organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o799-o800

Redetermined structure of 4,4′-bi­pyridine–1,4-phenyl­enedi­acetic acid (1/1) co-crystal

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Pandu College, Guwahati-781 012, Assam, India
*Correspondence e-mail: sanchay.bora@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 September 2015; accepted 19 September 2015; online 26 September 2015)

The asymmetric unit of the title 1:1 co-crystal, C10H8N2·C10H10O4, consists of one half-mol­ecule each of 4,4′-bi­pyridine and 1,4-phenyl­enedi­acetic acid: the complete mol­ecules are generated by crystallographic inversion centres. The dihedral angle between the –CO2H group and the benzene ring in the diacid is 73.02 (7)°. In the crystal, the components are linked by O—H⋯N hydrogen bonds, generating [1-2-1] chains of alternating amine and carb­oxy­lic acid mol­ecules. The chains are cross-linked by C—H⋯O inter­actions. This structure was previously incorrectly described as a (C10H10N2)2+·(C10H8O4)2− mol­ecular salt [Jia et al. (2009[Jia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.]). Acta Cryst. E65, o2490–o2490].

1. Related literature

For the previous erroneous report of this structure as a mol­ecular salt, see: Jia et al. (2009[Jia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.]). For hydrogen-bonded co-crystals, see: Stahly (2009[Stahly, G. P. (2009). Cryst. Growth Des. 9, 4212-4229.]); Kavuru et al. (2010[Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł., Łukasz, & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.]). For pharmaceutical co-crystals, see: Childs et al. (2009[Childs, S. L. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 4208-4211.]); Walsh et al. (2003[Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.]). For a similar structure, see: Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H8N2·C10H10O4

  • Mr = 350.36

  • Triclinic, [P \overline 1]

  • a = 4.5577 (5) Å

  • b = 6.9806 (8) Å

  • c = 13.7995 (15) Å

  • α = 99.508 (6)°

  • β = 94.297 (6)°

  • γ = 97.643 (7)°

  • V = 427.05 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.17 × 0.13 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • 8581 measured reflections

  • 2405 independent reflections

  • 1876 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.123

  • S = 1.05

  • 2405 reflections

  • 155 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H9⋯N1i 1.02 (2) 1.62 (2) 2.6373 (13) 176 (2)
C7—H6⋯O2ii 0.954 (16) 2.504 (16) 3.4196 (16) 160.8 (11)
C9—H7⋯O2iii 1.00 (2) 2.45 (2) 3.4205 (18) 162.2 (16)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y, z+1; (iii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Co-crystals represent a class of materials which contain two or more discrete molecular entities held together via non-covalent or supra­molecular inter­actions in the crystal lattice (Stahly, 2009). Due to their robust and directional nature, hydrogen bonds are extensively used as a tool to shape the structure of co-crystals (Kavuru et al., 2010). In this context, hydrogen bonds of varying strengths may be employed, ranging from strong O—H···O/N to weak C—H···π inter­actions. The resulting crystal structures can generate diverse physical and chemical properties such as solubility and stability that differ from the properties of the individual components. Crystal engineering plays an important role in the formation of co-crystals of desired properties so that they can find their applications in pharmaceutical industries (Childs et al., 2009 and Walsh et al., 2003). Herein, we report the supra­molecular architecture of 1,4-phenyl­enedi­acetic acid and 4,4'-bi­pyridine co-crystal formed via O—H···N hydrogen bridges and C—H···π inter­actions.

The title compound can be prepared under hydro­thermal condition using a mixture of 1,4-phenyl­enedi­acetic acid and 4,4'-bi­pyridine (1:1) in water. The acetic acid moiety involving C1, C2, O1 and O2 in 1,4-phenyl­enedi­acetic acid molecule makes dihedral angles of 73.04 (4)° and 2.06 (1)° with the phenyl and pyridyl ring planes respectively. These values are very close to those reported by Chinnakali et al. (1999). The dihedral angle between phenyl and planar pyridyl rings of 4,4'-bi­pyridine is found to be 73.21 (4)°. In the crystal lattice, the molecules are linked with one another through O1—H9···N1 hydrogen bonds with O···N distance of 2.637 (1) Å that extends in one direction leading to a supra­molecular chain like structure. These zig-zag 1D chains are further connected via C—H···O bridges (C7—H6···O2 and C9—H7···O2 with C···O distances of 2.50 (1) Å and 2.45 (2) Å respectively) giving rise to a 2D layered structure in the solid state. In graph set notations (Bernstain et al., 1995), such 1D chains can be described as C22(20) where the subscripts and superscripts are the number of hydrogen bond donors and acceptors respectively. There are certain hydrogen bonded rings of descriptors R12(7), R44(16) and R44(30) which have periodic repetitions throughout the crystal lattice. The adjacent layers are stacked in nearly parallel fashion by means of weak C—H···π inter­actions (C···π distance = 3.838 Å) between the methyl­ene C—H and phenyl ring–π systems. These weak inter­molecular forces together with the strong hydrogen bonds form the overall 3D supra­molecular architecture.

?

Synthesis and crystallization top

A mixture of 1,4-phenyl­enedi­acetic acid (1 mmol, 0.194 g) and 4,4?-bi­pyridine (1 mmol, 0.156 g) in water (10 ml) were placed in a 23 ml Teflon lined stainless steel reaction vessel. It was then heated to 393K for 24 hours at a heating rate of 5K min-1. On overnight standing, re­cta­ngular block shaped colourless crystals were obtained. The crystals were then filtered off, washed with water and dried in a vacuum desiccator over fused CaCl2. Yield: 71%.

Refinement top

Structure determination work was done using the WinGX platform (Farrugia, 2012). All the hydrogen atoms were located in difference Fourier maps and refined with isotropic atomic displacement parameters. No restraints were applied for any other parameter during structure refinement.

Related literature top

For the previous erroneous report of this structure as a molecular salt, see: Jia et al. (2009). For hydrogen-bonded co-crystals, see: Stahly (2009); Kavuru et al. (2010). For pharmaceutical co-crystals, see: Childs et al. (2009); Walsh et al. (2003). For a similar structure, see: Chinnakali et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the O—H···N, C—H···O and C—H···π interactions observed in the crystal structure of the title compound.
4,4'-Bipyridine–1,4-phenylenediacetic acid (1/1) top
Crystal data top
C10H8N2·C10H10O4V = 427.05 (8) Å3
Mr = 350.36Z = 1
Triclinic, P1F(000) = 184
a = 4.5577 (5) ÅDx = 1.362 Mg m3
b = 6.9806 (8) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.7995 (15) ŵ = 0.10 mm1
α = 99.508 (6)°T = 296 K
β = 94.297 (6)°Rectangular block, colourless
γ = 97.643 (7)°0.20 × 0.17 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
1876 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 29.8°, θmin = 3.0°
phi and ω scansh = 66
8581 measured reflectionsk = 99
2405 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0515P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2405 reflectionsΔρmax = 0.19 e Å3
155 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (11)
Crystal data top
C10H8N2·C10H10O4γ = 97.643 (7)°
Mr = 350.36V = 427.05 (8) Å3
Triclinic, P1Z = 1
a = 4.5577 (5) ÅMo Kα radiation
b = 6.9806 (8) ŵ = 0.10 mm1
c = 13.7995 (15) ÅT = 296 K
α = 99.508 (6)°0.20 × 0.17 × 0.13 mm
β = 94.297 (6)°
Data collection top
Bruker SMART CCD
diffractometer
1876 reflections with I > 2σ(I)
8581 measured reflectionsRint = 0.028
2405 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.05Δρmax = 0.19 e Å3
2405 reflectionsΔρmin = 0.16 e Å3
155 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8197 (2)0.45294 (13)0.18830 (6)0.0541 (3)
C10.7209 (2)0.60720 (15)0.21279 (8)0.0408 (3)
C20.5619 (3)0.71533 (19)0.13310 (10)0.0490 (3)
C30.7850 (2)0.86342 (15)0.06291 (8)0.0400 (3)
C40.9459 (3)0.80852 (16)0.01476 (9)0.0454 (3)
C50.8422 (3)1.05717 (17)0.07687 (8)0.0446 (3)
O20.7616 (3)0.66207 (15)0.28973 (7)0.0675 (3)
N10.8832 (2)0.73182 (15)0.32203 (7)0.0476 (3)
C60.8316 (3)0.67172 (18)0.40629 (9)0.0517 (3)
C70.6844 (3)0.77149 (18)0.47798 (9)0.0487 (3)
C80.5796 (2)0.94340 (15)0.46266 (7)0.0376 (2)
C100.7840 (3)0.8964 (2)0.30711 (10)0.0566 (3)
C90.6326 (3)1.00451 (19)0.37423 (9)0.0532 (3)
H90.927 (5)0.382 (3)0.2421 (15)0.104 (7)*
H30.908 (3)0.676 (2)0.0263 (11)0.061 (4)*
H40.731 (3)1.100 (2)0.1302 (11)0.055 (4)*
H60.660 (3)0.722 (2)0.5378 (12)0.067 (4)*
H10.462 (4)0.621 (2)0.0977 (12)0.065 (4)*
H80.822 (4)0.935 (2)0.2459 (13)0.073 (5)*
H70.560 (4)1.122 (3)0.3533 (13)0.081 (5)*
H20.412 (4)0.787 (3)0.1669 (12)0.071 (5)*
H50.902 (4)0.551 (3)0.4159 (12)0.071 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0764 (6)0.0483 (5)0.0463 (5)0.0272 (4)0.0173 (4)0.0141 (4)
C10.0449 (6)0.0370 (5)0.0403 (5)0.0071 (4)0.0035 (4)0.0055 (4)
C20.0434 (6)0.0489 (6)0.0549 (7)0.0115 (5)0.0119 (5)0.0025 (5)
C30.0431 (5)0.0405 (5)0.0396 (5)0.0148 (4)0.0163 (4)0.0046 (4)
C40.0580 (7)0.0363 (5)0.0467 (6)0.0141 (5)0.0146 (5)0.0116 (4)
C50.0545 (7)0.0452 (6)0.0394 (5)0.0184 (5)0.0097 (5)0.0116 (4)
O20.1023 (8)0.0630 (6)0.0502 (5)0.0351 (6)0.0215 (5)0.0232 (4)
N10.0507 (6)0.0478 (5)0.0450 (5)0.0158 (4)0.0075 (4)0.0023 (4)
C60.0643 (8)0.0439 (6)0.0511 (7)0.0221 (6)0.0096 (6)0.0075 (5)
C70.0631 (7)0.0441 (6)0.0443 (6)0.0189 (5)0.0116 (5)0.0117 (5)
C80.0370 (5)0.0374 (5)0.0379 (5)0.0073 (4)0.0026 (4)0.0045 (4)
C100.0714 (9)0.0614 (8)0.0466 (7)0.0285 (6)0.0200 (6)0.0159 (6)
C90.0691 (8)0.0515 (7)0.0490 (6)0.0284 (6)0.0181 (6)0.0166 (5)
Geometric parameters (Å, º) top
O1—C11.3051 (13)C5—H40.972 (14)
O1—H91.02 (2)N1—C61.3264 (16)
C1—O21.2056 (14)N1—C101.3301 (16)
C1—C21.5147 (16)C6—C71.3820 (17)
C2—C31.5108 (17)C6—H50.964 (17)
C2—H10.970 (16)C7—C81.3906 (15)
C2—H21.027 (17)C7—H60.955 (16)
C3—C41.3877 (16)C8—C91.3850 (16)
C3—C51.3908 (15)C8—C8ii1.486 (2)
C4—C5i1.3844 (18)C10—C91.3810 (17)
C4—H30.961 (15)C10—H80.950 (18)
C5—C4i1.3844 (18)C9—H70.998 (19)
C1—O1—H9112.6 (12)C3—C5—H4120.1 (8)
O2—C1—O1123.26 (10)C6—N1—C10117.10 (10)
O2—C1—C2123.39 (11)N1—C6—C7123.47 (11)
O1—C1—C2113.30 (10)N1—C6—H5116.3 (10)
C3—C2—C1109.58 (9)C7—C6—H5120.2 (10)
C3—C2—H1110.0 (9)C6—C7—C8119.66 (11)
C1—C2—H1108.9 (10)C6—C7—H6119.0 (10)
C3—C2—H2109.4 (9)C8—C7—H6121.4 (10)
C1—C2—H2107.7 (9)C9—C8—C7116.53 (10)
H1—C2—H2111.2 (13)C9—C8—C8ii121.59 (12)
C4—C3—C5118.28 (11)C7—C8—C8ii121.88 (12)
C4—C3—C2121.06 (10)N1—C10—C9123.35 (12)
C5—C3—C2120.61 (10)N1—C10—H8115.3 (10)
C5i—C4—C3120.99 (10)C9—C10—H8121.3 (10)
C5i—C4—H3119.3 (9)C10—C9—C8119.89 (11)
C3—C4—H3119.7 (9)C10—C9—H7116.0 (11)
C4i—C5—C3120.73 (11)C8—C9—H7124.1 (11)
C4i—C5—H4119.2 (8)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···N1iii1.02 (2)1.62 (2)2.6373 (13)176 (2)
C7—H6···O2iv0.954 (16)2.504 (16)3.4196 (16)160.8 (11)
C9—H7···O2v1.00 (2)2.45 (2)3.4205 (18)162.2 (16)
Symmetry codes: (iii) x+2, y+1, z; (iv) x, y, z+1; (v) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···N1i1.02 (2)1.62 (2)2.6373 (13)176 (2)
C7—H6···O2ii0.954 (16)2.504 (16)3.4196 (16)160.8 (11)
C9—H7···O2iii1.00 (2)2.45 (2)3.4205 (18)162.2 (16)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z+1; (iii) x+1, y+2, z.
 

Acknowledgements

Financial support from the Department of Science & Technology, India (under FASTRACK Grant No. SB/FT/CS-047/2013) is gratefully acknowledged. The authors also thank the USIC, Gauhati University, Guwahati (India), for providing the X-ray diffraction data.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 4208–4211.  Web of Science CSD CrossRef CAS Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł., Łukasz, & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568–3584.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahly, G. P. (2009). Cryst. Growth Des. 9, 4212–4229.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o799-o800
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds