organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-meth­­oxy-5-methyl-N-phenyl-1,2,3-triazole-4-carboxamide

CROSSMARK_Color_square_no_text.svg

aUral Federal University, Mira 19 Ekaterinburg 620002, Russian Federation, and bI. Postovsky Institute of Organic Synthesis, Kovalevskoy 22 Ekaterinburg 620090, Russian Federation
*Correspondence e-mail: i.s.khazhieva@urfu.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 September 2015; accepted 22 September 2015; online 26 September 2015)

The title compound, C11H12N4O2,was prepared via the transformation of sodium 4-acetyl-1-phenyl-1H-[1.2.3]triazolate under the action of meth­oxy­amine hydro­chloride. The dihedral angle between the triazole and phenyl rings is 25.12 (16)° and the C atom of the meth­oxy group deviates from the triazole plane by 0.894 (4)Å. The conformation of the CONHR-group is consolodated by an intra­molecular N—H⋯N hydrogen bond to an N-atom of the triazole ring, which closes an S(5) ring. In the crystal, weak N—H⋯N hydrogen bonds link the mol­ecules into C(6) [010] chains.

1. Related literature

For biological activities of 1.2.3-triazoles, see: Sathish Kumar & Kavitha (2013[Sathish Kumar, S. & Kavitha, H. P. (2013). Mini-Rev. Org. Chem. 10, 40-65.]); Khazhieva et al. (2015a[Khazhieva, I. S., Glukhareva, T. V. & Morzherin, Yu. Yu. (2015a). Chim. Tech. Acta, 2, 52-58.]). For the synthesis, see: Khazhieva et al. (2015b[Khazhieva, I. S., Glukhareva, T. V., El'tsov, O. S., Morzherin, Yu. Yu., Minin, A. A., Pozdina, V. A. & Ulitko, M. V. (2015b). Khim. Farm. Zh. 49, 12-15.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H12N4O2

  • Mr = 232.25

  • Monoclinic, P 21 /c

  • a = 11.4637 (8) Å

  • b = 6.4345 (13) Å

  • c = 15.822 (3) Å

  • β = 100.367 (12)°

  • V = 1148.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.21 × 0.16 × 0.09 mm

2.2. Data collection

  • Agilent Xcalibur S CCD diffractometer

  • 7259 measured reflections

  • 2302 independent reflections

  • 1077 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.00

  • 2302 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.86 (2) 2.33 (3) 2.780 (4) 113 (2)
N1—H1⋯N3i 0.86 (2) 2.41 (2) 3.184 (3) 150 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2006[Agilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The titled compound was prepared as previously reported (Khazhieva et al., 2015b). Crystals were obtained by slow evaporation of a solution in ethanol.

Related literature top

For biological activities of 1.2.3-triazoles, see: Sathish Kumar & Kavitha (2013); Khazhieva et al. (2015a). For the synthesis, see: Khazhieva et al. (2015b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO (Agilent, 2006); data reduction: CrysAlis PRO (Agilent, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: publCIF (Westrip, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.
1-Methoxy-5-methyl-N-phenyl-1,2,3-triazole-4-carboxamide top
Crystal data top
C11H12N4O2Dx = 1.344 Mg m3
Mr = 232.25Melting point: 310 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4637 (8) ÅCell parameters from 1077 reflections
b = 6.4345 (13) Åθ = 2.9–26.4°
c = 15.822 (3) ŵ = 0.10 mm1
β = 100.367 (12)°T = 295 K
V = 1148.0 (3) Å3Prism, colorless
Z = 40.21 × 0.16 × 0.09 mm
F(000) = 488
Data collection top
Agilent Xcalibur S CCD
diffractometer
1077 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
ω scansh = 714
7259 measured reflectionsk = 58
2302 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
2302 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H12N4O2V = 1148.0 (3) Å3
Mr = 232.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4637 (8) ŵ = 0.10 mm1
b = 6.4345 (13) ÅT = 295 K
c = 15.822 (3) Å0.21 × 0.16 × 0.09 mm
β = 100.367 (12)°
Data collection top
Agilent Xcalibur S CCD
diffractometer
1077 reflections with I > 2σ(I)
7259 measured reflectionsRint = 0.040
2302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.43 e Å3
2302 reflectionsΔρmin = 0.22 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61315 (16)0.0563 (3)0.15704 (14)0.0777 (7)
C80.7887 (2)0.1712 (4)0.24262 (18)0.0475 (7)
C60.7399 (2)0.2566 (4)0.08075 (18)0.0496 (7)
C70.7204 (2)0.0365 (4)0.17728 (19)0.0533 (7)
N20.90562 (18)0.1400 (4)0.27423 (17)0.0605 (7)
N40.8463 (2)0.3915 (4)0.33811 (19)0.0708 (8)
C90.7489 (2)0.3375 (4)0.28291 (19)0.0553 (8)
N10.7844 (2)0.1083 (4)0.14353 (16)0.0530 (6)
N30.9416 (2)0.2771 (4)0.3343 (2)0.0759 (8)
O20.8515 (2)0.5302 (4)0.40535 (18)0.0956 (8)
C10.7975 (2)0.4450 (5)0.0824 (2)0.0589 (8)
H1A0.86340.47210.12460.071*
C50.6434 (3)0.2172 (5)0.0169 (2)0.0641 (8)
H5A0.60490.08960.01480.077*
C30.6605 (3)0.5520 (6)0.0411 (2)0.0809 (10)
H3A0.63310.65240.08210.097*
C20.7571 (3)0.5924 (5)0.0214 (2)0.0739 (9)
H2A0.79550.72000.02250.089*
C40.6048 (3)0.3651 (6)0.0430 (2)0.0769 (10)
H4A0.53950.33810.08570.092*
C110.9070 (4)0.7045 (6)0.3901 (3)0.137 (2)
H11A0.89700.80730.43210.205*
H11B0.87410.75510.33370.205*
H11C0.99000.67650.39330.205*
C100.6343 (3)0.4512 (5)0.2740 (2)0.0818 (10)
H10A0.62980.52140.32680.123*
H10B0.56990.35430.26090.123*
H10C0.62920.55110.22840.123*
H10.858 (2)0.109 (4)0.1666 (17)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0365 (12)0.1021 (17)0.0930 (17)0.0057 (10)0.0076 (11)0.0186 (13)
C80.0393 (15)0.0458 (16)0.0589 (18)0.0007 (12)0.0134 (13)0.0056 (14)
C60.0414 (15)0.0538 (18)0.0549 (19)0.0035 (14)0.0117 (14)0.0045 (16)
C70.0418 (16)0.0582 (18)0.062 (2)0.0016 (14)0.0146 (15)0.0066 (16)
N20.0444 (14)0.0516 (15)0.0836 (19)0.0032 (11)0.0062 (13)0.0019 (14)
N40.0607 (17)0.0658 (17)0.089 (2)0.0011 (13)0.0206 (15)0.0268 (16)
C90.0400 (16)0.065 (2)0.0624 (19)0.0028 (14)0.0117 (15)0.0013 (16)
N10.0354 (13)0.0558 (15)0.0661 (17)0.0045 (11)0.0041 (12)0.0011 (13)
N30.0465 (15)0.0710 (17)0.107 (2)0.0004 (13)0.0059 (14)0.0188 (17)
O20.0967 (18)0.0961 (18)0.102 (2)0.0125 (14)0.0395 (15)0.0152 (16)
C10.0573 (17)0.0563 (19)0.064 (2)0.0021 (15)0.0140 (15)0.0062 (17)
C50.0512 (18)0.073 (2)0.067 (2)0.0069 (15)0.0089 (16)0.0035 (19)
C30.077 (2)0.093 (3)0.075 (3)0.018 (2)0.018 (2)0.024 (2)
C20.081 (2)0.061 (2)0.085 (3)0.0020 (18)0.030 (2)0.004 (2)
C40.061 (2)0.098 (3)0.070 (2)0.005 (2)0.0055 (17)0.010 (2)
C110.171 (4)0.055 (2)0.221 (5)0.019 (2)0.133 (4)0.005 (3)
C100.0566 (19)0.098 (2)0.092 (3)0.0195 (17)0.0172 (17)0.016 (2)
Geometric parameters (Å, º) top
O1—C71.220 (3)C1—C21.372 (4)
C8—N21.359 (3)C1—H1A0.9300
C8—C91.365 (3)C5—C41.359 (4)
C8—C71.463 (4)C5—H5A0.9300
C6—C11.379 (4)C3—C41.360 (5)
C6—C51.381 (4)C3—C21.370 (5)
C6—N11.405 (3)C3—H3A0.9300
C7—N11.354 (3)C2—H2A0.9300
N2—N31.308 (3)C4—H4A0.9300
N4—N31.327 (3)C11—H11A0.9600
N4—C91.334 (3)C11—H11B0.9600
N4—O21.382 (3)C11—H11C0.9600
C9—C101.488 (4)C10—H10A0.9600
N1—H10.85 (3)C10—H10B0.9600
O2—C111.333 (4)C10—H10C0.9600
N2—C8—C9109.5 (2)C4—C5—C6120.0 (3)
N2—C8—C7122.6 (2)C4—C5—H5A120.0
C9—C8—C7127.8 (2)C6—C5—H5A120.0
C1—C6—C5119.6 (3)C4—C3—C2120.0 (3)
C1—C6—N1118.1 (3)C4—C3—H3A120.0
C5—C6—N1122.3 (3)C2—C3—H3A120.0
O1—C7—N1124.1 (3)C3—C2—C1120.2 (3)
O1—C7—C8120.6 (2)C3—C2—H2A119.9
N1—C7—C8115.3 (2)C1—C2—H2A119.9
N3—N2—C8109.2 (2)C5—C4—C3120.7 (3)
N3—N4—C9115.2 (2)C5—C4—H4A119.6
N3—N4—O2118.1 (3)C3—C4—H4A119.6
C9—N4—O2125.9 (2)O2—C11—H11A109.5
N4—C9—C8101.5 (2)O2—C11—H11B109.5
N4—C9—C10123.7 (3)H11A—C11—H11B109.5
C8—C9—C10134.8 (3)O2—C11—H11C109.5
C7—N1—C6126.3 (3)H11A—C11—H11C109.5
C7—N1—H1113.4 (17)H11B—C11—H11C109.5
C6—N1—H1120.2 (17)C9—C10—H10A109.5
N2—N3—N4104.6 (2)C9—C10—H10B109.5
C11—O2—N4111.1 (3)H10A—C10—H10B109.5
C2—C1—C6119.6 (3)C9—C10—H10C109.5
C2—C1—H1A120.2H10A—C10—H10C109.5
C6—C1—H1A120.2H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.86 (2)2.33 (3)2.780 (4)113 (2)
N1—H1···N3i0.86 (2)2.41 (2)3.184 (3)150 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.86 (2)2.33 (3)2.780 (4)113 (2)
N1—H1···N3i0.86 (2)2.41 (2)3.184 (3)150 (2)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

We thank the Russian Foundation for Basic Research (grant 13–03-00137), State task Ministry of Education and Science of the Russian Federation No. 4.560.2014-K and the Project Enhance Competitiveness of the Ural Federal University (Project 5–100-2020)

References

First citationAgilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationKhazhieva, I. S., Glukhareva, T. V., El'tsov, O. S., Morzherin, Yu. Yu., Minin, A. A., Pozdina, V. A. & Ulitko, M. V. (2015b). Khim. Farm. Zh. 49, 12–15.  Google Scholar
First citationKhazhieva, I. S., Glukhareva, T. V. & Morzherin, Yu. Yu. (2015a). Chim. Tech. Acta, 2, 52–58.  CrossRef Google Scholar
First citationSathish Kumar, S. & Kavitha, H. P. (2013). Mini-Rev. Org. Chem. 10, 40–65.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds