organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o725-o726

Crystal structure of ethyl 2-phenyl-9-phenyl­sulfonyl-9H-carbazole-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 September 2015; accepted 6 September 2015; online 12 September 2015)

In the title compound, C27H21NO4S, the dihedral angles between the carbazole ring system (r.m.s. deviation = 0.015 Å) and the sulfur-bonded and directly linked benzene rings are 79.98 (11) and 53.51 (18)°, respectively. The benzene rings subtend a dihedral angle of 48.4 (2)°. The ethyl side chain of the ester group has an extended conformation [C—O—C—C = −172.3 (3)°]. In the crystal, inversion dimers linked by pairs of weak C—H⋯O hydrogen bonds generate R22(22) loops. The dimers are linked by weak C—H⋯π and ππ [centroid-to-centroid distances ranging from 3.5042 (14) to 3.888 (2) Å] inter­actions, thereby forming a three-dimensional supra­molecular network.

1. Related literature

For the biological activity of indole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For related structures, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667-o1668.], 2009[Chakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464-o465.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C27H21NO4S

  • Mr = 455.51

  • Monoclinic, P 21 /n

  • a = 13.7655 (8) Å

  • b = 7.8207 (4) Å

  • c = 20.9500 (12) Å

  • β = 94.054 (2)°

  • V = 2249.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.28 × 0.26 × 0.24 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.958

  • 39017 measured reflections

  • 4997 independent reflections

  • 2939 reflections with I > 2σ(I)

  • Rint = 0.048

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.04

  • 4997 reflections

  • 299 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O2i 0.93 2.53 3.439 (5) 166
C11—H11⋯Cg2ii 0.93 2.83 3.752 (3) 172
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa, et al. 2000), anti-inflammatory and antimutagenic (Ramsewak, et al. 1999). The molecular structure of the title compound (I) is shown in Fig. 1. The geometric parameters of (I) are comparable with the similar structures [Chakkaravarthi et al. 2008, 2009].

In the crystal, a pair of C—H···O hydrogen bonds generates R22(22)graph-set motif and the crystal packing is also influenced by weak C—H···π (Table 1) and ππ [Cg1···Cg1i distance 3.5042 (14) Å; Cg1···Cg3i distance 3.8449 (15) Å; Cg3···Cg4i distance 3.8882 (15) Å (i) 1 - x,-y,1 - z; Cg1, Cg2 and Cg3 are the centroids of the rings (N1/C7/C12/C13/C18), (C1—C6) and (C7—C12) respectively] interactions, forming a three-dimensional network.

Related literature top

For the biological activity of indole derivatives, see: Itoigawa et al. (2000); Ramsewak et al.(1999). For related structures, see: Chakkaravarthi et al. (2008, 2009).

Experimental top

The thermal electrocyclization of 3-(1-(phenylsulfonyl)-2-styryl -1H-indol-3-yl) acrylate (0.25 g) in dry xylenes (10 ml), 10% Pd/C (0.08 g) was added and the reaction mixture was refluxed for 12 h. After completion of the reaction (monitored by TLC), the reaction mass was filtered through celite bed and washed with hot xylenes (10 ml). The combined filtrate was evaporated under reduced presser followed by tituration of the resulting crude product with methanol afforded the title compound as a colourless solid.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The anisotropic displacement parameters were restrained within 0.001 using DELU command in the direction of C24—C25, C25—C26 and S1—O2 bonds.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
Ethyl 2-phenyl-9-phenylsulfonyl-9H-carbazole-3-carboxylate top
Crystal data top
C27H21NO4SF(000) = 952
Mr = 455.51Dx = 1.345 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9043 reflections
a = 13.7655 (8) Åθ = 2.8–24.7°
b = 7.8207 (4) ŵ = 0.18 mm1
c = 20.9500 (12) ÅT = 295 K
β = 94.054 (2)°Block, colourless
V = 2249.7 (2) Å30.28 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4997 independent reflections
Radiation source: fine-focus sealed tube2939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and φ scanθmax = 27.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.952, Tmax = 0.958k = 99
39017 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.1538P]
where P = (Fo2 + 2Fc2)/3
4997 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.19 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
C27H21NO4SV = 2249.7 (2) Å3
Mr = 455.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7655 (8) ŵ = 0.18 mm1
b = 7.8207 (4) ÅT = 295 K
c = 20.9500 (12) Å0.28 × 0.26 × 0.24 mm
β = 94.054 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4997 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2939 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.958Rint = 0.048
39017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
4997 reflectionsΔρmin = 0.34 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66860 (19)0.3090 (3)0.66383 (11)0.0483 (6)
C20.6003 (2)0.4052 (4)0.69291 (13)0.0620 (7)
H20.53990.35940.70070.074*
C30.6240 (3)0.5717 (4)0.71020 (15)0.0806 (10)
H30.57910.63920.72980.097*
C40.7125 (3)0.6369 (4)0.69873 (15)0.0834 (11)
H40.72730.74920.71030.100*
C50.7798 (3)0.5405 (5)0.67054 (16)0.0807 (10)
H50.84030.58690.66340.097*
C60.7586 (2)0.3740 (4)0.65255 (13)0.0625 (7)
H60.80410.30740.63320.075*
C70.48068 (17)0.1830 (3)0.55839 (12)0.0469 (6)
C80.4049 (2)0.1610 (3)0.59744 (14)0.0597 (7)
H80.41380.10590.63670.072*
C90.3155 (2)0.2248 (4)0.57535 (17)0.0699 (9)
H90.26320.21330.60070.084*
C100.3011 (2)0.3051 (4)0.51685 (17)0.0708 (9)
H100.23950.34620.50360.085*
C110.37638 (19)0.3250 (4)0.47802 (15)0.0600 (7)
H110.36670.37870.43850.072*
C120.46766 (17)0.2630 (3)0.49929 (12)0.0470 (6)
C130.55983 (17)0.2628 (3)0.47067 (11)0.0426 (6)
C140.58915 (19)0.3254 (3)0.41368 (12)0.0497 (6)
H140.54400.37650.38460.060*
C150.68539 (19)0.3126 (3)0.39965 (11)0.0475 (6)
C160.75333 (18)0.2285 (3)0.44225 (12)0.0466 (6)
C170.72340 (17)0.1631 (3)0.49910 (11)0.0444 (6)
H170.76730.10610.52740.053*
C180.62778 (17)0.1835 (3)0.51332 (11)0.0416 (5)
C190.7118 (2)0.4012 (3)0.34099 (14)0.0607 (7)
C200.8370 (3)0.5489 (6)0.2923 (2)0.1093 (14)
H20A0.80040.65260.28220.131*
H20B0.83020.47330.25560.131*
C210.9384 (4)0.5893 (7)0.3073 (3)0.157 (2)
H21A0.94430.66530.34340.236*
H21B0.96440.64340.27110.236*
H21C0.97390.48600.31750.236*
C220.8555 (2)0.1969 (4)0.42791 (15)0.0608 (7)
C230.9301 (2)0.2432 (6)0.4718 (2)0.0980 (12)
H230.91620.29780.50960.118*
C241.0256 (3)0.2082 (8)0.4597 (3)0.158 (2)
H241.07560.23800.48980.190*
C251.0471 (4)0.1317 (8)0.4049 (4)0.173 (3)
H251.11170.11260.39660.208*
C260.9744 (4)0.0826 (6)0.3620 (3)0.147 (2)
H260.98950.02630.32480.176*
C270.8780 (3)0.1146 (4)0.37239 (18)0.0861 (11)
H270.82870.08110.34240.103*
N10.58011 (14)0.1277 (2)0.56748 (9)0.0444 (5)
O10.57068 (14)0.0310 (2)0.67859 (9)0.0702 (6)
O20.72574 (14)0.0126 (2)0.62797 (9)0.0634 (5)
O30.65793 (19)0.4200 (3)0.29378 (10)0.0948 (8)
O40.80077 (15)0.4669 (3)0.34730 (10)0.0734 (6)
S10.63858 (5)0.10114 (8)0.63854 (3)0.0509 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (16)0.0481 (14)0.0409 (13)0.0008 (12)0.0055 (11)0.0048 (11)
C20.0679 (19)0.0637 (17)0.0538 (16)0.0102 (15)0.0008 (14)0.0075 (14)
C30.109 (3)0.068 (2)0.0622 (19)0.019 (2)0.0103 (19)0.0144 (16)
C40.132 (3)0.0536 (18)0.0597 (19)0.006 (2)0.030 (2)0.0012 (15)
C50.089 (3)0.078 (2)0.072 (2)0.029 (2)0.0194 (18)0.0139 (18)
C60.0603 (19)0.0667 (18)0.0591 (17)0.0064 (14)0.0056 (14)0.0076 (14)
C70.0411 (15)0.0379 (12)0.0624 (16)0.0072 (11)0.0091 (12)0.0121 (11)
C80.0522 (18)0.0551 (15)0.0735 (18)0.0113 (13)0.0173 (14)0.0106 (14)
C90.0479 (19)0.0633 (18)0.101 (3)0.0128 (14)0.0230 (17)0.0223 (18)
C100.0380 (17)0.0687 (19)0.105 (3)0.0051 (14)0.0003 (17)0.0231 (18)
C110.0417 (16)0.0593 (16)0.0779 (19)0.0003 (13)0.0036 (14)0.0114 (14)
C120.0425 (15)0.0393 (12)0.0587 (15)0.0049 (11)0.0016 (12)0.0124 (11)
C130.0383 (14)0.0390 (12)0.0503 (14)0.0034 (10)0.0006 (11)0.0076 (11)
C140.0518 (16)0.0478 (13)0.0485 (14)0.0027 (12)0.0038 (12)0.0051 (11)
C150.0537 (16)0.0427 (13)0.0464 (14)0.0003 (12)0.0064 (12)0.0030 (11)
C160.0444 (15)0.0412 (12)0.0550 (15)0.0004 (11)0.0078 (12)0.0024 (11)
C170.0397 (14)0.0450 (13)0.0484 (14)0.0038 (11)0.0029 (11)0.0005 (11)
C180.0438 (15)0.0358 (11)0.0454 (13)0.0048 (10)0.0055 (11)0.0058 (10)
C190.074 (2)0.0547 (16)0.0545 (17)0.0057 (15)0.0150 (15)0.0020 (13)
C200.124 (4)0.106 (3)0.105 (3)0.003 (3)0.052 (3)0.041 (2)
C210.121 (4)0.149 (4)0.212 (6)0.001 (3)0.091 (4)0.068 (4)
C220.0500 (17)0.0580 (16)0.0767 (19)0.0079 (13)0.0211 (15)0.0163 (14)
C230.046 (2)0.137 (3)0.111 (3)0.007 (2)0.006 (2)0.036 (3)
C240.046 (3)0.217 (6)0.214 (5)0.001 (3)0.016 (3)0.115 (4)
C250.089 (3)0.160 (5)0.284 (7)0.056 (3)0.106 (3)0.131 (4)
C260.158 (4)0.086 (3)0.215 (5)0.055 (3)0.137 (4)0.052 (3)
C270.094 (3)0.0635 (19)0.108 (3)0.0209 (17)0.056 (2)0.0117 (18)
N10.0435 (12)0.0426 (10)0.0477 (11)0.0024 (9)0.0078 (9)0.0016 (9)
O10.0807 (14)0.0662 (12)0.0660 (12)0.0102 (10)0.0219 (11)0.0172 (10)
O20.0687 (11)0.0556 (11)0.0662 (12)0.0211 (9)0.0060 (9)0.0091 (9)
O30.113 (2)0.115 (2)0.0549 (13)0.0079 (15)0.0046 (13)0.0193 (13)
O40.0736 (15)0.0710 (13)0.0786 (14)0.0018 (11)0.0273 (11)0.0238 (11)
S10.0585 (4)0.0428 (3)0.0519 (4)0.0026 (3)0.0086 (3)0.0075 (3)
Geometric parameters (Å, º) top
C1—C61.375 (4)C15—C191.478 (4)
C1—C21.379 (4)C16—C171.385 (3)
C1—S11.750 (3)C16—C221.480 (3)
C2—C31.384 (4)C17—C181.379 (3)
C2—H20.9300C17—H170.9300
C3—C41.357 (5)C18—N11.419 (3)
C3—H30.9300C19—O31.202 (3)
C4—C51.361 (5)C19—O41.326 (3)
C4—H40.9300C20—O41.438 (4)
C5—C61.381 (4)C20—C211.443 (6)
C5—H50.9300C20—H20A0.9700
C6—H60.9300C20—H20B0.9700
C7—C81.381 (3)C21—H21A0.9600
C7—C121.388 (4)C21—H21B0.9600
C7—N11.435 (3)C21—H21C0.9600
C8—C91.377 (4)C22—C231.377 (5)
C8—H80.9300C22—C271.383 (4)
C9—C101.379 (4)C23—C241.385 (5)
C9—H90.9300C23—H230.9300
C10—C111.371 (4)C24—C251.345 (9)
C10—H100.9300C24—H240.9300
C11—C121.391 (4)C25—C261.354 (9)
C11—H110.9300C25—H250.9300
C12—C131.441 (3)C26—C271.383 (5)
C13—C141.377 (3)C26—H260.9300
C13—C181.393 (3)C27—H270.9300
C14—C151.381 (3)N1—S11.655 (2)
C14—H140.9300O1—S11.4103 (18)
C15—C161.409 (3)O2—S11.4163 (18)
C6—C1—C2121.6 (3)C18—C17—H17120.4
C6—C1—S1119.2 (2)C16—C17—H17120.4
C2—C1—S1119.1 (2)C17—C18—C13121.4 (2)
C1—C2—C3118.3 (3)C17—C18—N1129.7 (2)
C1—C2—H2120.9C13—C18—N1108.8 (2)
C3—C2—H2120.9O3—C19—O4123.1 (3)
C4—C3—C2120.3 (3)O3—C19—C15124.6 (3)
C4—C3—H3119.8O4—C19—C15112.2 (3)
C2—C3—H3119.8O4—C20—C21107.9 (4)
C3—C4—C5121.1 (3)O4—C20—H20A110.1
C3—C4—H4119.5C21—C20—H20A110.1
C5—C4—H4119.5O4—C20—H20B110.1
C4—C5—C6120.2 (3)C21—C20—H20B110.1
C4—C5—H5119.9H20A—C20—H20B108.4
C6—C5—H5119.9C20—C21—H21A109.5
C1—C6—C5118.6 (3)C20—C21—H21B109.5
C1—C6—H6120.7H21A—C21—H21B109.5
C5—C6—H6120.7C20—C21—H21C109.5
C8—C7—C12122.0 (2)H21A—C21—H21C109.5
C8—C7—N1129.6 (3)H21B—C21—H21C109.5
C12—C7—N1108.4 (2)C23—C22—C27119.0 (3)
C9—C8—C7116.7 (3)C23—C22—C16119.6 (3)
C9—C8—H8121.6C27—C22—C16121.4 (3)
C7—C8—H8121.6C22—C23—C24119.9 (5)
C8—C9—C10122.2 (3)C22—C23—H23120.1
C8—C9—H9118.9C24—C23—H23120.1
C10—C9—H9118.9C25—C24—C23120.9 (6)
C11—C10—C9120.7 (3)C25—C24—H24119.5
C11—C10—H10119.6C23—C24—H24119.5
C9—C10—H10119.6C24—C25—C26119.7 (5)
C10—C11—C12118.3 (3)C24—C25—H25120.1
C10—C11—H11120.8C26—C25—H25120.1
C12—C11—H11120.8C25—C26—C27121.1 (6)
C7—C12—C11120.0 (2)C25—C26—H26119.4
C7—C12—C13108.0 (2)C27—C26—H26119.4
C11—C12—C13132.0 (3)C22—C27—C26119.4 (4)
C14—C13—C18119.3 (2)C22—C27—H27120.3
C14—C13—C12132.9 (2)C26—C27—H27120.3
C18—C13—C12107.7 (2)C18—N1—C7106.97 (19)
C13—C14—C15120.2 (2)C18—N1—S1122.35 (16)
C13—C14—H14119.9C7—N1—S1123.77 (16)
C15—C14—H14119.9C19—O4—C20117.6 (3)
C14—C15—C16120.2 (2)O1—S1—O2120.49 (12)
C14—C15—C19116.0 (2)O1—S1—N1106.47 (11)
C16—C15—C19123.7 (2)O2—S1—N1106.51 (10)
C17—C16—C15119.5 (2)O1—S1—C1109.47 (12)
C17—C16—C22117.2 (2)O2—S1—C1108.49 (12)
C15—C16—C22123.2 (2)N1—S1—C1104.18 (10)
C18—C17—C16119.3 (2)
C6—C1—C2—C30.7 (4)C14—C15—C19—O331.9 (4)
S1—C1—C2—C3177.4 (2)C16—C15—C19—O3152.3 (3)
C1—C2—C3—C40.2 (4)C14—C15—C19—O4144.6 (2)
C2—C3—C4—C50.4 (5)C16—C15—C19—O431.2 (3)
C3—C4—C5—C60.6 (5)C17—C16—C22—C2354.3 (4)
C2—C1—C6—C50.6 (4)C15—C16—C22—C23129.2 (3)
S1—C1—C6—C5177.5 (2)C17—C16—C22—C27122.7 (3)
C4—C5—C6—C10.1 (4)C15—C16—C22—C2753.8 (4)
C12—C7—C8—C91.0 (4)C27—C22—C23—C240.5 (5)
N1—C7—C8—C9178.3 (2)C16—C22—C23—C24177.6 (3)
C7—C8—C9—C100.8 (4)C22—C23—C24—C251.0 (7)
C8—C9—C10—C110.2 (4)C23—C24—C25—C262.3 (9)
C9—C10—C11—C120.3 (4)C24—C25—C26—C272.1 (9)
C8—C7—C12—C110.5 (4)C23—C22—C27—C260.8 (5)
N1—C7—C12—C11178.4 (2)C16—C22—C27—C26177.8 (3)
C8—C7—C12—C13179.2 (2)C25—C26—C27—C220.5 (7)
N1—C7—C12—C131.3 (2)C17—C18—N1—C7179.8 (2)
C10—C11—C12—C70.1 (4)C13—C18—N1—C72.9 (2)
C10—C11—C12—C13179.7 (2)C17—C18—N1—S128.0 (3)
C7—C12—C13—C14179.2 (2)C13—C18—N1—S1154.65 (16)
C11—C12—C13—C141.2 (4)C8—C7—N1—C18179.8 (2)
C7—C12—C13—C180.5 (3)C12—C7—N1—C182.6 (2)
C11—C12—C13—C18179.9 (2)C8—C7—N1—S128.5 (3)
C18—C13—C14—C151.3 (3)C12—C7—N1—S1153.85 (16)
C12—C13—C14—C15177.3 (2)O3—C19—O4—C206.6 (4)
C13—C14—C15—C162.9 (3)C15—C19—O4—C20176.9 (3)
C13—C14—C15—C19173.1 (2)C21—C20—O4—C19172.3 (3)
C14—C15—C16—C171.8 (3)C18—N1—S1—O1174.87 (17)
C19—C15—C16—C17173.8 (2)C7—N1—S1—O138.1 (2)
C14—C15—C16—C22174.6 (2)C18—N1—S1—O245.1 (2)
C19—C15—C16—C229.7 (4)C7—N1—S1—O2167.82 (18)
C15—C16—C17—C180.8 (3)C18—N1—S1—C169.47 (19)
C22—C16—C17—C18177.5 (2)C7—N1—S1—C177.6 (2)
C16—C17—C18—C132.4 (3)C6—C1—S1—O1152.0 (2)
C16—C17—C18—N1179.5 (2)C2—C1—S1—O129.9 (2)
C14—C13—C18—C171.4 (3)C6—C1—S1—O218.7 (2)
C12—C13—C18—C17179.7 (2)C2—C1—S1—O2163.2 (2)
C14—C13—C18—N1179.00 (19)C6—C1—S1—N194.5 (2)
C12—C13—C18—N12.1 (2)C2—C1—S1—N183.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.932.533.439 (5)166
C11—H11···Cg2ii0.932.833.752 (3)172
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25···O2i0.932.533.439 (5)166
C11—H11···Cg2ii0.932.833.752 (3)172
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o725-o726
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds