research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1190-1192

Crystal structure of aceto­nitrile­[η6-1-methyl-4-(1-methyl­eth­yl)benzene][1-(pyrimidin-2-yl)-3H-indol-1-ium-2-yl-κ2N,C]ruthenium(II) bis­­(hexa­fluorido­anti­monate)

CROSSMARK_Color_square_no_text.svg

aUppsala University, Department of Chemistry – BMC, Box 576, 75123 Uppsala, Sweden, and bUppsala University, Department of Chemistry – Ångström Laboratories, Box 523, 75120 Uppsala, Sweden
*Correspondence e-mail: andreas.orthaber@kemi.uu.se, lukasz.pilarski@kemi.uu.se

Edited by H. Ishida, Okayama University, Japan (Received 12 August 2015; accepted 7 September 2015; online 17 September 2015)

In the title compound, [Ru(C10H14)(C12H9N3)(CH3CN)][SbF6]2, the ruthenium(II) cation is η6-coordinated by the para-cymene ligand with a Ru–centroid(η6-benzene) distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to the C and N atoms of the pyrimidyl indole ligand are found to be 1.986 (4) and 2.082 (3) Å, respectively. The typical piano-stool coordination environment is saturated with an aceto­nitrile solvent mol­ecule with a Ru—N distance of 2.044 (3) Å. The indolyl ligand is protonated at the C3 position with the N=C imine bond length appropriate to that of related 3H-indole-based complexes. In the crystal, the complex cation is linked to the SbF6 ions through weak C—H⋯F hydrogen bonds.

1. Chemical context

Cyclo­metalated ruthenium compounds are well known catalytic inter­mediates in the C—H activation of various substrates (Arockiam et al., 2012[Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. (2012). Chem. Rev. 112, 5879-5918.]; Li et al., 2012[Li, B., Roisnel, T., Darcel, C. & Dixneuf, P. H. (2012). Dalton Trans. 41, 10934-10937.]; Ferrer Flegeau et al., 2011[Ferrer Flegeau, E., Bruneau, C., Dixneuf, P. H. & Jutand, A. (2011). J. Am. Chem. Soc. 133, 10161-10170.]). In a recent study on oxidative Ru-catal­ysed heteroarene C—H aryl­ation (Wang et al., 2015[Wang, L., Yang, D., Han, F., Li, D., Zhao, D. & Wang, R. (2015). Org. Lett. 17, 176-179.]; Ackermann & Lygin, 2011[Ackermann, L. & Lygin, A. V. (2011). Org. Lett. 13, 3332-3335.]), we demonstrated that [{RuCl2(p-cymene)}2] in the presence of AgSbF6 selectively ruthenates the C2—H bond of N-pyrimidine-substituted pyrroles and indoles (Sollert et al., 2015[Sollert, C., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Chem. Eur. J. 21, 5380-5386.]). We concluded that in our catalytic system, the resulting ruthenacyclic species likely act as precursors rather than on-cycle inter­mediates. In the course of our studies we observed the unusual formation of the title complex, which shows protonation at the C3 position. The title compound and related cyclometalated ruthenium complexes are shown schematically in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The title compound (I)[link] and related cyclo­metalated ruthenium complexes (II) (Sollert et al., 2015[Sollert, C., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Chem. Eur. J. 21, 5380-5386.]) and (III) (Chiang et al., 2010[Chiang, P.-Y., Lin, Y.-C., Wang, Y. & Liu, Y.-H. (2010). Organomet­allics, 29, 5776-5782.]).

2. Structural commentary

In the title compound (Fig. 2[link]), the ruthenium(II) cation is coord­inated in an η6 fashion by a para-cymene unit. The Ru—Cp-cymene distances range from 2.197 (4) to 2.298 (4) Å. The centroid of the para-cymene benzene ring (Cg) shows an Ru1—Cg distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to C2 and N3 of the pyrimidyl indole are found to be 1.986 (4) and 2.082 (3) Å, respectively. The coordination environment is saturated with one aceto­nitrile solvent mol­ecule, with an Ru1—N5 distance of 2.044 (3) Å. The least-squares planes of the 3H-indole ring system [r.m.s. deviation = 0.026 (4) Å] and the pyrimidine heterocycle [r.m.s. deviation = 0.013 (4) Å] are almost co-planar, making a dihedral angle of 2.6 (2)°. The Ru atom deviates by only 0.056 (1) Å from the 3H-indole plane. The 3H-indole shows a clear C2—N1 double bond of 1.345 (5) Å in the typical range for this class of compounds. The coordinating aceto­nitrile solvent mol­ecule shows slight deviation from a linear arrangement [C27—N5—Ru1 = 170.4 (3)°].

[Figure 2]
Figure 2
ORTEP representation of the mol­ecular components of the title compound, showing 50% probability displacement ellipsoids.

3. Supra­molecular features

The packing allows no direct inter­action of equivalent ruthenium complexes. The crystal packing shows a complex pattern in which two crystallographically independent SbF6 counter-ions occupy a void formed by symmetry-equivalent metal complexes. C—⋯H hydrogen bonds of the pyrimidyl­indole and para-cymene ligands with the SbF6 ions mainly account for the observed packing pattern (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯F7i 0.95 2.54 3.398 (6) 151
C12—H12⋯F1 0.95 2.39 3.157 (5) 138
C13—H13⋯F2 0.95 2.30 3.229 (5) 167
C51—H51⋯F11ii 0.95 2.54 3.485 (6) 174
C52—H52⋯F2 0.95 2.50 3.337 (5) 147
C54—H54⋯F5iii 0.95 2.26 3.110 (5) 148
C59—H59B⋯F6 0.98 2.32 3.253 (6) 158
C59—H59C⋯F5iii 0.98 2.45 3.270 (6) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

4. Database survey

This structure is related to chloro­(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]­ruthenium (Sollert et al., 2015[Sollert, C., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Chem. Eur. J. 21, 5380-5386.]), in which the double bond is at C2=C3. The Ru1—C2 and Ru1-cymene distances, however, are almost unaltered. This is consistent with the development of a positive charge at N1 to effect the C3 protonation rather than at the RuII atom. The C2 atom in the title compound is therefore formally an anionic ligand, and not a carbene carbon. A similar cyclo­metalated pyrrolinyl complex (2) Buil et al., 2015[Buil, M. L., Esteruelas, M. A., López, A. M. & Oñate, E. (2003). Organometallics, 22, 5274-5284.]; Fig. 1[link]) was obtained through HBF4-mediated rearrangement of N-allylic substituents. The Ru—C distances of 2.077 (4) Å (Buil et al., 2003[Buil, M. L., Esteruelas, M. A., López, A. M. & Oñate, E. (2003). Organometallics, 22, 5274-5284.]) are comparable to the Ru1—C2 distance of the title compound. The Ru-catal­ysed rearrangement of a 1,7-eneyne afforded the C2-cyclo­metalated 3H-indole (3) (Chiang et al., 2010[Chiang, P.-Y., Lin, Y.-C., Wang, Y. & Liu, Y.-H. (2010). Organomet­allics, 29, 5776-5782.]; Fig. 1[link]). Structural parameters of this cyclo­penta­dienyl-coordinated ruthenium complex are in good agreement with the title compound.

5. Synthesis and crystallization

A pre-dried Young's tube was charged with chlorido­(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]­ruthenium (50 mg, 1.0 equiv., 0.11 mmol) and AgSbF6 (76 mg, 2.0 equiv., 0.22 mmol). The tube was evacuated and backfilled with argon three times. The tube was equipped with a rubber septum and anhydrous MeCN (2 mL) was added via a syringe. The septum was removed, the tube sealed and wrapped in aluminium foil to protect the reaction mixture from light. The mixture was left stirring at room temperature for 18 h, after which the resulting precipitate was filtered off rapidly under air and the filtrate transferred immediately into a pre-dried round-bottom flask under argon. The solvent was evaporated under reduced pressure and a green solid was obtained. The solid was dissolved in d8-THF and transferred into a NMR tube under argon. The title compound was obtained as green crystals upon slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. All H atoms on carbon were placed at calculated positions [C—H = 0.95 (aromatic), 0.98 (meth­yl), 0.99 (methyl­ene) and 1.00 (methine) Å] using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). The Ru—C bonds were ignored in the ideal placement of the aromatic H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2
Mr 943.06
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 16.6046 (8), 15.5955 (7), 23.2786 (12)
V3) 6028.2 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.37
Crystal size (mm) 0.18 × 0.17 × 0.08
 
Data collection
Diffractometer BrukerAPEXII with CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.578, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27645, 6643, 4920
Rint 0.054
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.01
No. of reflections 6643
No. of parameters 392
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −1.00
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Cyclo­metalated ruthenium compounds are well known catalytic inter­mediates in the C—H activation of various substrates (Arockiam et al., 2012; Li et al., 2012; Ferrer Flegeau et al., 2011). In a recent study on oxidative Ru-catalysed heteroarene C—H aryl­ation (Wang et al., 2015; Ackermann & Lygin, 2011), we demonstrated that [{RuCl2(p-cymene)}2] in the presence of AgSbF6 selectively ruthenates the C2—H bond of N-pyrimidine-substituted pyrroles and indoles (Sollert et al., 2015). We concluded that in our catalytic system, the resulting ruthenacyclic species likely act as precursors rather than on-cycle inter­mediates. In the course of our studies we observed the unusual formation of the title complex, which shows protonation at the C3 position.

Structural commentary top

In the title compound, the ruthenium cation is coordinated in an η6 fashion by a para-cymene unit. The Ru—Cp-cymene distances range from 2.197 (4) to 2.298 (4) Å. The centroid of the para-cymene benzene ring (Cg) shows a Ru1—Cg distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to C2 and N3 of the pyrimidyl indole are found to be 1.986 (4) and 2.082 (3) Å, respectively. The coordination environment is saturated with one aceto­nitrile solvent molecule, with an Ru1—N5 distance of 2.044 (3) Å. The least-squares planes of the 3H-indole ring system [r.m.s. deviation = 0.026 (4) Å] and the pyrimidine heterocycle [r.m.s. deviation = 0.013 (4) Å] are almost co-planar, making a dihedral angle of 2.6 (2)°. The Ru atom deviates by only 0.056 (1) Å from the 3H-indole plane. The 3H-indole shows a clear C2—N1 double bond of 1.345 (5) Å in the typical range for this class of compounds. The coordinated aceto­nitrile solvent molecule shows slight deviation from a linear arrangement [C27—N5—Ru1 = 170.4 (3)°].

Supra­molecular features top

The packing allows no direct inter­action of equivalent ruthenium complexes. The crystal packing shows a complex pattern in which two crystallographically independent SbF6- counter-ions occupy a void formed by symmetry-equivalent metal complexes. The hydrogen bonds of the pyrimidyl­indole and para-cymene ligands with the SbF6- ions mainly account for the observed packing pattern (Table 1).

Database survey top

This structure is related to chloro­(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]­ruthenium, in which the double bond is at C2C3. The Ru1—C2 and Ru1-cymene distances, however, are almost unaltered. This is consistent with the development of a positive charge at N1 to effect the C3 protonation rather than at the Ru centre. The C2 atom in the title compound is therefore formally an anionic ligand, and not a carbene carbon. A similar cyclo­metalated pyrrolinyl complex (2) (Sollert et al., 2015) was obtained through HBF4-mediated rearrangement of N-allylic substituents. The Ru—C distances of 2.077 (4) Å (Buil et al., 2003) are comparable to the Ru1—C2 distance of the title compound. The Ru-catalysed rearrangement of a 1,7-eneyne afforded the C2-cyclo­metalated 3H-indole (3) (Chiang et al., 2010). Structural parameters of this cyclo­penta­dienyl-coordinated ruthenium complex are in good agreement with the title compound.

Synthesis and crystallization top

A pre-dried Young's tube was charged with chloro­(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]­ruthenium (50 mg, 1.0 equiv., 0.11 mmol) and AgSbF6 (76 mg, 2.0 equiv., 0.22 mmol). The tube was evacuated and backfilled with argon three times. The tube was equipped with a rubber septum and anhydrous MeCN (2 mL) was added via a syringe. The septum was removed, the tube sealed and wrapped in aluminium foil to protect the reaction mixture from light. The mixture was left stirring at room temperature for 18 h, after which the resulting precipitate was filtered off rapidly under air and the filtrate transferred immediately into a pre-dried round-bottom flask under argon. The solvent was evaporated under reduced pressure and a green solid was obtained. The solid was dissolved in d8-THF and transferred into a NMR tube under argon. The title compound was obtained as green crystals upon slow evaporation of the solvent.

Refinement top

Crystal data, data collection and refinement details are summarized in Table 2. All H atoms on carbon were placed at calculated positions [C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methyl­ene) and 1.00 (methine) Å] using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl) . The Ru—C bonds were ignored in the ideal placement of the aromatic H-atoms.

Related literature top

For related literature, see: Ackermann & Lygin (2011); Arockiam et al. (2012); Buil et al. (2003); Chiang et al. (2010); Ferrer Flegeau et al. (2011); Li et al. (2012); Sollert et al. (2015); Wang et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Title compound (I) and related cyclometalated ruthenium complexes (II) (Sollert et al., 2015) and (III) (Chiang et al., 2010).
[Figure 2] Fig. 2. ORTEP representation of the molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Acetonitrile[η6-1-methyl-4-(1-methylethyl)benzene][1-(pyrimidin-2-yl)-3H-indol-1-ium-2-yl-κ2N,C]ruthenium(II) bis(hexafluoridoantimonate) top
Crystal data top
[Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2Dx = 2.078 Mg m3
Mr = 943.06Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4920 reflections
a = 16.6046 (8) Åθ = 1.8–25.2°
b = 15.5955 (7) ŵ = 2.37 mm1
c = 23.2786 (12) ÅT = 100 K
V = 6028.2 (5) Å3Plate, green
Z = 80.18 × 0.17 × 0.08 mm
F(000) = 3616
Data collection top
BrukerAPEXII with CCD
diffractometer
6643 independent reflections
Radiation source: fine-focus sealed tube4920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2120
Tmin = 0.578, Tmax = 0.746k = 1919
27645 measured reflectionsl = 2927
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0294P)2 + 2.8958P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
6643 reflectionsΔρmax = 0.89 e Å3
392 parametersΔρmin = 1.00 e Å3
Crystal data top
[Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2V = 6028.2 (5) Å3
Mr = 943.06Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.6046 (8) ŵ = 2.37 mm1
b = 15.5955 (7) ÅT = 100 K
c = 23.2786 (12) Å0.18 × 0.17 × 0.08 mm
Data collection top
BrukerAPEXII with CCD
diffractometer
6643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4920 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.746Rint = 0.054
27645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.01Δρmax = 0.89 e Å3
6643 reflectionsΔρmin = 1.00 e Å3
392 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equipped with an APEX II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.93384 (2)0.22549 (2)0.87058 (2)0.01738 (8)
Sb10.85442 (2)0.13417 (2)0.94657 (2)0.02309 (8)
Sb20.78888 (2)0.49530 (2)0.71378 (2)0.02768 (8)
F10.89213 (19)0.09995 (16)1.01877 (12)0.0461 (8)
F20.93350 (14)0.06576 (14)0.91106 (11)0.0282 (6)
F30.77479 (15)0.20299 (16)0.98028 (12)0.0372 (7)
F40.92598 (15)0.22620 (14)0.94954 (12)0.0359 (6)
F50.82004 (18)0.1684 (2)0.87420 (12)0.0517 (8)
F60.78500 (18)0.04062 (18)0.94558 (15)0.0605 (10)
F70.7883 (2)0.37969 (16)0.69278 (13)0.0558 (9)
F80.7572 (2)0.46434 (18)0.78733 (12)0.0538 (9)
F90.79200 (19)0.61114 (16)0.73516 (12)0.0464 (8)
F100.6831 (2)0.5081 (2)0.69167 (18)0.0795 (12)
F110.89525 (19)0.48324 (19)0.73806 (18)0.0732 (11)
F120.8239 (3)0.5243 (2)0.64075 (14)0.0872 (14)
N10.90603 (19)0.3372 (2)0.96626 (14)0.0178 (7)
N20.8897 (2)0.2522 (2)1.04905 (14)0.0214 (8)
N30.91640 (18)0.1923 (2)0.95632 (14)0.0176 (7)
N51.0551 (2)0.2291 (2)0.88533 (14)0.0210 (8)
C20.9204 (2)0.3380 (3)0.90940 (18)0.0206 (9)
C30.9232 (3)0.4290 (2)0.89077 (17)0.0223 (9)
H3A0.88060.44100.86210.027*
H3B0.97620.44310.87380.027*
C40.9091 (2)0.4796 (2)0.94537 (18)0.0214 (9)
C50.9052 (3)0.5662 (3)0.95639 (19)0.0263 (10)
H50.91460.60680.92670.032*
C60.8872 (3)0.5931 (3)1.0116 (2)0.0281 (10)
H60.88470.65281.01960.034*
C70.8729 (3)0.5347 (3)1.05571 (19)0.0267 (10)
H70.85920.55491.09300.032*
C80.8786 (2)0.4467 (3)1.04542 (18)0.0223 (9)
H80.87030.40581.07510.027*
C90.8969 (2)0.4222 (2)0.99016 (18)0.0191 (9)
C100.9032 (2)0.2573 (2)0.99352 (18)0.0190 (9)
C110.8882 (2)0.1724 (3)1.07022 (18)0.0230 (9)
H110.87880.16501.11020.028*
C120.8997 (2)0.1006 (3)1.03687 (17)0.0229 (9)
H120.89670.04461.05270.028*
C130.9157 (2)0.1136 (2)0.97918 (18)0.0219 (9)
H130.92640.06550.95530.026*
C271.1233 (3)0.2267 (2)0.88601 (17)0.0209 (9)
C281.2103 (3)0.2249 (3)0.8860 (2)0.0326 (11)
H28A1.23030.23920.84760.049*
H28B1.22890.16740.89670.049*
H28C1.23070.26680.91380.049*
C500.9606 (3)0.2124 (3)0.77680 (18)0.0247 (10)
C510.9519 (3)0.1264 (3)0.79863 (17)0.0241 (10)
H510.99320.08560.79160.029*
C520.8850 (3)0.1023 (3)0.82936 (17)0.0227 (9)
H520.88080.04520.84330.027*
C530.8216 (2)0.1625 (3)0.84050 (18)0.0207 (9)
C540.8274 (2)0.2446 (2)0.81594 (16)0.0196 (9)
H540.78420.28400.82050.024*
C550.8962 (2)0.2697 (3)0.78465 (17)0.0213 (9)
H550.89900.32570.76870.026*
C561.0360 (3)0.2354 (3)0.74384 (19)0.0305 (11)
H561.08230.20630.76310.037*
C571.0281 (3)0.1975 (3)0.6834 (2)0.0448 (14)
H57A1.01890.13550.68610.067*
H57B1.07770.20830.66170.067*
H57C0.98250.22440.66350.067*
C581.0541 (3)0.3316 (3)0.7425 (2)0.0445 (13)
H58A1.10710.34110.72520.067*
H58C1.05390.35420.78180.067*
H58B1.01290.36110.71980.067*
C590.7499 (3)0.1355 (3)0.87511 (19)0.0283 (10)
H59C0.72730.18550.89490.042*
H59B0.76640.09260.90350.042*
H59A0.70910.11080.84960.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01528 (16)0.01805 (16)0.01879 (17)0.00165 (13)0.00117 (14)0.00097 (14)
Sb10.01982 (15)0.02391 (15)0.02554 (16)0.00207 (12)0.00044 (13)0.00291 (13)
Sb20.03160 (17)0.02741 (16)0.02404 (16)0.00270 (13)0.00236 (13)0.00066 (13)
F10.073 (2)0.0358 (15)0.0295 (16)0.0094 (15)0.0018 (15)0.0053 (13)
F20.0254 (13)0.0237 (12)0.0354 (15)0.0027 (11)0.0018 (12)0.0042 (11)
F30.0258 (15)0.0391 (15)0.0466 (17)0.0006 (12)0.0117 (13)0.0062 (13)
F40.0288 (15)0.0234 (13)0.0557 (18)0.0042 (11)0.0071 (13)0.0046 (13)
F50.0488 (19)0.075 (2)0.0315 (17)0.0302 (17)0.0106 (14)0.0072 (15)
F60.0386 (18)0.0464 (17)0.096 (3)0.0217 (14)0.0235 (18)0.0285 (18)
F70.089 (3)0.0309 (16)0.0481 (19)0.0035 (15)0.0041 (18)0.0131 (14)
F80.082 (2)0.0438 (17)0.0351 (17)0.0126 (17)0.0162 (16)0.0004 (14)
F90.068 (2)0.0297 (15)0.0410 (17)0.0018 (14)0.0026 (16)0.0015 (13)
F100.055 (2)0.085 (3)0.098 (3)0.011 (2)0.041 (2)0.017 (2)
F110.0317 (18)0.0531 (19)0.135 (4)0.0016 (15)0.007 (2)0.019 (2)
F120.164 (4)0.055 (2)0.042 (2)0.028 (2)0.048 (2)0.0118 (17)
N10.0178 (17)0.0198 (17)0.0158 (18)0.0006 (14)0.0008 (14)0.0036 (14)
N20.0171 (18)0.0243 (19)0.023 (2)0.0003 (15)0.0010 (15)0.0002 (16)
N30.0131 (17)0.0188 (17)0.0209 (19)0.0016 (13)0.0025 (14)0.0020 (15)
N50.023 (2)0.0222 (18)0.0182 (19)0.0017 (15)0.0006 (15)0.0003 (15)
C20.010 (2)0.027 (2)0.024 (2)0.0011 (16)0.0018 (17)0.0022 (18)
C30.025 (2)0.025 (2)0.017 (2)0.0011 (18)0.0005 (18)0.0039 (18)
C40.014 (2)0.023 (2)0.027 (2)0.0000 (16)0.0017 (18)0.0017 (19)
C50.022 (2)0.027 (2)0.030 (3)0.0025 (18)0.0022 (19)0.003 (2)
C60.024 (2)0.025 (2)0.035 (3)0.0022 (19)0.002 (2)0.009 (2)
C70.025 (2)0.028 (2)0.027 (2)0.0029 (19)0.002 (2)0.008 (2)
C80.020 (2)0.022 (2)0.024 (2)0.0023 (17)0.0005 (18)0.0019 (19)
C90.013 (2)0.019 (2)0.025 (2)0.0008 (16)0.0015 (17)0.0016 (18)
C100.0097 (19)0.025 (2)0.022 (2)0.0012 (16)0.0028 (17)0.0017 (18)
C110.020 (2)0.030 (2)0.020 (2)0.0007 (18)0.0028 (18)0.0031 (19)
C120.022 (2)0.027 (2)0.020 (2)0.0031 (18)0.0039 (18)0.0056 (19)
C130.020 (2)0.020 (2)0.026 (2)0.0012 (16)0.0060 (19)0.0006 (18)
C270.026 (2)0.020 (2)0.017 (2)0.0017 (18)0.0019 (18)0.0029 (17)
C280.020 (2)0.043 (3)0.035 (3)0.005 (2)0.002 (2)0.007 (2)
C500.024 (2)0.032 (2)0.018 (2)0.0057 (19)0.0021 (18)0.0047 (19)
C510.026 (2)0.027 (2)0.019 (2)0.0100 (18)0.0035 (18)0.0101 (19)
C520.027 (2)0.022 (2)0.020 (2)0.0010 (18)0.0037 (19)0.0070 (18)
C530.015 (2)0.025 (2)0.022 (2)0.0001 (17)0.0028 (18)0.0043 (18)
C540.016 (2)0.025 (2)0.017 (2)0.0041 (17)0.0047 (17)0.0043 (18)
C550.024 (2)0.024 (2)0.016 (2)0.0022 (18)0.0005 (18)0.0024 (18)
C560.026 (2)0.043 (3)0.022 (2)0.005 (2)0.007 (2)0.003 (2)
C570.045 (3)0.066 (4)0.023 (3)0.003 (3)0.014 (2)0.001 (3)
C580.036 (3)0.053 (3)0.045 (3)0.004 (3)0.013 (3)0.001 (3)
C590.026 (2)0.028 (2)0.031 (3)0.006 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Ru1—C21.986 (4)C56—C571.533 (6)
Ru1—N32.082 (3)C56—H561.0000
Ru1—N52.044 (3)C57—H57A0.9800
Ru1—C502.237 (4)C57—H57B0.9800
Ru1—C512.298 (4)C57—H57C0.9800
Ru1—C522.296 (4)C58—H58A0.9800
Ru1—C532.220 (4)C58—H58C0.9800
Ru1—C542.197 (4)C58—H58B0.9800
Ru1—C552.206 (4)C2—N11.345 (5)
Sb1—F11.871 (3)C2—C31.485 (5)
Sb1—F21.883 (2)C3—C41.514 (5)
Sb1—F31.875 (2)C3—H3A0.9900
Sb1—F41.865 (2)C3—H3B0.9900
Sb1—F51.857 (3)C4—C51.377 (6)
Sb1—F61.860 (3)C4—C91.388 (5)
Sb2—F71.868 (3)C9—C81.376 (5)
Sb2—F81.855 (3)C9—N11.447 (5)
Sb2—F91.875 (3)C8—C71.396 (6)
Sb2—F101.841 (3)C8—H80.9500
Sb2—F111.864 (3)C7—C61.393 (6)
Sb2—F121.853 (3)C7—H70.9500
N5—C271.133 (5)C6—C51.384 (6)
C50—C551.406 (6)C6—H60.9500
C50—C511.442 (6)C5—H50.9500
C50—C561.510 (6)N1—C101.399 (5)
C51—C521.373 (6)C10—N21.314 (5)
C51—H510.9500C10—N31.351 (5)
C52—C531.436 (5)N2—C111.339 (5)
C52—H520.9500C11—C121.375 (6)
C53—C541.406 (5)C11—H110.9500
C53—C591.497 (6)C12—C131.384 (6)
C54—C551.409 (6)C12—H120.9500
C54—H540.9500C13—N31.338 (5)
C55—H550.9500C13—H130.9500
C59—H59C0.9800C27—C281.444 (6)
C59—H59B0.9800C28—H28A0.9800
C59—H59A0.9800C28—H28B0.9800
C56—C581.531 (6)C28—H28C0.9800
C2—Ru1—N590.54 (14)C59—C53—Ru1128.4 (3)
C2—Ru1—N376.59 (15)C53—C54—C55121.3 (4)
N5—Ru1—N389.02 (13)C53—C54—Ru172.3 (2)
C2—Ru1—C5493.05 (15)C55—C54—Ru171.7 (2)
N5—Ru1—C54152.34 (14)C53—C54—H54119.4
N3—Ru1—C54118.48 (14)C55—C54—H54119.4
C2—Ru1—C5596.00 (16)Ru1—C54—H54129.0
N5—Ru1—C55115.03 (14)C50—C55—C54120.5 (4)
N3—Ru1—C55155.13 (14)C50—C55—Ru172.7 (2)
C54—Ru1—C5537.32 (15)C54—C55—Ru171.0 (2)
C2—Ru1—C53116.11 (15)C50—C55—H55119.8
N5—Ru1—C53153.20 (14)C54—C55—H55119.8
N3—Ru1—C5394.33 (14)Ru1—C55—H55128.8
C54—Ru1—C5337.11 (14)C53—C59—H59C109.5
C55—Ru1—C5367.31 (15)C53—C59—H59B109.5
C2—Ru1—C50123.14 (16)H59C—C59—H59B109.5
N5—Ru1—C5088.31 (14)C53—C59—H59A109.5
N3—Ru1—C50160.11 (14)H59C—C59—H59A109.5
C54—Ru1—C5066.88 (15)H59B—C59—H59A109.5
C55—Ru1—C5036.89 (14)C50—C56—C58113.9 (4)
C53—Ru1—C5079.57 (15)C50—C56—C57107.7 (4)
C2—Ru1—C52152.89 (15)C58—C56—C57112.1 (4)
N5—Ru1—C52116.18 (14)C50—C56—H56107.6
N3—Ru1—C5298.24 (14)C58—C56—H56107.6
C54—Ru1—C5265.67 (15)C57—C56—H56107.6
C55—Ru1—C5277.44 (15)C56—C57—H57A109.5
C53—Ru1—C5237.03 (14)C56—C57—H57B109.5
C50—Ru1—C5265.55 (15)H57A—C57—H57B109.5
C2—Ru1—C51160.05 (16)C56—C57—H57C109.5
N5—Ru1—C5190.72 (14)H57A—C57—H57C109.5
N3—Ru1—C51123.34 (14)H57B—C57—H57C109.5
C54—Ru1—C5176.96 (15)C56—C58—H58A109.5
C55—Ru1—C5165.56 (15)C56—C58—H58C109.5
C53—Ru1—C5165.32 (15)H58A—C58—H58C109.5
C50—Ru1—C5137.03 (15)C56—C58—H58B109.5
C52—Ru1—C5134.79 (15)H58A—C58—H58B109.5
F5—Sb1—F691.35 (15)H58C—C58—H58B109.5
F5—Sb1—F490.48 (13)N1—C2—C3107.6 (3)
F6—Sb1—F4178.08 (15)N1—C2—Ru1117.3 (3)
F5—Sb1—F1178.35 (14)C3—C2—Ru1135.1 (3)
F6—Sb1—F189.71 (14)C2—C3—C4104.4 (3)
F4—Sb1—F188.45 (12)C2—C3—H3A110.9
F5—Sb1—F389.91 (12)C4—C3—H3A110.9
F6—Sb1—F390.98 (12)C2—C3—H3B110.9
F4—Sb1—F389.61 (11)C4—C3—H3B110.9
F1—Sb1—F391.34 (12)H3A—C3—H3B108.9
F5—Sb1—F288.79 (11)C5—C4—C9119.0 (4)
F6—Sb1—F288.99 (11)C5—C4—C3132.5 (4)
F4—Sb1—F290.46 (10)C9—C4—C3108.5 (3)
F1—Sb1—F289.96 (12)C8—C9—C4123.8 (4)
F3—Sb1—F2178.70 (12)C8—C9—N1129.6 (4)
F10—Sb2—F1291.0 (2)C4—C9—N1106.7 (3)
F10—Sb2—F890.89 (17)C9—C8—C7116.6 (4)
F12—Sb2—F8178.02 (18)C9—C8—H8121.7
F10—Sb2—F11178.52 (18)C7—C8—H8121.7
F12—Sb2—F1190.30 (19)C6—C7—C8120.3 (4)
F8—Sb2—F1187.86 (17)C6—C7—H7119.8
F10—Sb2—F791.56 (15)C8—C7—H7119.8
F12—Sb2—F789.85 (14)C5—C6—C7121.5 (4)
F8—Sb2—F789.37 (13)C5—C6—H6119.2
F11—Sb2—F789.24 (15)C7—C6—H6119.2
F10—Sb2—F989.76 (14)C4—C5—C6118.7 (4)
F12—Sb2—F989.97 (14)C4—C5—H5120.6
F8—Sb2—F990.77 (12)C6—C5—H5120.6
F11—Sb2—F989.45 (14)C2—N1—C10117.4 (3)
F7—Sb2—F9178.67 (15)C2—N1—C9112.8 (3)
C27—N5—Ru1170.4 (3)C10—N1—C9129.7 (3)
C55—C50—C51117.9 (4)N2—C10—N3127.8 (4)
C55—C50—C56123.1 (4)N2—C10—N1120.4 (4)
C51—C50—C56118.9 (4)N3—C10—N1111.8 (3)
C55—C50—Ru170.4 (2)C10—N2—C11114.9 (4)
C51—C50—Ru173.8 (2)N2—C11—C12123.1 (4)
C56—C50—Ru1129.7 (3)N2—C11—H11118.5
C52—C51—C50121.4 (4)C12—C11—H11118.5
C52—C51—Ru172.5 (2)C11—C12—C13117.1 (4)
C50—C51—Ru169.2 (2)C11—C12—H12121.4
C52—C51—H51119.3C13—C12—H12121.4
C50—C51—H51119.3N3—C13—C12121.4 (4)
Ru1—C51—H51132.0N3—C13—H13119.3
C51—C52—C53120.5 (4)C12—C13—H13119.3
C51—C52—Ru172.7 (2)C13—N3—C10115.6 (3)
C53—C52—Ru168.6 (2)C13—N3—Ru1127.6 (3)
C51—C52—H52119.7C10—N3—Ru1116.8 (3)
C53—C52—H52119.7N5—C27—C28178.9 (5)
Ru1—C52—H52131.8C27—C28—H28A109.5
C54—C53—C52118.2 (4)C27—C28—H28B109.5
C54—C53—C59122.0 (4)H28A—C28—H28B109.5
C52—C53—C59119.8 (4)C27—C28—H28C109.5
C54—C53—Ru170.6 (2)H28A—C28—H28C109.5
C52—C53—Ru174.3 (2)H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···F7i0.952.543.398 (6)151
C12—H12···F10.952.393.157 (5)138
C13—H13···F20.952.303.229 (5)167
C51—H51···F11ii0.952.543.485 (6)174
C52—H52···F20.952.503.337 (5)147
C54—H54···F5iii0.952.263.110 (5)148
C59—H59B···F60.982.323.253 (6)158
C59—H59C···F5iii0.982.453.270 (6)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···F7i0.952.543.398 (6)151
C12—H12···F10.952.393.157 (5)138
C13—H13···F20.952.303.229 (5)167
C51—H51···F11ii0.952.543.485 (6)174
C52—H52···F20.952.503.337 (5)147
C54—H54···F5iii0.952.263.110 (5)148
C59—H59B···F60.982.323.253 (6)158
C59—H59C···F5iii0.982.453.270 (6)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2
Mr943.06
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.6046 (8), 15.5955 (7), 23.2786 (12)
V3)6028.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.18 × 0.17 × 0.08
Data collection
DiffractometerBrukerAPEXII with CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.578, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
27645, 6643, 4920
Rint0.054
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.01
No. of reflections6643
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 1.00

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The authors would like to thank the Swedish research council (Vetenskapsrådet) for support.

References

First citationAckermann, L. & Lygin, A. V. (2011). Org. Lett. 13, 3332–3335.  CrossRef CAS PubMed Google Scholar
First citationArockiam, P. B., Bruneau, C. & Dixneuf, P. H. (2012). Chem. Rev. 112, 5879–5918.  CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBuil, M. L., Esteruelas, M. A., López, A. M. & Oñate, E. (2003). Organometallics, 22, 5274–5284.  CSD CrossRef CAS Google Scholar
First citationChiang, P.-Y., Lin, Y.-C., Wang, Y. & Liu, Y.-H. (2010). Organomet­allics, 29, 5776–5782.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrer Flegeau, E., Bruneau, C., Dixneuf, P. H. & Jutand, A. (2011). J. Am. Chem. Soc. 133, 10161–10170.  CrossRef PubMed Google Scholar
First citationLi, B., Roisnel, T., Darcel, C. & Dixneuf, P. H. (2012). Dalton Trans. 41, 10934–10937.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSollert, C., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Chem. Eur. J. 21, 5380–5386.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, L., Yang, D., Han, F., Li, D., Zhao, D. & Wang, R. (2015). Org. Lett. 17, 176–179.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1190-1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds