2. Experimental
2.1. Crystal data
C11H12N4O2 Mr = 232.25 Monoclinic, P 21 /c a = 11.4637 (8) Å b = 6.4345 (13) Å c = 15.822 (3) Å β = 100.367 (12)° V = 1148.0 (3) Å3 Z = 4 Mo Kα radiation μ = 0.10 mm−1 T = 295 K 0.21 × 0.16 × 0.09 mm
|
2.2. Data collection
Agilent Xcalibur S CCD diffractometer 7259 measured reflections 2302 independent reflections 1077 reflections with I > 2σ(I) Rint = 0.040
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯N2 | 0.86 (2) | 2.33 (3) | 2.780 (4) | 113 (2) | N1—H1⋯N3i | 0.86 (2) | 2.41 (2) | 3.184 (3) | 150 (2) | Symmetry code: (i) . | |
Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: publCIF (Westrip, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
S1. Synthesis and crystallization
top The titled compound was prepared as previously reported (Khazhieva et al., 2015b). Crystals were obtained by slow evaporation of a solution in ethanol.
Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO (Agilent, 2006); data reduction: CrysAlis PRO (Agilent, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: publCIF (Westrip, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).
1-Methoxy-5-methyl-
N-phenyl-1,2,3-triazole-4-carboxamide
top Crystal data top C11H12N4O2 | Dx = 1.344 Mg m−3 |
Mr = 232.25 | Melting point: 310 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.4637 (8) Å | Cell parameters from 1077 reflections |
b = 6.4345 (13) Å | θ = 2.9–26.4° |
c = 15.822 (3) Å | µ = 0.10 mm−1 |
β = 100.367 (12)° | T = 295 K |
V = 1148.0 (3) Å3 | Prism, colorless |
Z = 4 | 0.21 × 0.16 × 0.09 mm |
F(000) = 488 | |
Data collection top Agilent Xcalibur S CCD diffractometer | 1077 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.040 |
Graphite monochromator | θmax = 26.4°, θmin = 2.9° |
ω scans | h = −7→14 |
7259 measured reflections | k = −5→8 |
2302 independent reflections | l = −19→19 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3 |
2302 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Crystal data top C11H12N4O2 | V = 1148.0 (3) Å3 |
Mr = 232.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.4637 (8) Å | µ = 0.10 mm−1 |
b = 6.4345 (13) Å | T = 295 K |
c = 15.822 (3) Å | 0.21 × 0.16 × 0.09 mm |
β = 100.367 (12)° | |
Data collection top Agilent Xcalibur S CCD diffractometer | 1077 reflections with I > 2σ(I) |
7259 measured reflections | Rint = 0.040 |
2302 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.43 e Å−3 |
2302 reflections | Δρmin = −0.22 e Å−3 |
160 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.61315 (16) | 0.0563 (3) | 0.15704 (14) | 0.0777 (7) | |
C8 | 0.7887 (2) | 0.1712 (4) | 0.24262 (18) | 0.0475 (7) | |
C6 | 0.7399 (2) | −0.2566 (4) | 0.08075 (18) | 0.0496 (7) | |
C7 | 0.7204 (2) | 0.0365 (4) | 0.17728 (19) | 0.0533 (7) | |
N2 | 0.90562 (18) | 0.1400 (4) | 0.27423 (17) | 0.0605 (7) | |
N4 | 0.8463 (2) | 0.3915 (4) | 0.33811 (19) | 0.0708 (8) | |
C9 | 0.7489 (2) | 0.3375 (4) | 0.28291 (19) | 0.0553 (8) | |
N1 | 0.7844 (2) | −0.1083 (4) | 0.14353 (16) | 0.0530 (6) | |
N3 | 0.9416 (2) | 0.2771 (4) | 0.3343 (2) | 0.0759 (8) | |
O2 | 0.8515 (2) | 0.5302 (4) | 0.40535 (18) | 0.0956 (8) | |
C1 | 0.7975 (2) | −0.4450 (5) | 0.0824 (2) | 0.0589 (8) | |
H1A | 0.8634 | −0.4721 | 0.1246 | 0.071* | |
C5 | 0.6434 (3) | −0.2172 (5) | 0.0169 (2) | 0.0641 (8) | |
H5A | 0.6049 | −0.0896 | 0.0148 | 0.077* | |
C3 | 0.6605 (3) | −0.5520 (6) | −0.0411 (2) | 0.0809 (10) | |
H3A | 0.6331 | −0.6524 | −0.0821 | 0.097* | |
C2 | 0.7571 (3) | −0.5924 (5) | 0.0214 (2) | 0.0739 (9) | |
H2A | 0.7955 | −0.7200 | 0.0225 | 0.089* | |
C4 | 0.6048 (3) | −0.3651 (6) | −0.0430 (2) | 0.0769 (10) | |
H4A | 0.5395 | −0.3381 | −0.0857 | 0.092* | |
C11 | 0.9070 (4) | 0.7045 (6) | 0.3901 (3) | 0.137 (2) | |
H11A | 0.8970 | 0.8073 | 0.4321 | 0.205* | |
H11B | 0.8741 | 0.7551 | 0.3337 | 0.205* | |
H11C | 0.9900 | 0.6765 | 0.3933 | 0.205* | |
C10 | 0.6343 (3) | 0.4512 (5) | 0.2740 (2) | 0.0818 (10) | |
H10A | 0.6298 | 0.5214 | 0.3268 | 0.123* | |
H10B | 0.5699 | 0.3543 | 0.2609 | 0.123* | |
H10C | 0.6292 | 0.5511 | 0.2284 | 0.123* | |
H1 | 0.858 (2) | −0.109 (4) | 0.1666 (17) | 0.048 (8)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0365 (12) | 0.1021 (17) | 0.0930 (17) | 0.0057 (10) | 0.0076 (11) | −0.0186 (13) |
C8 | 0.0393 (15) | 0.0458 (16) | 0.0589 (18) | 0.0007 (12) | 0.0134 (13) | 0.0056 (14) |
C6 | 0.0414 (15) | 0.0538 (18) | 0.0549 (19) | −0.0035 (14) | 0.0117 (14) | 0.0045 (16) |
C7 | 0.0418 (16) | 0.0582 (18) | 0.062 (2) | −0.0016 (14) | 0.0146 (15) | 0.0066 (16) |
N2 | 0.0444 (14) | 0.0516 (15) | 0.0836 (19) | −0.0032 (11) | 0.0062 (13) | −0.0019 (14) |
N4 | 0.0607 (17) | 0.0658 (17) | 0.089 (2) | −0.0011 (13) | 0.0206 (15) | −0.0268 (16) |
C9 | 0.0400 (16) | 0.065 (2) | 0.0624 (19) | −0.0028 (14) | 0.0117 (15) | −0.0013 (16) |
N1 | 0.0354 (13) | 0.0558 (15) | 0.0661 (17) | 0.0045 (11) | 0.0041 (12) | −0.0011 (13) |
N3 | 0.0465 (15) | 0.0710 (17) | 0.107 (2) | 0.0004 (13) | 0.0059 (14) | −0.0188 (17) |
O2 | 0.0967 (18) | 0.0961 (18) | 0.102 (2) | −0.0125 (14) | 0.0395 (15) | −0.0152 (16) |
C1 | 0.0573 (17) | 0.0563 (19) | 0.064 (2) | 0.0021 (15) | 0.0140 (15) | 0.0062 (17) |
C5 | 0.0512 (18) | 0.073 (2) | 0.067 (2) | 0.0069 (15) | 0.0089 (16) | 0.0035 (19) |
C3 | 0.077 (2) | 0.093 (3) | 0.075 (3) | −0.018 (2) | 0.018 (2) | −0.024 (2) |
C2 | 0.081 (2) | 0.061 (2) | 0.085 (3) | −0.0020 (18) | 0.030 (2) | −0.004 (2) |
C4 | 0.061 (2) | 0.098 (3) | 0.070 (2) | −0.005 (2) | 0.0055 (17) | −0.010 (2) |
C11 | 0.171 (4) | 0.055 (2) | 0.221 (5) | −0.019 (2) | 0.133 (4) | −0.005 (3) |
C10 | 0.0566 (19) | 0.098 (2) | 0.092 (3) | 0.0195 (17) | 0.0172 (17) | −0.016 (2) |
Geometric parameters (Å, º) top O1—C7 | 1.220 (3) | C1—C2 | 1.372 (4) |
C8—N2 | 1.359 (3) | C1—H1A | 0.9300 |
C8—C9 | 1.365 (3) | C5—C4 | 1.359 (4) |
C8—C7 | 1.463 (4) | C5—H5A | 0.9300 |
C6—C1 | 1.379 (4) | C3—C4 | 1.360 (5) |
C6—C5 | 1.381 (4) | C3—C2 | 1.370 (5) |
C6—N1 | 1.405 (3) | C3—H3A | 0.9300 |
C7—N1 | 1.354 (3) | C2—H2A | 0.9300 |
N2—N3 | 1.308 (3) | C4—H4A | 0.9300 |
N4—N3 | 1.327 (3) | C11—H11A | 0.9600 |
N4—C9 | 1.334 (3) | C11—H11B | 0.9600 |
N4—O2 | 1.382 (3) | C11—H11C | 0.9600 |
C9—C10 | 1.488 (4) | C10—H10A | 0.9600 |
N1—H1 | 0.85 (3) | C10—H10B | 0.9600 |
O2—C11 | 1.333 (4) | C10—H10C | 0.9600 |
| | | |
N2—C8—C9 | 109.5 (2) | C4—C5—C6 | 120.0 (3) |
N2—C8—C7 | 122.6 (2) | C4—C5—H5A | 120.0 |
C9—C8—C7 | 127.8 (2) | C6—C5—H5A | 120.0 |
C1—C6—C5 | 119.6 (3) | C4—C3—C2 | 120.0 (3) |
C1—C6—N1 | 118.1 (3) | C4—C3—H3A | 120.0 |
C5—C6—N1 | 122.3 (3) | C2—C3—H3A | 120.0 |
O1—C7—N1 | 124.1 (3) | C3—C2—C1 | 120.2 (3) |
O1—C7—C8 | 120.6 (2) | C3—C2—H2A | 119.9 |
N1—C7—C8 | 115.3 (2) | C1—C2—H2A | 119.9 |
N3—N2—C8 | 109.2 (2) | C5—C4—C3 | 120.7 (3) |
N3—N4—C9 | 115.2 (2) | C5—C4—H4A | 119.6 |
N3—N4—O2 | 118.1 (3) | C3—C4—H4A | 119.6 |
C9—N4—O2 | 125.9 (2) | O2—C11—H11A | 109.5 |
N4—C9—C8 | 101.5 (2) | O2—C11—H11B | 109.5 |
N4—C9—C10 | 123.7 (3) | H11A—C11—H11B | 109.5 |
C8—C9—C10 | 134.8 (3) | O2—C11—H11C | 109.5 |
C7—N1—C6 | 126.3 (3) | H11A—C11—H11C | 109.5 |
C7—N1—H1 | 113.4 (17) | H11B—C11—H11C | 109.5 |
C6—N1—H1 | 120.2 (17) | C9—C10—H10A | 109.5 |
N2—N3—N4 | 104.6 (2) | C9—C10—H10B | 109.5 |
C11—O2—N4 | 111.1 (3) | H10A—C10—H10B | 109.5 |
C2—C1—C6 | 119.6 (3) | C9—C10—H10C | 109.5 |
C2—C1—H1A | 120.2 | H10A—C10—H10C | 109.5 |
C6—C1—H1A | 120.2 | H10B—C10—H10C | 109.5 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2 | 0.86 (2) | 2.33 (3) | 2.780 (4) | 113 (2) |
N1—H1···N3i | 0.86 (2) | 2.41 (2) | 3.184 (3) | 150 (2) |
Symmetry code: (i) −x+2, y−1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2 | 0.86 (2) | 2.33 (3) | 2.780 (4) | 113 (2) |
N1—H1···N3i | 0.86 (2) | 2.41 (2) | 3.184 (3) | 150 (2) |
Symmetry code: (i) −x+2, y−1/2, −z+1/2. |
Acknowledgements
We thank the Russian Foundation for Basic Research (grant 13–03-00137), State task Ministry of Education and Science of the Russian Federation No. 4.560.2014-K and the Project Enhance Competitiveness of the Ural Federal University (Project 5–100-2020)
References
Agilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Khazhieva, I. S., Glukhareva, T. V., El'tsov, O. S., Morzherin, Yu. Yu., Minin, A. A., Pozdina, V. A. & Ulitko, M. V. (2015b). Khim. Farm. Zh. 49, 12–15. Google Scholar
Khazhieva, I. S., Glukhareva, T. V. & Morzherin, Yu. Yu. (2015a). Chim. Tech. Acta, 2, 52–58. CrossRef Google Scholar
Sathish Kumar, S. & Kavitha, H. P. (2013). Mini-Rev. Org. Chem. 10, 40–65. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access