organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o737-o738

Crystal structure of 1,3-di­cyclo­hexyl-1-[3-(pyren-1-yl)prop­anoyl]urea

CROSSMARK_Color_square_no_text.svg

aCentro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, CP 62209, Cuernavaca Mor., Mexico, and bCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: vbarba@uaem.mx

Edited by H. Ishida, Okayama University, Japan (Received 5 August 2015; accepted 26 August 2015; online 12 September 2015)

In the title compound, C33H38N2O2, each of the cyclo­hexyl rings adopts a chair conformation. The two planes involving carbonyl groups, C—(C=O)—N and N—(C=O)—N, are oriented at a dihedral angle of 62.28 (10)°. In the crystal, two neighboring mol­ecules are linked by a pair of N—H⋯O inter­actions, generating an inversion dimer. The dimers are inter­connected by C—H⋯O hydrogen bonds into a supra­molecular chain along the a-axis direction.

1. Related literature

For the synthesis of the title compound, see: Abd-El-Aziz et al. (2013[Abd-El-Aziz, A. S., Dalgakiran, S., Kucukkaya, I. & Wagner, B. D. (2013). Electrochim. Acta, 89, 445-453.]). For the syntheses of N,N′-di­cyclo­hexyl­carbodi­imide and N-acyl-N,N′-di­cyclo­hexyl­urea, see: Zhu et al. (2008[Zhu, L., Zhu, Y., Meng, X., Hao, J., Li, Q., Wei, Y. & Lin, Y. (2008). Chem. Eur. J. 14, 10923-10927.]); Gonçalves & Balogh (2006[Gonçalves, V. C. & Balogh, D. T. (2006). Eur. Polym. J. 42, 3303-3310.]); Kaiser et al. (2008[Kaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. (S), pp. 468-472.]); Slebioda (1995[Ślebioda, M. (1995). Tetrahedron, 51, 7829-7834.]). For related crystal structures, see: Chérioux et al. (2002[Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27-o29.]); Cai et al. (2009[Cai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211-212.]); Imhof (2007[Imhof, W. (2007). Acta Cryst. E63, o4036-o4037.]); Dhinaa et al. (2010[Dhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.]); Pinheiro et al. (2011[Pinheiro, A. C., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2676-o2677.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C33H38N2O2

  • Mr = 494.65

  • Triclinic, [P \overline 1]

  • a = 9.0505 (15) Å

  • b = 10.1845 (17) Å

  • c = 14.571 (2) Å

  • α = 99.541 (3)°

  • β = 90.315 (3)°

  • γ = 92.191 (3)°

  • V = 1323.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.11 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.992

  • 12906 measured reflections

  • 4658 independent reflections

  • 3738 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.128

  • S = 1.04

  • 4658 reflections

  • 338 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 (1) 2.17 (1) 3.026 (2) 176 (2)
C2—H2D⋯O2ii 0.99 2.49 3.358 (2) 146
C4—H4B⋯O2ii 0.99 2.45 3.302 (2) 144
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, DIAMOND (Brandenburg, 1997[Brandenburg, K. (1997). DIAMOND. University of Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

N,N'-Dicyclohexylcarbodiimide has been used to form esters from carboxylic acid, alcohols and catalytic amounts of 2,6-dimethylpyridine (Zhu et al., 2008; Gonçalves & Balogh, 2006). Nonetheless, the absence of alcohols produce the formation of N-acyl-N,N'-dicyclohexylureas (Kaiser et al., 2008). When arenecarboxylic acids are used, the yield reaction can be modulated by electronic effects of the substituents (Slebioda, 1995). Several crystal structures of N-(arenecarbonyl)-N,N'-dicyclohexylurea derivatives have been reported (Chérioux et al., 2002; Cai et al., 2009; Imhof 2007; Dhinaa et al., 2010; Pinheiro et al., 2011). Herein, we now report the crystal structure of 1,3-dicyclohexyl-1-[(1-pyrenepropyl)carbonyl]urea (I).

In the molecular structure of I, the pyrenyl group and the two planes involving urea nitrogen atoms N1 and N2, C27/N1/C21/C1 and C28/N2/C27/H2A, are almost planar with r.m.s. deviations of 0.008 (2), 0.0346 (18) and 0.0098 (18) Å, respectively. The interplanar angle between the C27/N1/C21/C1 and C28/N2/C27/H2A planes is 61.1 (6)°. Each of the cyclohexyl rings adopts a chair conformation (Fig. 1). In the crystal, two neighboring molecules are linked by a pair of N—H···O interactions, generating an inversion dimer. The dimers are interconnected by C—H···O hydrogen bonds into a supramolecular chain along the a axis (Fig. 2 and Table 1).

Related literature top

For the synthesis of the title compound, see: Abd-El-Aziz et al. (2013). For the syntheses of N,N'-dicyclohexylcarbodiimide and N-acyl-N,N'-dicyclohexylurea, see: Zhu et al. (2008); Gonçalves & Balogh (2006); Kaiser et al. (2008); Slebioda (1995). For related crystal structures, see: Chérioux et al. (2002); Cai et al. (2009); Imhof (2007); Dhinaa et al. (2010); Pinheiro et al. (2011).

Experimental top

Compound I was obtained according to the literature (Abd-El-Aziz et al., 2013) from an incomplete esterification reaction between pyrenobutanoic acid (6.80 mmol), N,N'-dicyclohexylcarbodiimide (7.48 mmol), 2,6-dimethylpyridine (1.08 mmol) as catalyst and 2-(thiophene-3-yl) ethanol (13.6 mmol). The three first components were stirred under room temperature for 1.5 h using 40 ml of toluene, then the last component was added and heated 1 h under reflux. (I) was isolated in a yield ca 8% from a column chromatography using hexane-ethyl acetate system 4:1. From slow evaporation of the mixture solution, suitable crystals for X-ray diffraction were obtained (m.p. = 164 °C).

Refinement top

H atoms were positioned geometrically [C—H = 0.95 Å (aryl), 0.99 Å (methylene) and 1.00 Å (methine)] and constrained using a riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atom bonded to N (H2A) was located in a difference Fourier map and refined freely with an N—H distance restraint of 0.86 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Hydrogen atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity.
1,3-Dicyclohexyl-1-[3-(pyren-1-yl)propanoyl]urea top
Crystal data top
C33H38N2O2Z = 2
Mr = 494.65F(000) = 532
Triclinic, P1Dx = 1.241 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0505 (15) ÅCell parameters from 5456 reflections
b = 10.1845 (17) Åθ = 2.6–28.2°
c = 14.571 (2) ŵ = 0.08 mm1
α = 99.541 (3)°T = 100 K
β = 90.315 (3)°Plates, colourless
γ = 92.191 (3)°0.16 × 0.13 × 0.11 mm
V = 1323.4 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4658 independent reflections
Radiation source: fine-focus sealed tube3738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.4°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.988, Tmax = 0.992l = 1717
12906 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.031P)2 + 0.3784P]
where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C33H38N2O2γ = 92.191 (3)°
Mr = 494.65V = 1323.4 (4) Å3
Triclinic, P1Z = 2
a = 9.0505 (15) ÅMo Kα radiation
b = 10.1845 (17) ŵ = 0.08 mm1
c = 14.571 (2) ÅT = 100 K
α = 99.541 (3)°0.16 × 0.13 × 0.11 mm
β = 90.315 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3738 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.050
12906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
4658 reflectionsΔρmin = 0.17 e Å3
338 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3) δ: 8.29 (d, J = 9.2 Hz, 2H), 8.15 (d, J = 7.8 Hz, 2H), 8.10 (dd, J = 7.7, 6.8 Hz, 2H), 8.0 (t, J= 7.7 Hz, 1H), 7.85 (d, J = 7.8 HZ, 2H), 5.27 (s, 1H), 3.90 (qn, J = 7.0 Hz, 2H), 3.36 (t, J =7.2 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H), 2.18 (qn, J = 7.2 Hz, 2H), 0.6–1.8 (m, 20H). IR (KBr) (cm-1) = 3299 (w), 2930 (m), 2859 (w), 1702 (s), 1633 (s), 1534 (m), 1365 (m), 1239(m), 835 (s). EI—MS m/z (%): 494 (M+, 5), 369 (50), 228 (100), 215 (45).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15199 (19)0.48523 (17)0.56198 (11)0.0247 (4)
C20.1888 (2)0.63158 (17)0.56245 (12)0.0265 (4)
H2C0.12320.66440.51730.032*
H2D0.29200.64210.54180.032*
C30.1715 (2)0.71654 (18)0.65839 (12)0.0295 (4)
H3A0.17280.81170.65160.035*
H3B0.07430.69410.68390.035*
C40.2932 (2)0.6959 (2)0.72692 (12)0.0351 (5)
H4A0.28430.60330.73940.042*
H4B0.39060.70790.69830.042*
C50.2863 (2)0.79106 (19)0.81785 (12)0.0322 (4)
C60.1854 (2)0.76932 (18)0.88786 (12)0.0292 (4)
C70.0873 (2)0.65401 (18)0.87947 (13)0.0336 (5)
H70.08970.58890.82470.040*
C80.0083 (2)0.63533 (19)0.94717 (13)0.0366 (5)
H80.07140.55750.93870.044*
C90.0176 (2)0.72924 (19)1.03139 (13)0.0348 (5)
C100.1161 (2)0.7118 (2)1.10233 (15)0.0450 (5)
H100.17960.63421.09560.054*
C110.1221 (3)0.8056 (2)1.18188 (15)0.0508 (6)
H110.18900.79181.22970.061*
C120.0319 (2)0.9196 (2)1.19279 (14)0.0440 (5)
H120.03860.98381.24780.053*
C130.0690 (2)0.94226 (19)1.12456 (12)0.0346 (5)
C140.1642 (2)1.0593 (2)1.13308 (13)0.0392 (5)
H140.15961.12491.18750.047*
C150.2598 (2)1.0785 (2)1.06597 (14)0.0381 (5)
H150.32111.15741.07390.046*
C160.2715 (2)0.98252 (18)0.98232 (13)0.0319 (4)
C170.3699 (2)1.0003 (2)0.91197 (13)0.0382 (5)
H170.43331.07800.91880.046*
C180.3764 (2)0.9061 (2)0.83215 (13)0.0383 (5)
H180.44490.92070.78540.046*
C190.1783 (2)0.86558 (18)0.97074 (12)0.0296 (4)
C200.0770 (2)0.84527 (18)1.04232 (12)0.0301 (4)
C210.20051 (19)0.25014 (17)0.50327 (12)0.0272 (4)
H210.10110.23470.53000.033*
C220.2051 (2)0.16123 (18)0.40814 (12)0.0329 (5)
H22A0.12790.18700.36690.040*
H22B0.30240.17350.37940.040*
C230.1795 (2)0.01573 (19)0.41794 (14)0.0376 (5)
H23A0.07790.00190.44020.045*
H23B0.18900.04090.35630.045*
C240.2896 (2)0.02592 (19)0.48565 (14)0.0396 (5)
H24A0.39000.02380.45920.048*
H24B0.26480.11860.49430.048*
C250.2887 (2)0.06563 (18)0.57992 (13)0.0374 (5)
H25A0.19220.05480.61000.045*
H25B0.36680.03980.62060.045*
C260.3151 (2)0.21121 (18)0.56959 (12)0.0305 (4)
H26A0.30830.26860.63120.037*
H26B0.41560.22440.54520.037*
C270.3174 (2)0.42850 (17)0.42681 (12)0.0264 (4)
C280.3480 (2)0.54841 (18)0.29600 (12)0.0290 (4)
H280.45190.56450.32000.035*
C290.3498 (2)0.44741 (19)0.20684 (12)0.0368 (5)
H29A0.24710.42480.18440.044*
H29B0.39400.36480.21970.044*
C300.4382 (3)0.5017 (2)0.13153 (15)0.0547 (6)
H30A0.54380.51230.15050.066*
H30B0.43030.43670.07290.066*
C310.3839 (3)0.6349 (2)0.11436 (14)0.0485 (6)
H31A0.44910.67000.06900.058*
H31B0.28280.62210.08720.058*
C320.3822 (3)0.7348 (2)0.20321 (14)0.0459 (5)
H32A0.33930.81810.19060.055*
H32B0.48480.75620.22630.055*
C330.2913 (3)0.6800 (2)0.27775 (14)0.0450 (6)
H33A0.29620.74540.33620.054*
H33B0.18660.66730.25720.054*
H2A0.1664 (11)0.5120 (18)0.3687 (12)0.028 (5)*
N10.21491 (16)0.39366 (14)0.49557 (10)0.0257 (3)
N20.25912 (17)0.49893 (15)0.36770 (10)0.0297 (4)
O10.06756 (13)0.44841 (12)0.61964 (8)0.0314 (3)
O20.44266 (14)0.38979 (13)0.42418 (9)0.0353 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (9)0.0294 (10)0.0212 (9)0.0054 (7)0.0028 (7)0.0014 (8)
C20.0285 (10)0.0267 (10)0.0242 (9)0.0052 (8)0.0049 (7)0.0023 (7)
C30.0317 (10)0.0272 (10)0.0286 (10)0.0072 (8)0.0063 (8)0.0004 (8)
C40.0336 (11)0.0422 (12)0.0277 (10)0.0115 (9)0.0044 (8)0.0015 (9)
C50.0297 (10)0.0386 (11)0.0272 (10)0.0099 (9)0.0001 (8)0.0002 (8)
C60.0317 (10)0.0283 (10)0.0269 (10)0.0085 (8)0.0017 (8)0.0013 (8)
C70.0445 (12)0.0273 (10)0.0279 (10)0.0052 (9)0.0016 (9)0.0004 (8)
C80.0429 (12)0.0308 (11)0.0366 (11)0.0016 (9)0.0027 (9)0.0076 (9)
C90.0381 (11)0.0363 (11)0.0319 (11)0.0075 (9)0.0010 (9)0.0098 (9)
C100.0472 (13)0.0451 (13)0.0462 (13)0.0027 (10)0.0095 (10)0.0167 (11)
C110.0553 (15)0.0647 (16)0.0355 (12)0.0115 (12)0.0179 (11)0.0143 (11)
C120.0501 (14)0.0526 (14)0.0292 (11)0.0161 (11)0.0081 (10)0.0029 (10)
C130.0403 (12)0.0391 (12)0.0247 (10)0.0163 (9)0.0002 (8)0.0027 (8)
C140.0487 (13)0.0371 (12)0.0285 (11)0.0123 (10)0.0054 (9)0.0064 (9)
C150.0436 (12)0.0320 (11)0.0362 (11)0.0028 (9)0.0073 (9)0.0017 (9)
C160.0314 (11)0.0331 (11)0.0301 (10)0.0037 (8)0.0035 (8)0.0014 (8)
C170.0362 (11)0.0383 (12)0.0385 (11)0.0063 (9)0.0028 (9)0.0031 (9)
C180.0318 (11)0.0506 (13)0.0314 (11)0.0012 (9)0.0052 (9)0.0036 (9)
C190.0308 (10)0.0320 (10)0.0261 (10)0.0088 (8)0.0019 (8)0.0032 (8)
C200.0335 (11)0.0332 (11)0.0247 (10)0.0108 (8)0.0000 (8)0.0054 (8)
C210.0272 (10)0.0246 (9)0.0288 (10)0.0024 (7)0.0088 (8)0.0010 (8)
C220.0364 (11)0.0321 (11)0.0288 (10)0.0077 (8)0.0003 (8)0.0010 (8)
C230.0399 (12)0.0310 (11)0.0378 (11)0.0002 (9)0.0037 (9)0.0061 (9)
C240.0507 (13)0.0260 (10)0.0418 (12)0.0043 (9)0.0041 (10)0.0038 (9)
C250.0484 (13)0.0303 (11)0.0342 (11)0.0031 (9)0.0027 (9)0.0071 (9)
C260.0361 (11)0.0294 (10)0.0254 (10)0.0012 (8)0.0039 (8)0.0024 (8)
C270.0291 (10)0.0242 (9)0.0237 (9)0.0036 (8)0.0084 (8)0.0034 (7)
C280.0310 (10)0.0320 (10)0.0238 (9)0.0017 (8)0.0088 (8)0.0039 (8)
C290.0515 (13)0.0306 (11)0.0277 (10)0.0058 (9)0.0065 (9)0.0018 (8)
C300.0814 (18)0.0509 (14)0.0338 (12)0.0183 (13)0.0249 (12)0.0081 (10)
C310.0625 (15)0.0533 (14)0.0340 (12)0.0037 (11)0.0122 (10)0.0188 (10)
C320.0595 (15)0.0352 (12)0.0458 (13)0.0034 (10)0.0098 (11)0.0140 (10)
C330.0628 (15)0.0336 (12)0.0392 (12)0.0114 (10)0.0191 (11)0.0050 (9)
N10.0285 (8)0.0238 (8)0.0245 (8)0.0048 (6)0.0091 (6)0.0018 (6)
N20.0272 (9)0.0360 (9)0.0268 (8)0.0081 (7)0.0095 (7)0.0061 (7)
O10.0335 (7)0.0323 (7)0.0280 (7)0.0041 (6)0.0136 (6)0.0023 (6)
O20.0284 (7)0.0413 (8)0.0371 (8)0.0081 (6)0.0103 (6)0.0075 (6)
Geometric parameters (Å, º) top
C1—O11.2329 (19)C21—N11.485 (2)
C1—N11.370 (2)C21—C261.521 (2)
C1—C21.514 (2)C21—C221.527 (2)
C2—C31.529 (2)C21—H211.0000
C2—H2C0.9900C22—C231.521 (3)
C2—H2D0.9900C22—H22A0.9900
C3—C41.526 (3)C22—H22B0.9900
C3—H3A0.9900C23—C241.518 (3)
C3—H3B0.9900C23—H23A0.9900
C4—C51.510 (2)C23—H23B0.9900
C4—H4A0.9900C24—C251.527 (3)
C4—H4B0.9900C24—H24A0.9900
C5—C181.388 (3)C24—H24B0.9900
C5—C61.412 (2)C25—C261.525 (3)
C6—C191.427 (2)C25—H25A0.9900
C6—C71.433 (3)C25—H25B0.9900
C7—C81.348 (3)C26—H26A0.9900
C7—H70.9500C26—H26B0.9900
C8—C91.430 (3)C27—O21.213 (2)
C8—H80.9500C27—N21.328 (2)
C9—C101.398 (3)C27—N11.447 (2)
C9—C201.419 (3)C28—N21.464 (2)
C10—C111.378 (3)C28—C331.516 (3)
C10—H100.9500C28—C291.518 (2)
C11—C121.380 (3)C28—H281.0000
C11—H110.9500C29—C301.525 (3)
C12—C131.394 (3)C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C201.425 (2)C30—C311.520 (3)
C13—C141.432 (3)C30—H30A0.9900
C14—C151.343 (3)C30—H30B0.9900
C14—H140.9500C31—C321.509 (3)
C15—C161.438 (3)C31—H31A0.9900
C15—H150.9500C31—H31B0.9900
C16—C171.391 (3)C32—C331.531 (3)
C16—C191.419 (3)C32—H32A0.9900
C17—C181.382 (3)C32—H32B0.9900
C17—H170.9500C33—H33A0.9900
C18—H180.9500C33—H33B0.9900
C19—C201.428 (2)N2—H2A0.855 (9)
O1—C1—N1120.38 (16)C23—C22—C21110.36 (15)
O1—C1—C2121.25 (14)C23—C22—H22A109.6
N1—C1—C2118.37 (14)C21—C22—H22A109.6
C1—C2—C3112.77 (14)C23—C22—H22B109.6
C1—C2—H2C109.0C21—C22—H22B109.6
C3—C2—H2C109.0H22A—C22—H22B108.1
C1—C2—H2D109.0C24—C23—C22111.45 (16)
C3—C2—H2D109.0C24—C23—H23A109.3
H2C—C2—H2D107.8C22—C23—H23A109.3
C4—C3—C2112.71 (14)C24—C23—H23B109.3
C4—C3—H3A109.0C22—C23—H23B109.3
C2—C3—H3A109.0H23A—C23—H23B108.0
C4—C3—H3B109.0C23—C24—C25111.59 (16)
C2—C3—H3B109.0C23—C24—H24A109.3
H3A—C3—H3B107.8C25—C24—H24A109.3
C5—C4—C3112.66 (15)C23—C24—H24B109.3
C5—C4—H4A109.1C25—C24—H24B109.3
C3—C4—H4A109.1H24A—C24—H24B108.0
C5—C4—H4B109.1C26—C25—C24111.40 (15)
C3—C4—H4B109.1C26—C25—H25A109.3
H4A—C4—H4B107.8C24—C25—H25A109.3
C18—C5—C6118.59 (16)C26—C25—H25B109.3
C18—C5—C4119.68 (17)C24—C25—H25B109.3
C6—C5—C4121.66 (17)H25A—C25—H25B108.0
C5—C6—C19119.51 (17)C21—C26—C25109.86 (15)
C5—C6—C7122.80 (16)C21—C26—H26A109.7
C19—C6—C7117.69 (16)C25—C26—H26A109.7
C8—C7—C6121.81 (17)C21—C26—H26B109.7
C8—C7—H7119.1C25—C26—H26B109.7
C6—C7—H7119.1H26A—C26—H26B108.2
C7—C8—C9121.97 (18)O2—C27—N2125.42 (16)
C7—C8—H8119.0O2—C27—N1120.55 (16)
C9—C8—H8119.0N2—C27—N1113.96 (15)
C10—C9—C20119.10 (18)N2—C28—C33110.08 (14)
C10—C9—C8122.84 (19)N2—C28—C29111.64 (15)
C20—C9—C8118.06 (17)C33—C28—C29110.95 (16)
C11—C10—C9120.8 (2)N2—C28—H28108.0
C11—C10—H10119.6C33—C28—H28108.0
C9—C10—H10119.6C29—C28—H28108.0
C10—C11—C12120.65 (19)C28—C29—C30111.25 (16)
C10—C11—H11119.7C28—C29—H29A109.4
C12—C11—H11119.7C30—C29—H29A109.4
C11—C12—C13121.16 (19)C28—C29—H29B109.4
C11—C12—H12119.4C30—C29—H29B109.4
C13—C12—H12119.4H29A—C29—H29B108.0
C12—C13—C20118.67 (19)C31—C30—C29111.98 (17)
C12—C13—C14122.89 (18)C31—C30—H30A109.2
C20—C13—C14118.43 (17)C29—C30—H30A109.2
C15—C14—C13121.50 (18)C31—C30—H30B109.2
C15—C14—H14119.2C29—C30—H30B109.2
C13—C14—H14119.2H30A—C30—H30B107.9
C14—C15—C16121.61 (19)C32—C31—C30111.46 (17)
C14—C15—H15119.2C32—C31—H31A109.3
C16—C15—H15119.2C30—C31—H31A109.3
C17—C16—C19118.72 (16)C32—C31—H31B109.3
C17—C16—C15122.57 (18)C30—C31—H31B109.3
C19—C16—C15118.71 (17)H31A—C31—H31B108.0
C18—C17—C16120.66 (18)C31—C32—C33110.94 (17)
C18—C17—H17119.7C31—C32—H32A109.5
C16—C17—H17119.7C33—C32—H32A109.5
C17—C18—C5122.37 (18)C31—C32—H32B109.5
C17—C18—H18118.8C33—C32—H32B109.5
C5—C18—H18118.8H32A—C32—H32B108.0
C16—C19—C6120.14 (16)C28—C33—C32111.45 (16)
C16—C19—C20119.56 (16)C28—C33—H33A109.3
C6—C19—C20120.30 (17)C32—C33—H33A109.3
C9—C20—C13119.65 (17)C28—C33—H33B109.3
C9—C20—C19120.16 (16)C32—C33—H33B109.3
C13—C20—C19120.18 (18)H33A—C33—H33B108.0
N1—C21—C26112.10 (14)C1—N1—C27123.78 (14)
N1—C21—C22111.76 (14)C1—N1—C21119.09 (14)
C26—C21—C22111.18 (14)C27—N1—C21116.20 (13)
N1—C21—H21107.2C27—N2—C28121.70 (15)
C26—C21—H21107.2C27—N2—H2A119.8 (12)
C22—C21—H21107.2C28—N2—H2A118.4 (12)
O1—C1—C2—C325.2 (2)C8—C9—C20—C190.3 (3)
N1—C1—C2—C3154.78 (15)C12—C13—C20—C90.5 (3)
C1—C2—C3—C472.4 (2)C14—C13—C20—C9179.06 (17)
C2—C3—C4—C5173.33 (16)C12—C13—C20—C19179.60 (16)
C3—C4—C5—C1897.4 (2)C14—C13—C20—C190.1 (3)
C3—C4—C5—C679.7 (2)C16—C19—C20—C9179.55 (16)
C18—C5—C6—C190.2 (3)C6—C19—C20—C90.2 (3)
C4—C5—C6—C19176.96 (16)C16—C19—C20—C130.4 (3)
C18—C5—C6—C7179.69 (17)C6—C19—C20—C13179.31 (16)
C4—C5—C6—C72.5 (3)N1—C21—C22—C23176.13 (15)
C5—C6—C7—C8179.91 (17)C26—C21—C22—C2357.8 (2)
C19—C6—C7—C80.4 (3)C21—C22—C23—C2455.6 (2)
C6—C7—C8—C90.0 (3)C22—C23—C24—C2554.4 (2)
C7—C8—C9—C10179.94 (18)C23—C24—C25—C2654.8 (2)
C7—C8—C9—C200.4 (3)N1—C21—C26—C25176.17 (14)
C20—C9—C10—C110.2 (3)C22—C21—C26—C2557.92 (19)
C8—C9—C10—C11179.37 (19)C24—C25—C26—C2156.1 (2)
C9—C10—C11—C120.6 (3)N2—C28—C29—C30178.07 (16)
C10—C11—C12—C130.9 (3)C33—C28—C29—C3054.9 (2)
C11—C12—C13—C200.3 (3)C28—C29—C30—C3154.2 (3)
C11—C12—C13—C14179.83 (19)C29—C30—C31—C3254.4 (3)
C12—C13—C14—C15179.73 (19)C30—C31—C32—C3354.9 (3)
C20—C13—C14—C150.2 (3)N2—C28—C33—C32179.84 (17)
C13—C14—C15—C160.1 (3)C29—C28—C33—C3256.1 (2)
C14—C15—C16—C17179.91 (18)C31—C32—C33—C2856.2 (2)
C14—C15—C16—C190.6 (3)O1—C1—N1—C27178.60 (15)
C19—C16—C17—C180.2 (3)C2—C1—N1—C271.4 (2)
C15—C16—C17—C18179.24 (18)O1—C1—N1—C2110.1 (2)
C16—C17—C18—C50.3 (3)C2—C1—N1—C21169.94 (15)
C6—C5—C18—C170.5 (3)O2—C27—N1—C1118.43 (19)
C4—C5—C18—C17176.71 (18)N2—C27—N1—C164.3 (2)
C17—C16—C19—C60.5 (3)O2—C27—N1—C2150.4 (2)
C15—C16—C19—C6178.97 (16)N2—C27—N1—C21126.88 (16)
C17—C16—C19—C20179.76 (17)C26—C21—N1—C182.44 (19)
C15—C16—C19—C200.7 (3)C22—C21—N1—C1151.97 (15)
C5—C6—C19—C160.3 (3)C26—C21—N1—C2786.94 (18)
C7—C6—C19—C16179.21 (16)C22—C21—N1—C2738.7 (2)
C5—C6—C19—C20179.97 (16)O2—C27—N2—C285.7 (3)
C7—C6—C19—C200.5 (2)N1—C27—N2—C28177.15 (14)
C10—C9—C20—C130.7 (3)C33—C28—N2—C27147.59 (18)
C8—C9—C20—C13178.86 (17)C29—C28—N2—C2788.7 (2)
C10—C9—C20—C19179.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86 (1)2.17 (1)3.026 (2)176 (2)
C2—H2D···O2ii0.992.493.358 (2)146
C4—H4B···O2ii0.992.453.302 (2)144
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.855 (10)2.173 (10)3.026 (2)176.4 (15)
C2—H2D···O2ii0.992.493.358 (2)146
C4—H4B···O2ii0.992.453.302 (2)144
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Finantial support from CONACYT (grant No. CB2007–81383-Q) and for a scholarship to EGJ (grant No. 132946) is gratefully acknowledged.

References

First citationAbd-El-Aziz, A. S., Dalgakiran, S., Kucukkaya, I. & Wagner, B. D. (2013). Electrochim. Acta, 89, 445–453.  CAS Google Scholar
First citationBrandenburg, K. (1997). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X.-Q., Yan, X.-W. & Xie, X.-N. (2009). Z. Kristallogr. New Cryst. Struct. 224, 211–212.  CAS Google Scholar
First citationChérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27–o29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhinaa, A. N., Jagan, R., Sivakumar, K. & Chinnakali, K. (2010). Acta Cryst. E66, o1291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGonçalves, V. C. & Balogh, D. T. (2006). Eur. Polym. J. 42, 3303–3310.  Google Scholar
First citationImhof, W. (2007). Acta Cryst. E63, o4036–o4037.  CSD CrossRef IUCr Journals Google Scholar
First citationKaiser, C. R., Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2008). J. Chem. Res. (S), pp. 468–472.  CrossRef Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2676–o2677.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚlebioda, M. (1995). Tetrahedron, 51, 7829–7834.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L., Zhu, Y., Meng, X., Hao, J., Li, Q., Wei, Y. & Lin, Y. (2008). Chem. Eur. J. 14, 10923–10927.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o737-o738
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds