organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(E)-(2-carbamo­thio­ylhydrazinyl­­idene)meth­yl]benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and bDepartment of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 September 2015; accepted 20 September 2015; online 26 September 2015)

The title compound, C9H9N3O2S, is close to planar with an r.m.s. deviation of 0.032 Å. An intra­molecular N—H⋯N hydrogen bond closes an S(5) ring. In the crystal, mol­ecules are connected into inversion dimers of the R22(8) type by pairs of O—H⋯O inter­actions. The dimers are further connected by pairs of N—H⋯S inter­actions, which also complete R22(8) ring motifs. The chains of dimers are cross-linked by N—H⋯O bonds and hence R42(28) rings are completed. Taken together, these inter­actions lead to infinite sheets propagating in the (122) plane.

1. Related literature

For related structures, see: Carballo et al. (2014[Carballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.]); Wu et al., (2009[Wu, D.-H., Zhang, Y.-H., Li, Z.-F. & Li, Y.-H. (2009). Acta Cryst. E65, o107.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H9N3O2S

  • Mr = 223.25

  • Triclinic, [P \overline 1]

  • a = 4.7454 (5) Å

  • b = 8.5691 (10) Å

  • c = 13.3886 (15) Å

  • α = 81.386 (6)°

  • β = 82.878 (6)°

  • γ = 79.416 (6)°

  • V = 526.52 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.958

  • 5971 measured reflections

  • 2286 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.06

  • 2286 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1 0.86 (3) 2.28 (3) 2.600 (3) 102 (2)
O1—H1⋯O2i 0.82 1.84 2.653 (2) 170
N2—H2⋯S1ii 0.86 2.53 3.347 (2) 160
N3—H3A⋯O2iii 0.85 (1) 2.14 (2) 2.918 (3) 152 (3)
Symmetry codes: (i) -x-2, -y+1, -z+1; (ii) -x+2, -y, -z; (iii) x+2, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been synthesized for the complexation and other studies. The crystal structures of 2-(4-cyanobenzylidene)hydrazinecarbothioamide (Wu et al., 2009) and 2-(4-formylbenzylidene)hydrazinecarbothioamide (Carballo et al., 2014) have been published which are related to (I).

The heavy atoms of (I) i.e (C1–C9/N1/M2/M3/O1/O2/S1) are almost in a plane. The r. m. s. deviation from the mean square plane is 0.0312 Å. S (5) ring motif is present due to intramolecular H-interaction of N–H···N type (Table 1, Fig. 1). The molecules are dimerzed due to conventional O–H···O interaction with R22(8) rings (Table 1, Fig. 2). These dimmers are connected from opposite ends due to N–H···S interactions and also complete R22(8) ring motifs. R42(28) rings are completed (Table 1, Fig. 2), when we consider N–H···O and O–H···O contacts (Table 1, Fig. 2). The molecules are overall stabilized in the form of a two dimensional network with base vectors [4 - 1 -1] and [2 - 1 0] in the (1 2 2) plane.

Related literature top

For related structures, see: Carballo et al. (2014); Wu et al., (2009).

Experimental top

Equimolar quantities of 4-formylbenzoic acid and thiosemicarbazide were dissolved separately in methanol and then mixed. The mixture was refluxed for 3 h. The resulting solution was kept at room temperature for crystallization which afforded white needle after 48 h. m.p. 455 K

Refinement top

The coordinates of H-atoms of NH2 group were refined with constraints. The other H-atoms were positioned geometrically (C–H = 0.93 Å, N–H = 0.86 Å, O–H = 0.82 Å)and refined as riding with Uiso(H) = xUeq(C, N O), where x = 1.5 for hydroxy and NH2 groups and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicate the intramolecular H-interaction.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules are dimerized and form a two-dimensional network with various ring motifs.
4-[(E)-(2-Carbamothioylhydrazinylidene)methyl]benzoic acid top
Crystal data top
C9H9N3O2SZ = 2
Mr = 223.25F(000) = 232
Triclinic, P1Dx = 1.408 Mg m3
a = 4.7454 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5691 (10) ÅCell parameters from 1566 reflections
c = 13.3886 (15) Åθ = 1.6–27.0°
α = 81.386 (6)°µ = 0.29 mm1
β = 82.878 (6)°T = 296 K
γ = 79.416 (6)°Needle, colourless
V = 526.52 (10) Å30.40 × 0.22 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.70 pixels mm-1θmax = 27.0°, θmin = 1.6°
ω scansh = 56
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.895, Tmax = 0.958l = 1717
5971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.105P]
where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H9N3O2Sγ = 79.416 (6)°
Mr = 223.25V = 526.52 (10) Å3
Triclinic, P1Z = 2
a = 4.7454 (5) ÅMo Kα radiation
b = 8.5691 (10) ŵ = 0.29 mm1
c = 13.3886 (15) ÅT = 296 K
α = 81.386 (6)°0.40 × 0.22 × 0.16 mm
β = 82.878 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1566 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.958Rint = 0.030
5971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.55 e Å3
2286 reflectionsΔρmin = 0.23 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.16213 (14)0.24283 (8)0.07250 (5)0.0516 (3)
O10.7098 (4)0.3266 (3)0.50791 (14)0.0659 (6)
H10.83890.37910.54170.099*
O20.8294 (4)0.5276 (2)0.38826 (14)0.0598 (6)
N10.4804 (4)0.0209 (2)0.19255 (16)0.0417 (5)
N20.7068 (4)0.0327 (2)0.12477 (16)0.0426 (5)
H20.73070.01940.06510.051*
N30.8427 (6)0.2352 (3)0.24762 (19)0.0635 (7)
H3A0.951 (6)0.321 (3)0.270 (2)0.095*
H3B0.702 (5)0.199 (4)0.289 (2)0.095*
C10.6710 (5)0.4042 (3)0.41755 (19)0.0443 (6)
C20.4179 (5)0.3333 (3)0.35245 (19)0.0409 (6)
C30.3616 (5)0.4082 (3)0.2550 (2)0.0426 (6)
H30.48300.50050.23080.051*
C40.1243 (5)0.3456 (3)0.1935 (2)0.0434 (6)
H40.08580.39690.12820.052*
C50.0572 (4)0.2066 (3)0.22859 (19)0.0380 (6)
C60.0038 (5)0.1310 (3)0.3255 (2)0.0488 (7)
H60.11460.03720.34930.059*
C70.2402 (5)0.1942 (3)0.3875 (2)0.0495 (7)
H70.27950.14300.45270.059*
C80.3065 (5)0.1441 (3)0.16108 (19)0.0406 (6)
H80.33700.19490.09520.049*
C90.8922 (5)0.1683 (3)0.15277 (19)0.0415 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (4)0.0493 (4)0.0491 (4)0.0093 (3)0.0097 (3)0.0059 (3)
O10.0503 (11)0.0888 (16)0.0404 (11)0.0235 (10)0.0101 (8)0.0059 (11)
O20.0497 (11)0.0690 (13)0.0463 (11)0.0202 (10)0.0079 (8)0.0087 (10)
N10.0345 (10)0.0446 (12)0.0429 (12)0.0032 (9)0.0093 (9)0.0108 (10)
N20.0366 (10)0.0457 (12)0.0378 (12)0.0032 (9)0.0092 (8)0.0041 (9)
N30.0702 (17)0.0557 (16)0.0458 (15)0.0152 (12)0.0145 (12)0.0054 (12)
C10.0340 (13)0.0574 (17)0.0390 (15)0.0029 (12)0.0009 (10)0.0133 (13)
C20.0306 (12)0.0519 (15)0.0393 (14)0.0012 (10)0.0003 (10)0.0160 (12)
C30.0330 (12)0.0452 (14)0.0461 (15)0.0034 (10)0.0014 (10)0.0115 (12)
C40.0381 (13)0.0483 (15)0.0402 (14)0.0027 (11)0.0046 (10)0.0069 (12)
C50.0273 (11)0.0465 (14)0.0407 (14)0.0036 (10)0.0014 (9)0.0143 (11)
C60.0382 (13)0.0536 (16)0.0466 (16)0.0088 (11)0.0018 (11)0.0060 (13)
C70.0419 (14)0.0632 (18)0.0359 (14)0.0025 (12)0.0048 (11)0.0039 (13)
C80.0324 (12)0.0458 (14)0.0406 (14)0.0007 (10)0.0023 (10)0.0094 (12)
C90.0382 (13)0.0395 (14)0.0444 (15)0.0050 (10)0.0033 (10)0.0007 (12)
Geometric parameters (Å, º) top
S1—C91.664 (2)C2—C31.383 (4)
O1—C11.299 (3)C2—C71.383 (3)
O1—H10.8200C3—C41.383 (3)
O2—C11.222 (3)C3—H30.9300
N1—C81.268 (3)C4—C51.392 (3)
N1—N21.375 (3)C4—H40.9300
N2—C91.357 (3)C5—C61.383 (4)
N2—H20.8600C5—C81.466 (3)
N3—C91.325 (3)C6—C71.386 (3)
N3—H3A0.853 (10)C6—H60.9300
N3—H3B0.851 (10)C7—H70.9300
C1—C21.484 (3)C8—H80.9300
C1—O1—H1109.5C3—C4—H4119.7
C8—N1—N2116.9 (2)C5—C4—H4119.7
C9—N2—N1119.5 (2)C6—C5—C4119.1 (2)
C9—N2—H2120.3C6—C5—C8122.0 (2)
N1—N2—H2120.3C4—C5—C8118.8 (2)
C9—N3—H3A120 (2)C5—C6—C7120.4 (2)
C9—N3—H3B124 (2)C5—C6—H6119.8
H3A—N3—H3B116 (3)C7—C6—H6119.8
O2—C1—O1122.6 (2)C2—C7—C6120.1 (2)
O2—C1—C2122.2 (2)C2—C7—H7119.9
O1—C1—C2115.2 (2)C6—C7—H7119.9
C3—C2—C7119.9 (2)N1—C8—C5120.0 (2)
C3—C2—C1118.9 (2)N1—C8—H8120.0
C7—C2—C1121.2 (2)C5—C8—H8120.0
C4—C3—C2119.9 (2)N3—C9—N2115.3 (2)
C4—C3—H3120.0N3—C9—S1123.1 (2)
C2—C3—H3120.0N2—C9—S1121.62 (19)
C3—C4—C5120.5 (2)
C8—N1—N2—C9177.0 (2)C4—C5—C6—C70.9 (4)
O2—C1—C2—C30.8 (4)C8—C5—C6—C7179.5 (2)
O1—C1—C2—C3179.8 (2)C3—C2—C7—C60.9 (4)
O2—C1—C2—C7179.5 (3)C1—C2—C7—C6179.5 (2)
O1—C1—C2—C70.1 (4)C5—C6—C7—C20.3 (4)
C7—C2—C3—C41.3 (4)N2—N1—C8—C5179.0 (2)
C1—C2—C3—C4179.0 (2)C6—C5—C8—N12.9 (4)
C2—C3—C4—C50.7 (4)C4—C5—C8—N1177.6 (2)
C3—C4—C5—C60.5 (4)N1—N2—C9—N32.7 (4)
C3—C4—C5—C8180.0 (2)N1—N2—C9—S1177.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N10.86 (3)2.28 (3)2.600 (3)102 (2)
O1—H1···O2i0.821.842.653 (2)170
N2—H2···S1ii0.862.533.347 (2)160
N3—H3A···O2iii0.85 (1)2.14 (2)2.918 (3)152 (3)
Symmetry codes: (i) x2, y+1, z+1; (ii) x+2, y, z; (iii) x+2, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N10.86 (3)2.28 (3)2.600 (3)102 (2)
O1—H1···O2i0.821.842.653 (2)170
N2—H2···S1ii0.862.533.347 (2)160
N3—H3A···O2iii0.853 (10)2.136 (19)2.918 (3)152 (3)
Symmetry codes: (i) x2, y+1, z+1; (ii) x+2, y, z; (iii) x+2, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Pino-Cuevas, A. & Vázquez-López, E. M. (2014). Acta Cryst. E70, o970.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Zhang, Y.-H., Li, Z.-F. & Li, Y.-H. (2009). Acta Cryst. E65, o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds