organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o756-o757

Crystal structure of N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 September 2015; accepted 9 September 2015; online 17 September 2015)

In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds and an aromatic ππ stacking [centroid-to-centroid distance = 3.503 (2) Å] inter­action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol­ecules into [010] chains. The chains are cross-linked by weak C—H⋯π inter­actions, forming a three-dimensional network.

1. Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Andreev et al. (2015[Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250-258.]); Kolocouris et al. (1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]). For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17BrN2O4S2

  • Mr = 505.40

  • Monoclinic, P 21 /c

  • a = 7.5129 (6) Å

  • b = 17.4245 (14) Å

  • c = 16.0988 (14) Å

  • β = 98.087 (3)°

  • V = 2086.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.22 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.578, Tmax = 0.643

  • 23680 measured reflections

  • 3808 independent reflections

  • 2942 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.02

  • 3808 reflections

  • 275 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.87 (1) 2.17 (3) 2.795 (3) 128 (3)
C13—H13⋯O2 0.93 2.38 2.954 (4) 120
C21—H21⋯Cg2i 0.93 2.81 3.667 (3) 155
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole derivatives are known to exhibit activities such as antitumour (Andreani et al., 2001); anti-hepatitis C virus (Andreev et al., 2015) and antiviral (Kolocouris et al., 1994). We herein report the crystal structure of (I). The ORTEP diagram of the title compound (I) is shown in Fig. 1. The geometric parameters of (I) are comparable with the reported similar structures (Chakkaravarthi et al. 2007, 2008). The phenyl rings (C1—C6) and (C16—C21) form the dihedral angles of 85.96 (13)° and 9.62 (16)°, respectively with the indole ring system. The phenyl rings (C1—C6) and (C16—C21) are orthogonal to each other, with the dihedral angle of 88.05 (17)°.

The molecular structure (Fig. 1) is stabilized by weak intramolecular N—H···O, C—H···O and C—H···Br hydrogen bonds (Table 1) and ππ [centroid-to-centroid distance = 3.503 (2) Å] interaction. In the crystal structure, the intermolecular weak Br···O [Br1···O2i and O2··· Br1ii contacts at 2.99 Å; (i) (1 - x,-1/2 + y,1/2 - z); (ii) 1 - x,1/2 + y,1/2 - z)] contacts form the molecules into infinite one-dimensional chain along [0 1 0] and these chains are further influenced by weak C—H···π interactions (Table 1) to form a three dimensional network.

Related literature top

For the biological activity of indole derivatives, see: Andreani et al. (2001); Andreev et al. (2015); Kolocouris et al. (1994). For related structures, see: Chakkaravarthi et al. (2007, 2008).

Experimental top

To a solution of 3-bromo-2-(bromomethyl)-1-(phenylsulfonyl)-1H-indole (0.5 g, 1.16 mmol) in acetonitrile (10 ml) was added K2CO3 (0.32 g, 2.33 mmol) and benzenesulphonamide (0.23 g, 1.51 mmol). The reaction mixture was then stirred at reflux for 12 h. After completion of the reaction (monitored by TLC), it was cooled to room temperature and reaction mass was poured over crushed ice (30 g). The solid obtained was filtered and dried. The crude product was recrystallized from methanol to afford the title compound as colourless blocks.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2. H atom for N atom is fixed from Fourier map and refined freely with distance restraint of 0.88 (1) Å. The reflection (0 1 1) is omitted during refinement which is owing poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
N-{[3-Bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide top
Crystal data top
C21H17BrN2O4S2F(000) = 1024
Mr = 505.40Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7461 reflections
a = 7.5129 (6) Åθ = 2.3–24.4°
b = 17.4245 (14) ŵ = 2.20 mm1
c = 16.0988 (14) ÅT = 295 K
β = 98.087 (3)°Block, colourless
V = 2086.5 (3) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3808 independent reflections
Radiation source: fine-focus sealed tube2942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and φ scanθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.578, Tmax = 0.643k = 2020
23680 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.055P)2 + 0.8751P]
where P = (Fo2 + 2Fc2)/3
3808 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.60 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C21H17BrN2O4S2V = 2086.5 (3) Å3
Mr = 505.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5129 (6) ŵ = 2.20 mm1
b = 17.4245 (14) ÅT = 295 K
c = 16.0988 (14) Å0.28 × 0.24 × 0.22 mm
β = 98.087 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2942 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.643Rint = 0.042
23680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.60 e Å3
3808 reflectionsΔρmin = 0.40 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2432 (4)0.19281 (14)0.09825 (16)0.0381 (6)
C20.1728 (4)0.25496 (16)0.13721 (19)0.0481 (7)
H20.24370.28270.17880.058*
C30.0038 (4)0.27433 (19)0.1127 (2)0.0594 (8)
H30.05430.31510.13840.071*
C40.1065 (4)0.2335 (2)0.0501 (2)0.0611 (9)
H40.22550.24760.03320.073*
C50.0355 (4)0.1724 (2)0.0126 (2)0.0601 (8)
H50.10650.14500.02930.072*
C60.1410 (4)0.15136 (17)0.03663 (18)0.0498 (7)
H60.19000.10980.01150.060*
C70.4610 (4)0.02955 (14)0.20280 (17)0.0396 (6)
C80.4202 (4)0.00661 (15)0.27698 (19)0.0460 (7)
C90.4154 (4)0.07015 (17)0.33242 (18)0.0453 (7)
C100.3906 (5)0.0770 (2)0.4160 (2)0.0625 (9)
H100.36820.03400.44710.075*
C110.4000 (5)0.1484 (3)0.4513 (2)0.0736 (11)
H110.38290.15400.50710.088*
C120.4344 (5)0.2125 (2)0.4059 (2)0.0692 (10)
H120.43760.26050.43140.083*
C130.4638 (4)0.20715 (18)0.32402 (18)0.0544 (8)
H130.48910.25030.29380.065*
C140.4545 (4)0.13474 (16)0.28803 (16)0.0408 (6)
C150.5031 (4)0.01861 (16)0.13068 (18)0.0494 (7)
H15A0.47990.07190.14300.059*
H15B0.42060.00450.08120.059*
N20.6852 (4)0.01280 (14)0.11069 (15)0.0499 (6)
C160.8919 (4)0.02153 (17)0.26010 (18)0.0480 (7)
C170.8597 (5)0.0015 (2)0.3376 (2)0.0676 (9)
H170.82400.05150.34680.081*
C180.8818 (6)0.0519 (4)0.4024 (2)0.0907 (15)
H180.86110.03780.45590.109*
C190.9337 (6)0.1249 (3)0.3874 (3)0.0932 (15)
H190.94730.16040.43100.112*
C200.9656 (6)0.1467 (2)0.3107 (3)0.0802 (11)
H201.00230.19660.30170.096*
C210.9440 (5)0.09537 (18)0.2461 (2)0.0615 (9)
H210.96450.11030.19280.074*
N10.4842 (3)0.11047 (11)0.20700 (13)0.0390 (5)
O10.5276 (3)0.12773 (11)0.05899 (11)0.0453 (5)
O20.5650 (3)0.23686 (10)0.15614 (13)0.0495 (5)
O31.0073 (3)0.03343 (15)0.12907 (15)0.0726 (7)
O40.8142 (4)0.11538 (13)0.20432 (18)0.0801 (8)
S10.47029 (9)0.16993 (3)0.12591 (4)0.03756 (17)
S20.85938 (11)0.04228 (4)0.17424 (5)0.0547 (2)
Br10.39126 (5)0.095232 (19)0.30887 (3)0.07287 (16)
H2A0.709 (4)0.0315 (11)0.0891 (19)0.063 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (15)0.0309 (13)0.0358 (14)0.0022 (11)0.0105 (12)0.0067 (11)
C20.0550 (18)0.0405 (15)0.0503 (17)0.0039 (13)0.0131 (14)0.0015 (13)
C30.060 (2)0.0540 (19)0.068 (2)0.0136 (15)0.0194 (17)0.0043 (16)
C40.0473 (18)0.074 (2)0.063 (2)0.0076 (16)0.0136 (16)0.0215 (18)
C50.057 (2)0.070 (2)0.0511 (19)0.0028 (16)0.0004 (15)0.0005 (16)
C60.0585 (18)0.0481 (16)0.0429 (16)0.0051 (14)0.0071 (14)0.0033 (13)
C70.0458 (15)0.0278 (13)0.0426 (16)0.0014 (11)0.0027 (12)0.0019 (11)
C80.0471 (16)0.0343 (14)0.0553 (18)0.0013 (12)0.0029 (13)0.0114 (13)
C90.0449 (16)0.0508 (16)0.0395 (16)0.0082 (13)0.0032 (12)0.0066 (13)
C100.060 (2)0.083 (2)0.0459 (19)0.0155 (18)0.0124 (15)0.0165 (17)
C110.082 (3)0.103 (3)0.0357 (18)0.020 (2)0.0081 (17)0.011 (2)
C120.084 (2)0.075 (2)0.047 (2)0.0125 (19)0.0021 (17)0.0225 (18)
C130.071 (2)0.0479 (17)0.0427 (17)0.0051 (15)0.0013 (14)0.0102 (14)
C140.0477 (15)0.0429 (15)0.0305 (14)0.0059 (12)0.0016 (12)0.0033 (12)
C150.066 (2)0.0318 (14)0.0467 (17)0.0015 (13)0.0036 (14)0.0077 (12)
N20.0670 (17)0.0384 (13)0.0434 (14)0.0101 (12)0.0046 (12)0.0085 (11)
C160.0510 (17)0.0538 (17)0.0376 (16)0.0071 (14)0.0004 (13)0.0008 (13)
C170.064 (2)0.087 (3)0.050 (2)0.0044 (19)0.0009 (16)0.0105 (19)
C180.070 (3)0.165 (5)0.036 (2)0.011 (3)0.0040 (17)0.011 (3)
C190.069 (3)0.130 (4)0.076 (3)0.009 (3)0.004 (2)0.053 (3)
C200.082 (3)0.079 (3)0.077 (3)0.003 (2)0.002 (2)0.030 (2)
C210.073 (2)0.057 (2)0.054 (2)0.0000 (16)0.0075 (17)0.0085 (16)
N10.0539 (14)0.0284 (11)0.0333 (12)0.0019 (9)0.0017 (10)0.0019 (9)
O10.0563 (12)0.0433 (10)0.0378 (11)0.0081 (9)0.0116 (9)0.0007 (8)
O20.0572 (12)0.0313 (9)0.0611 (13)0.0067 (8)0.0115 (10)0.0007 (9)
O30.0705 (15)0.0824 (17)0.0664 (15)0.0217 (13)0.0144 (12)0.0178 (13)
O40.103 (2)0.0382 (12)0.0928 (19)0.0131 (12)0.0088 (15)0.0084 (12)
S10.0483 (4)0.0282 (3)0.0369 (4)0.0012 (3)0.0085 (3)0.0019 (3)
S20.0689 (5)0.0416 (4)0.0516 (5)0.0154 (4)0.0018 (4)0.0060 (3)
Br10.0843 (3)0.0436 (2)0.0925 (3)0.00243 (16)0.0188 (2)0.02590 (17)
Geometric parameters (Å, º) top
C1—C61.371 (4)C13—C141.386 (4)
C1—C21.393 (4)C13—H130.9300
C1—S11.748 (3)C14—N11.418 (3)
C2—C31.372 (4)C15—N21.453 (4)
C2—H20.9300C15—H15A0.9700
C3—C41.377 (5)C15—H15B0.9700
C3—H30.9300N2—S21.627 (3)
C4—C51.369 (5)N2—H2A0.874 (10)
C4—H40.9300C16—C171.364 (5)
C5—C61.378 (4)C16—C211.373 (4)
C5—H50.9300C16—S21.764 (3)
C6—H60.9300C17—C181.391 (6)
C7—C81.336 (4)C17—H170.9300
C7—N11.421 (3)C18—C191.361 (7)
C7—C151.502 (4)C18—H180.9300
C8—C91.426 (4)C19—C201.346 (7)
C8—Br11.868 (3)C19—H190.9300
C9—C141.387 (4)C20—C211.363 (5)
C9—C101.388 (4)C20—H200.9300
C10—C111.367 (5)C21—H210.9300
C10—H100.9300N1—S11.659 (2)
C11—C121.380 (5)O1—S11.4203 (19)
C11—H110.9300O2—S11.416 (2)
C12—C131.370 (4)O3—S21.419 (3)
C12—H120.9300O4—S21.421 (3)
C6—C1—C2121.7 (3)N2—C15—C7116.1 (2)
C6—C1—S1119.4 (2)N2—C15—H15A108.3
C2—C1—S1118.8 (2)C7—C15—H15A108.3
C3—C2—C1118.4 (3)N2—C15—H15B108.3
C3—C2—H2120.8C7—C15—H15B108.3
C1—C2—H2120.8H15A—C15—H15B107.4
C2—C3—C4120.2 (3)C15—N2—S2122.6 (2)
C2—C3—H3119.9C15—N2—H2A113 (2)
C4—C3—H3119.9S2—N2—H2A110 (2)
C5—C4—C3120.7 (3)C17—C16—C21121.1 (3)
C5—C4—H4119.6C17—C16—S2120.6 (3)
C3—C4—H4119.6C21—C16—S2118.3 (2)
C4—C5—C6120.2 (3)C16—C17—C18118.1 (4)
C4—C5—H5119.9C16—C17—H17121.0
C6—C5—H5119.9C18—C17—H17121.0
C1—C6—C5118.8 (3)C19—C18—C17120.0 (4)
C1—C6—H6120.6C19—C18—H18120.0
C5—C6—H6120.6C17—C18—H18120.0
C8—C7—N1107.2 (2)C20—C19—C18121.2 (4)
C8—C7—C15128.6 (2)C20—C19—H19119.4
N1—C7—C15123.6 (2)C18—C19—H19119.4
C7—C8—C9110.9 (2)C19—C20—C21119.9 (4)
C7—C8—Br1125.5 (2)C19—C20—H20120.1
C9—C8—Br1123.5 (2)C21—C20—H20120.1
C14—C9—C10119.8 (3)C20—C21—C16119.7 (4)
C14—C9—C8106.4 (2)C20—C21—H21120.1
C10—C9—C8133.7 (3)C16—C21—H21120.1
C11—C10—C9118.4 (3)C14—N1—C7107.8 (2)
C11—C10—H10120.8C14—N1—S1122.48 (17)
C9—C10—H10120.8C7—N1—S1126.06 (17)
C10—C11—C12121.3 (3)O2—S1—O1119.71 (12)
C10—C11—H11119.4O2—S1—N1105.73 (12)
C12—C11—H11119.4O1—S1—N1106.35 (11)
C13—C12—C11121.5 (3)O2—S1—C1108.96 (12)
C13—C12—H12119.3O1—S1—C1108.32 (12)
C11—C12—H12119.3N1—S1—C1107.10 (12)
C12—C13—C14117.3 (3)O3—S2—O4120.92 (16)
C12—C13—H13121.3O3—S2—N2105.18 (15)
C14—C13—H13121.3O4—S2—N2106.73 (15)
C13—C14—C9121.7 (3)O3—S2—C16107.51 (15)
C13—C14—N1130.6 (3)O4—S2—C16108.14 (16)
C9—C14—N1107.7 (2)N2—S2—C16107.71 (13)
C6—C1—C2—C30.2 (4)C18—C19—C20—C210.8 (7)
S1—C1—C2—C3177.5 (2)C19—C20—C21—C160.8 (6)
C1—C2—C3—C41.0 (5)C17—C16—C21—C200.5 (5)
C2—C3—C4—C51.2 (5)S2—C16—C21—C20178.2 (3)
C3—C4—C5—C60.5 (5)C13—C14—N1—C7178.7 (3)
C2—C1—C6—C50.4 (4)C9—C14—N1—C70.4 (3)
S1—C1—C6—C5176.9 (2)C13—C14—N1—S121.7 (4)
C4—C5—C6—C10.3 (5)C9—C14—N1—S1159.99 (19)
N1—C7—C8—C90.2 (3)C8—C7—N1—C140.1 (3)
C15—C7—C8—C9171.5 (3)C15—C7—N1—C14172.3 (2)
N1—C7—C8—Br1175.46 (19)C8—C7—N1—S1158.8 (2)
C15—C7—C8—Br13.8 (4)C15—C7—N1—S129.0 (4)
C7—C8—C9—C140.5 (3)C14—N1—S1—O245.3 (2)
Br1—C8—C9—C14175.8 (2)C7—N1—S1—O2158.9 (2)
C7—C8—C9—C10175.7 (3)C14—N1—S1—O1173.6 (2)
Br1—C8—C9—C100.3 (5)C7—N1—S1—O130.7 (3)
C14—C9—C10—C112.1 (5)C14—N1—S1—C170.8 (2)
C8—C9—C10—C11177.8 (3)C7—N1—S1—C185.0 (2)
C9—C10—C11—C120.4 (5)C6—C1—S1—O2151.8 (2)
C10—C11—C12—C131.2 (6)C2—C1—S1—O225.6 (2)
C11—C12—C13—C141.2 (5)C6—C1—S1—O120.0 (3)
C12—C13—C14—C90.6 (4)C2—C1—S1—O1157.4 (2)
C12—C13—C14—N1177.5 (3)C6—C1—S1—N194.3 (2)
C10—C9—C14—C132.2 (4)C2—C1—S1—N188.3 (2)
C8—C9—C14—C13179.0 (3)C15—N2—S2—O3174.6 (2)
C10—C9—C14—N1176.3 (3)C15—N2—S2—O445.0 (3)
C8—C9—C14—N10.5 (3)C15—N2—S2—C1670.9 (2)
C8—C7—C15—N2114.1 (3)C17—C16—S2—O3136.9 (3)
N1—C7—C15—N256.3 (4)C21—C16—S2—O345.3 (3)
C7—C15—N2—S266.0 (3)C17—C16—S2—O44.8 (3)
C21—C16—C17—C180.2 (5)C21—C16—S2—O4177.4 (3)
S2—C16—C17—C18177.9 (3)C17—C16—S2—N2110.2 (3)
C16—C17—C18—C190.2 (6)C21—C16—S2—N267.5 (3)
C17—C18—C19—C200.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.87 (1)2.17 (3)2.795 (3)128 (3)
C13—H13···O20.932.382.954 (4)120
C21—H21···Cg2i0.932.813.667 (3)155
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.874 (10)2.17 (3)2.795 (3)128 (3)
C13—H13···O20.932.382.954 (4)120
C21—H21···Cg2i0.932.813.667 (3)155
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationAndreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250–258.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o756-o757
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds