.93 2.93 3.630 (3) 133
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Pyrrolidinium-based ionic liquids have been a subject of intense investigation recently (Henderson et al., 2006), whereby with understanding of the fundamental molecular-level inter­actions, a desired product with predicted physico-chemical properites could be designed. Additionally, a particular emphasis has been placed on whether hydrogen bonding occurs between the cation and a potential electron-pair donor (hydrogen bond acceptor) and its influence on the ionic liquids' overall properties. Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound (I) have been carried out.

Structural commentary top

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. In the cation, the pyrrolidinium ring adopts a twist conformation, with twist about the N1—C11 bond; the puckering parameters, q2 = 0.361 (2) Å and φ2 = 202.4 (5)°, and asymmetry parameters ΔC2[N1—C11] = 4.8.0 (3) Å. The pyrrolidinium ring is oriented at an angle 42.0 (1)° from the mean plane of the benzene ring.

Supra­molecular features top

In the crystal, cations and anions are linked via N1—H1···Cl1 and O1—H1A···Cl1 hydrogen bonds, forming a one-dimensional zig zig chain along the b-axis direction. These chains are stacked along the c-axis by C—H···π inter­actions, between benzene H atom and the benzene ring of an adjacene molecule, with a C3—H3···Cgiii, forming a two-dimensional supra­molecular network. (Table 1 and Fig. 2; Cg is centroid of C1–C6 benzene ring. Symmetry code: (iii) -1/2+x,3/2-y,1-z>).

Synthesis and crystallization top

In a round bottomed flask, a stirred solution of (S)-pyrrolidinylnorephedrone was reacted with methyl­magnesium bromide in THF medium over a period of 3 h. The completion of the reaction was monitored by thin layer chromatographic analysis. Further the crude mass was quenched with dil HCl and extracted with ethyl acetate under reduced vacuum. The resulting compound was recrystallised from EtOH/H2O (4:1) solution as colourless blocks in good yield (86%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound H atom was located in a difference Fourier map and freely refined. All other H atoms were positioned geometrically and constrained to ride on their parent atom with C—H = 0.93–0.97 Å and with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms. Owing to poor agreement, the reflection (-3 2 4) was omitted from the final cycles of refinement.

Related literature top

For background to pyrrolidinium-based ionic liquids, see: Henderson et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular N—H···Cl, O—H···Cl and C—H···π interactions, forming a two dimensional supramolecular network. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Cg is the centroid of C1–C6 benzene ring.
[(2S,3R)-3-Hydroxy-3-phenylbutan-2-yl]pyrrolidinium chloride top
Crystal data top
C14H22NO+·ClF(000) = 552
Mr = 255.78Dx = 1.201 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3836 reflections
a = 7.3912 (14) Åθ = 3.7–29.2°
b = 9.7002 (17) ŵ = 0.26 mm1
c = 19.727 (4) ÅT = 293 K
V = 1414.4 (4) Å3Block, colourless
Z = 40.24 × 0.21 × 0.16 mm
Data collection top
Bruker SMART CCD
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 29.2°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.940, Tmax = 0.960k = 1212
6666 measured reflectionsl = 2526
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1443P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3163 reflectionsΔρmax = 0.19 e Å3
160 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1235 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C14H22NO+·ClV = 1414.4 (4) Å3
Mr = 255.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3912 (14) ŵ = 0.26 mm1
b = 9.7002 (17) ÅT = 293 K
c = 19.727 (4) Å0.24 × 0.21 × 0.16 mm
Data collection top
Bruker SMART CCD
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2750 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.960Rint = 0.024
6666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.19 e Å3
S = 1.02Δρmin = 0.16 e Å3
3163 reflectionsAbsolute structure: Flack (1983), 1235 Friedel pairs
160 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7420 (2)0.74116 (19)0.62918 (9)0.0356 (4)
C20.6667 (3)0.8068 (2)0.57376 (10)0.0478 (5)
H20.63230.89880.57720.057*
C30.6418 (4)0.7369 (3)0.51298 (12)0.0596 (6)
H30.59110.78260.47620.071*
C40.6913 (4)0.6009 (3)0.50673 (12)0.0623 (6)
H40.67280.55420.46610.075*
C50.7685 (3)0.5345 (2)0.56109 (13)0.0568 (6)
H50.80430.44300.55700.068*
C60.7931 (3)0.6034 (2)0.62179 (11)0.0440 (4)
H60.84460.55710.65830.053*
C70.7703 (2)0.81613 (18)0.69701 (9)0.0345 (4)
C80.9719 (3)0.8127 (3)0.71443 (10)0.0490 (5)
H8A1.04080.84440.67620.074*
H8B1.00690.72000.72530.074*
H8C0.99460.87150.75270.074*
C90.6487 (3)0.74346 (18)0.75061 (9)0.0333 (4)
H90.66700.64400.74510.040*
C100.4494 (3)0.7716 (2)0.73699 (10)0.0461 (5)
H10A0.37680.71820.76760.069*
H10B0.42090.74640.69120.069*
H10C0.42480.86780.74360.069*
C110.6819 (3)0.9254 (2)0.84700 (11)0.0505 (5)
H11A0.77780.98280.82890.061*
H11B0.56590.96410.83410.061*
C120.6971 (4)0.9122 (3)0.92291 (12)0.0723 (8)
H12A0.82270.91600.93700.087*
H12B0.63100.98550.94540.087*
C130.6170 (6)0.7756 (3)0.93918 (14)0.0910 (11)
H13A0.69360.72710.97120.109*
H13B0.49880.78780.95970.109*
C140.6001 (3)0.6945 (3)0.87578 (10)0.0612 (6)
H14A0.47410.68300.86330.073*
H14B0.65470.60410.88100.073*
N10.7001 (2)0.77830 (17)0.82284 (7)0.0369 (4)
O10.7091 (2)0.95487 (12)0.69491 (7)0.0457 (4)
H1A0.76480.99700.66550.069*
Cl10.93476 (8)0.17271 (6)0.62270 (3)0.05642 (18)
H10.817 (3)0.761 (2)0.8290 (9)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (9)0.0393 (9)0.0378 (9)0.0004 (7)0.0036 (7)0.0035 (7)
C20.0494 (12)0.0502 (12)0.0439 (10)0.0079 (10)0.0003 (9)0.0068 (9)
C30.0524 (14)0.0828 (16)0.0434 (12)0.0025 (13)0.0078 (10)0.0065 (11)
C40.0620 (16)0.0770 (16)0.0479 (13)0.0072 (14)0.0016 (11)0.0190 (11)
C50.0570 (15)0.0475 (12)0.0660 (15)0.0006 (11)0.0101 (11)0.0127 (10)
C60.0413 (10)0.0425 (10)0.0483 (11)0.0046 (8)0.0023 (9)0.0038 (9)
C70.0318 (9)0.0340 (8)0.0378 (9)0.0009 (8)0.0036 (7)0.0037 (7)
C80.0312 (10)0.0675 (14)0.0485 (11)0.0083 (10)0.0034 (8)0.0011 (10)
C90.0328 (9)0.0311 (8)0.0360 (9)0.0024 (7)0.0002 (7)0.0031 (7)
C100.0324 (10)0.0557 (12)0.0503 (11)0.0086 (9)0.0016 (9)0.0070 (9)
C110.0484 (13)0.0465 (11)0.0566 (12)0.0007 (10)0.0044 (10)0.0112 (9)
C120.0666 (17)0.095 (2)0.0550 (14)0.0253 (16)0.0025 (13)0.0263 (14)
C130.133 (3)0.092 (2)0.0482 (14)0.025 (2)0.0297 (16)0.0091 (13)
C140.0536 (14)0.0890 (18)0.0411 (11)0.0199 (12)0.0026 (10)0.0173 (12)
N10.0311 (9)0.0417 (8)0.0379 (8)0.0014 (7)0.0042 (7)0.0009 (6)
O10.0526 (9)0.0307 (6)0.0538 (8)0.0013 (6)0.0164 (7)0.0050 (6)
Cl10.0548 (3)0.0642 (3)0.0503 (3)0.0250 (3)0.0023 (3)0.0119 (2)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—H90.9800
C1—C61.396 (3)C10—H10A0.9600
C1—C71.537 (3)C10—H10B0.9600
C2—C31.390 (3)C10—H10C0.9600
C2—H20.9300C11—C121.507 (3)
C3—C41.375 (4)C11—N11.511 (3)
C3—H30.9300C11—H11A0.9700
C4—C51.375 (4)C11—H11B0.9700
C4—H40.9300C12—C131.486 (4)
C5—C61.383 (3)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—C141.483 (4)
C7—O11.420 (2)C13—H13A0.9700
C7—C81.530 (3)C13—H13B0.9700
C7—C91.557 (2)C14—N11.516 (3)
C8—H8A0.9600C14—H14A0.9700
C8—H8B0.9600C14—H14B0.9700
C8—H8C0.9600N1—H10.89 (2)
C9—N11.513 (2)O1—H1A0.8200
C9—C101.522 (3)
C2—C1—C6117.9 (2)C9—C10—H10B109.5
C2—C1—C7121.70 (17)H10A—C10—H10B109.5
C6—C1—C7120.44 (18)C9—C10—H10C109.5
C1—C2—C3120.7 (2)H10A—C10—H10C109.5
C1—C2—H2119.6H10B—C10—H10C109.5
C3—C2—H2119.6C12—C11—N1103.1 (2)
C4—C3—C2120.7 (2)C12—C11—H11A111.2
C4—C3—H3119.6N1—C11—H11A111.2
C2—C3—H3119.6C12—C11—H11B111.2
C3—C4—C5119.3 (2)N1—C11—H11B111.2
C3—C4—H4120.3H11A—C11—H11B109.1
C5—C4—H4120.3C13—C12—C11105.1 (2)
C4—C5—C6120.3 (2)C13—C12—H12A110.7
C4—C5—H5119.9C11—C12—H12A110.7
C6—C5—H5119.9C13—C12—H12B110.7
C5—C6—C1121.1 (2)C11—C12—H12B110.7
C5—C6—H6119.4H12A—C12—H12B108.8
C1—C6—H6119.4C14—C13—C12108.9 (2)
O1—C7—C8109.73 (17)C14—C13—H13A109.9
O1—C7—C1112.29 (15)C12—C13—H13A109.9
C8—C7—C1108.54 (16)C14—C13—H13B109.9
O1—C7—C9105.37 (14)C12—C13—H13B109.9
C8—C7—C9113.58 (16)H13A—C13—H13B108.3
C1—C7—C9107.36 (15)C13—C14—N1104.8 (2)
C7—C8—H8A109.5C13—C14—H14A110.8
C7—C8—H8B109.5N1—C14—H14A110.8
H8A—C8—H8B109.5C13—C14—H14B110.8
C7—C8—H8C109.5N1—C14—H14B110.8
H8A—C8—H8C109.5H14A—C14—H14B108.9
H8B—C8—H8C109.5C11—N1—C9119.07 (15)
N1—C9—C10111.66 (16)C11—N1—C14104.25 (17)
N1—C9—C7113.19 (15)C9—N1—C14114.00 (15)
C10—C9—C7110.96 (15)C11—N1—H1102.7 (13)
N1—C9—H9106.9C9—N1—H1109.3 (12)
C10—C9—H9106.9C14—N1—H1106.2 (13)
C7—C9—H9106.9C7—O1—H1A109.5
C9—C10—H10A109.5
C6—C1—C2—C30.5 (3)C1—C7—C9—N1163.74 (15)
C7—C1—C2—C3179.8 (2)O1—C7—C9—C1050.1 (2)
C1—C2—C3—C40.1 (4)C8—C7—C9—C10170.19 (18)
C2—C3—C4—C50.9 (4)C1—C7—C9—C1069.8 (2)
C3—C4—C5—C61.1 (4)N1—C11—C12—C1332.0 (3)
C4—C5—C6—C10.5 (3)C11—C12—C13—C1414.7 (3)
C2—C1—C6—C50.3 (3)C12—C13—C14—N18.7 (3)
C7—C1—C6—C5180.00 (19)C12—C11—N1—C9165.87 (19)
C2—C1—C7—O10.7 (2)C12—C11—N1—C1437.5 (2)
C6—C1—C7—O1179.62 (17)C10—C9—N1—C1162.2 (2)
C2—C1—C7—C8120.8 (2)C7—C9—N1—C1163.9 (2)
C6—C1—C7—C858.9 (2)C10—C9—N1—C1461.6 (2)
C2—C1—C7—C9116.06 (19)C7—C9—N1—C14172.33 (17)
C6—C1—C7—C964.3 (2)C13—C14—N1—C1128.6 (3)
O1—C7—C9—N176.39 (18)C13—C14—N1—C9160.0 (2)
C8—C7—C9—N143.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.89 (2)2.24 (2)3.0804 (19)158.0 (2)
O1—H1A···Cl1ii0.822.283.0456 (14)156
C3—H3···Cgiii0.932.933.630 (3)133
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.89 (2)2.24 (2)3.0804 (19)158.0 (2)
O1—H1A···Cl1ii0.822.283.0456 (14)156
C3—H3···Cgiii0.932.933.630 (3)133
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenderson, W. A., Young, V. G. Jr, Pearson, W., Passerini, S., De Long, H. C. & Trulove, P. C. (2006). J. Phys. Condens. Matter, 18, 10377–10390.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds