organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of flumioxazin

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 September 2015; accepted 15 September 2015; online 17 September 2015)

The title compound {systematic name: 2-[7-fluoro-3,4-di­hydro-3-oxo-4-(prop-2-yn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetra­hydro-1H-iso­indole-1,3(2H)-dione}, C19H15FN2O4, is a dicarboximide herbicide. The dihedral angle between the male­imide and benzene ring planes is 66.13 (5)°. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds and weak C—H⋯π inter­actions [3.5601 (19) Å] link adjacent mol­ecules, forming two-dimensional networks extending parallel to the (110) plane.

1. Related literature

For information on the herbicidal properties of the title compound, see: Saladin et al. (2003[Saladin, G., Magné, C. & Clément, C. (2003). Chemosphere, 53, 199-206.]); Geoffroy et al. (2004[Geoffroy, L., Frankart, C. & Eullaffroy, P. (2004). Environ. Pollut. 131, 233-241.]). For a related crystal structure, see: Hou et al. (2004[Hou, Z.-K., Ren, Y.-G., Huang, M.-Z., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1336-o1337.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H15FN2O4

  • Mr = 354.33

  • Monoclinic, P 21 /c

  • a = 8.896 (1) Å

  • b = 7.1592 (8) Å

  • c = 25.708 (3) Å

  • β = 96.039 (6)°

  • V = 1628.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.50 × 0.26 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.575, Tmax = 0.746

  • 27372 measured reflections

  • 4067 independent reflections

  • 3277 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.07

  • 4067 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3/C4/C8–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.95 2.39 3.178 (2) 140
C19—H19B⋯F1ii 0.99 2.36 3.289 (2) 155
C16—H16ACg1iii 0.99 2.63 3.5601 (19) 157
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Flumioxazin [systematic name: 2-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propyn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione] is a soil applied pre-emergent herbicide used to inhibit development of redroot pigweed. (Geoffroy et al., 2004; Saladin et al., 2003). However, its crystal structure has not been reported until now. In the title compound (Fig. 1), the dihedral angle between pyrrole and benzne rings is 66.13 (5)°. All bond lengths and bond angles are normal and comparable to those observed in a similar crystal structure (Hou et al., 2004).

In the crystal structure (Fig. 2), C—H···O and C—H···F hydrogen bonds and weak C–H···π interactions are observed (Table 1). Two-dimensional networks are formed by the hydrogen bonds and weak C–H···π interactions.

Related literature top

For information on the herbicidal properties of the title compound, see: Saladin et al. (2003); Geoffroy et al. (2004). For a related crystal structure, see: Hou et al. (2004).

Experimental top

The title compound was purchased from the Dr Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH3CN gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for CH2 group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H aromatic C—H and Csp—H.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the c axis. The intermolecular interactions are shown as dashed lines.
2-[7-Fluoro-3,4-dihydro-3-oxo-4-(prop-2-yn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione top
Crystal data top
C19H15FN2O4F(000) = 736
Mr = 354.33Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.896 (1) ÅCell parameters from 8497 reflections
b = 7.1592 (8) Åθ = 2.7–28.2°
c = 25.708 (3) ŵ = 0.11 mm1
β = 96.039 (6)°T = 173 K
V = 1628.2 (3) Å3Plate, colourless
Z = 40.50 × 0.26 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3277 reflections with I > 2σ(I)
φ and ω scansRint = 0.067
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.4°, θmin = 1.6°
Tmin = 0.575, Tmax = 0.746h = 1111
27372 measured reflectionsk = 99
4067 independent reflectionsl = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.9028P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4067 reflectionsΔρmax = 0.32 e Å3
235 parametersΔρmin = 0.27 e Å3
Crystal data top
C19H15FN2O4V = 1628.2 (3) Å3
Mr = 354.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.896 (1) ŵ = 0.11 mm1
b = 7.1592 (8) ÅT = 173 K
c = 25.708 (3) Å0.50 × 0.26 × 0.05 mm
β = 96.039 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3277 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.746Rint = 0.067
27372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
4067 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.77768 (12)0.66568 (18)0.33755 (5)0.0431 (3)
O11.40190 (15)0.41585 (19)0.54636 (5)0.0359 (3)
O21.12467 (13)0.73087 (17)0.48786 (4)0.0273 (3)
O30.94166 (16)0.4892 (2)0.25135 (5)0.0459 (4)
O40.74322 (15)0.08897 (18)0.36415 (5)0.0331 (3)
N11.22083 (15)0.3652 (2)0.47885 (5)0.0235 (3)
N20.86942 (16)0.3094 (2)0.31951 (5)0.0276 (3)
C11.30559 (18)0.4767 (3)0.51371 (6)0.0265 (4)
C21.27631 (19)0.6824 (3)0.50845 (7)0.0291 (4)
H2A1.29830.74100.54330.035*
H2B1.34740.73600.48530.035*
C31.06753 (17)0.6259 (2)0.44577 (6)0.0226 (3)
C41.11458 (17)0.4423 (2)0.43988 (6)0.0217 (3)
C51.2461 (2)0.1636 (2)0.48166 (6)0.0272 (4)
H5A1.14810.09870.47390.033*
H5B1.28720.13000.51770.033*
C61.3508 (2)0.0983 (2)0.44508 (7)0.0284 (4)
C71.4371 (2)0.0447 (3)0.41648 (7)0.0357 (4)
H71.50640.00150.39350.043*
C80.95463 (18)0.7036 (3)0.41121 (6)0.0266 (4)
H80.92250.82880.41540.032*
C90.89012 (18)0.5945 (3)0.37066 (7)0.0284 (4)
C100.93760 (18)0.4142 (3)0.36273 (6)0.0261 (4)
C111.05195 (18)0.3384 (2)0.39736 (6)0.0244 (3)
H111.08730.21540.39200.029*
C120.87139 (19)0.3604 (3)0.26659 (7)0.0298 (4)
C130.76914 (17)0.2264 (3)0.23609 (6)0.0252 (4)
C140.70932 (18)0.1121 (2)0.26880 (6)0.0246 (4)
C150.77039 (17)0.1593 (2)0.32346 (6)0.0235 (3)
C160.7429 (2)0.2189 (3)0.17802 (6)0.0338 (4)
H16A0.83550.17460.16370.041*
H16B0.71930.34570.16400.041*
C170.6125 (2)0.0878 (3)0.16111 (7)0.0430 (5)
H17A0.51580.15420.16340.052*
H17B0.61710.05190.12410.052*
C180.6158 (3)0.0865 (3)0.19432 (8)0.0468 (5)
H18A0.71130.15460.19120.056*
H18B0.53110.16900.18090.056*
C190.6033 (2)0.0436 (3)0.25236 (7)0.0361 (4)
H19A0.49840.00700.25730.043*
H19B0.62970.15590.27390.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0319 (6)0.0490 (7)0.0443 (6)0.0126 (5)0.0160 (5)0.0011 (5)
O10.0353 (7)0.0380 (8)0.0310 (6)0.0010 (6)0.0128 (5)0.0025 (6)
O20.0270 (6)0.0264 (6)0.0273 (6)0.0010 (5)0.0021 (5)0.0052 (5)
O30.0433 (8)0.0572 (10)0.0362 (7)0.0243 (7)0.0003 (6)0.0082 (7)
O40.0408 (7)0.0352 (7)0.0228 (6)0.0063 (6)0.0011 (5)0.0015 (5)
N10.0241 (7)0.0220 (7)0.0230 (6)0.0000 (6)0.0034 (5)0.0015 (5)
N20.0235 (7)0.0368 (8)0.0213 (6)0.0068 (6)0.0036 (5)0.0004 (6)
C10.0234 (8)0.0334 (9)0.0222 (7)0.0031 (7)0.0004 (6)0.0009 (7)
C20.0264 (8)0.0290 (9)0.0301 (8)0.0042 (7)0.0055 (7)0.0026 (7)
C30.0197 (7)0.0258 (8)0.0222 (7)0.0031 (6)0.0012 (6)0.0014 (6)
C40.0174 (7)0.0247 (8)0.0224 (7)0.0019 (6)0.0001 (6)0.0022 (6)
C50.0296 (8)0.0247 (9)0.0263 (8)0.0005 (7)0.0016 (6)0.0027 (7)
C60.0288 (8)0.0234 (9)0.0309 (8)0.0005 (7)0.0065 (7)0.0005 (7)
C70.0341 (10)0.0369 (11)0.0354 (9)0.0024 (8)0.0004 (8)0.0058 (8)
C80.0221 (8)0.0269 (9)0.0306 (8)0.0032 (7)0.0020 (6)0.0001 (7)
C90.0196 (8)0.0354 (10)0.0289 (8)0.0028 (7)0.0041 (6)0.0036 (7)
C100.0208 (8)0.0332 (9)0.0235 (7)0.0050 (7)0.0018 (6)0.0023 (7)
C110.0220 (8)0.0263 (8)0.0245 (7)0.0026 (7)0.0007 (6)0.0008 (7)
C120.0221 (8)0.0410 (10)0.0255 (8)0.0046 (8)0.0010 (6)0.0024 (7)
C130.0176 (7)0.0355 (9)0.0217 (7)0.0024 (7)0.0022 (6)0.0006 (7)
C140.0204 (7)0.0300 (9)0.0221 (7)0.0014 (7)0.0031 (6)0.0020 (6)
C150.0192 (7)0.0280 (8)0.0226 (7)0.0017 (6)0.0013 (6)0.0010 (6)
C160.0285 (9)0.0515 (12)0.0207 (8)0.0011 (8)0.0011 (6)0.0025 (8)
C170.0322 (10)0.0718 (15)0.0234 (8)0.0059 (10)0.0039 (7)0.0085 (9)
C180.0483 (12)0.0536 (14)0.0368 (10)0.0122 (10)0.0032 (9)0.0155 (10)
C190.0397 (10)0.0367 (11)0.0301 (9)0.0123 (9)0.0047 (7)0.0025 (8)
Geometric parameters (Å, º) top
F1—C91.3436 (19)C7—H70.9500
O1—C11.215 (2)C8—C91.378 (2)
O2—C31.3707 (19)C8—H80.9500
O2—C21.439 (2)C9—C101.380 (3)
O3—C121.203 (2)C10—C111.390 (2)
O4—C151.208 (2)C11—H110.9500
N1—C11.366 (2)C12—C131.487 (2)
N1—C41.4153 (19)C13—C141.325 (2)
N1—C51.461 (2)C13—C161.488 (2)
N2—C151.400 (2)C14—C151.491 (2)
N2—C121.410 (2)C14—C191.493 (2)
N2—C101.422 (2)C16—C171.520 (3)
C1—C21.499 (3)C16—H16A0.9900
C2—H2A0.9900C16—H16B0.9900
C2—H2B0.9900C17—C181.511 (3)
C3—C81.386 (2)C17—H17A0.9900
C3—C41.392 (2)C17—H17B0.9900
C4—C111.390 (2)C18—C191.539 (3)
C5—C61.468 (2)C18—H18A0.9900
C5—H5A0.9900C18—H18B0.9900
C5—H5B0.9900C19—H19A0.9900
C6—C71.182 (3)C19—H19B0.9900
C3—O2—C2114.43 (13)C4—C11—C10120.04 (16)
C1—N1—C4121.20 (14)C4—C11—H11120.0
C1—N1—C5118.24 (14)C10—C11—H11120.0
C4—N1—C5120.54 (13)O3—C12—N2124.88 (16)
C15—N2—C12109.88 (13)O3—C12—C13129.26 (16)
C15—N2—C10124.61 (14)N2—C12—C13105.84 (14)
C12—N2—C10124.73 (15)C14—C13—C12109.15 (14)
O1—C1—N1122.97 (17)C14—C13—C16125.71 (16)
O1—C1—C2121.16 (16)C12—C13—C16125.12 (16)
N1—C1—C2115.85 (14)C13—C14—C15109.11 (15)
O2—C2—C1114.67 (14)C13—C14—C19124.47 (15)
O2—C2—H2A108.6C15—C14—C19126.37 (15)
C1—C2—H2A108.6O4—C15—N2124.57 (15)
O2—C2—H2B108.6O4—C15—C14129.44 (16)
C1—C2—H2B108.6N2—C15—C14105.98 (13)
H2A—C2—H2B107.6C13—C16—C17110.12 (15)
O2—C3—C8117.99 (15)C13—C16—H16A109.6
O2—C3—C4120.85 (14)C17—C16—H16A109.6
C8—C3—C4121.02 (15)C13—C16—H16B109.6
C11—C4—C3119.39 (14)C17—C16—H16B109.6
C11—C4—N1122.06 (15)H16A—C16—H16B108.2
C3—C4—N1118.50 (14)C18—C17—C16112.33 (16)
N1—C5—C6112.80 (14)C18—C17—H17A109.1
N1—C5—H5A109.0C16—C17—H17A109.1
C6—C5—H5A109.0C18—C17—H17B109.1
N1—C5—H5B109.0C16—C17—H17B109.1
C6—C5—H5B109.0H17A—C17—H17B107.9
H5A—C5—H5B107.8C17—C18—C19112.57 (18)
C7—C6—C5178.63 (19)C17—C18—H18A109.1
C6—C7—H7180.0C19—C18—H18A109.1
C9—C8—C3118.25 (16)C17—C18—H18B109.1
C9—C8—H8120.9C19—C18—H18B109.1
C3—C8—H8120.9H18A—C18—H18B107.8
F1—C9—C8119.17 (16)C14—C19—C18108.39 (16)
F1—C9—C10118.68 (15)C14—C19—H19A110.0
C8—C9—C10122.15 (15)C18—C19—H19A110.0
C9—C10—C11119.04 (15)C14—C19—H19B110.0
C9—C10—N2119.79 (15)C18—C19—H19B110.0
C11—C10—N2121.17 (16)H19A—C19—H19B108.4
C4—N1—C1—O1177.07 (15)C3—C4—C11—C103.5 (2)
C5—N1—C1—O10.9 (2)N1—C4—C11—C10173.89 (14)
C4—N1—C1—C21.1 (2)C9—C10—C11—C41.4 (2)
C5—N1—C1—C2179.13 (15)N2—C10—C11—C4178.70 (15)
C3—O2—C2—C144.1 (2)C15—N2—C12—O3177.05 (18)
O1—C1—C2—O2152.56 (16)C10—N2—C12—O36.8 (3)
N1—C1—C2—O229.2 (2)C15—N2—C12—C131.89 (19)
C2—O2—C3—C8154.71 (15)C10—N2—C12—C13172.15 (15)
C2—O2—C3—C429.4 (2)O3—C12—C13—C14176.9 (2)
O2—C3—C4—C11178.59 (14)N2—C12—C13—C141.96 (19)
C8—C3—C4—C112.9 (2)O3—C12—C13—C165.0 (3)
O2—C3—C4—N11.1 (2)N2—C12—C13—C16176.16 (16)
C8—C3—C4—N1174.58 (14)C12—C13—C14—C151.26 (19)
C1—N1—C4—C11165.50 (15)C16—C13—C14—C15176.84 (16)
C5—N1—C4—C1112.5 (2)C12—C13—C14—C19178.74 (16)
C1—N1—C4—C317.1 (2)C16—C13—C14—C190.6 (3)
C5—N1—C4—C3164.92 (15)C12—N2—C15—O4178.20 (17)
C1—N1—C5—C695.61 (17)C10—N2—C15—O47.9 (3)
C4—N1—C5—C682.40 (19)C12—N2—C15—C141.17 (18)
O2—C3—C8—C9176.00 (15)C10—N2—C15—C14171.45 (15)
C4—C3—C8—C90.2 (2)C13—C14—C15—O4179.43 (18)
C3—C8—C9—F1178.24 (15)C19—C14—C15—O43.2 (3)
C3—C8—C9—C102.0 (3)C13—C14—C15—N20.10 (19)
F1—C9—C10—C11178.83 (15)C19—C14—C15—N2177.52 (16)
C8—C9—C10—C111.4 (3)C14—C13—C16—C1711.8 (3)
F1—C9—C10—N21.2 (2)C12—C13—C16—C17170.41 (17)
C8—C9—C10—N2178.51 (16)C13—C16—C17—C1840.6 (2)
C15—N2—C10—C9108.0 (2)C16—C17—C18—C1960.9 (2)
C12—N2—C10—C960.9 (2)C13—C14—C19—C1817.6 (3)
C15—N2—C10—C1172.1 (2)C15—C14—C19—C18159.46 (17)
C12—N2—C10—C11119.05 (19)C17—C18—C19—C1446.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3/C4/C8–C11 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.393.178 (2)140
C19—H19B···F1ii0.992.363.289 (2)155
C16—H16A···Cg1iii0.992.633.5601 (19)157
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3/C4/C8–C11 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.393.178 (2)140
C19—H19B···F1ii0.992.363.289 (2)155
C16—H16A···Cg1iii0.992.633.5601 (19)157
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeoffroy, L., Frankart, C. & Eullaffroy, P. (2004). Environ. Pollut. 131, 233–241.  CrossRef PubMed CAS Google Scholar
First citationHou, Z.-K., Ren, Y.-G., Huang, M.-Z., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1336–o1337.  CSD CrossRef IUCr Journals Google Scholar
First citationSaladin, G., Magné, C. & Clément, C. (2003). Chemosphere, 53, 199–206.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds