research communications
η6-1-methyl-4-(1-methylethyl)benzene][1-(pyrimidin-2-yl)-3H-indol-1-ium-2-yl-κ2N,C]ruthenium(II) bis(hexafluoridoantimonate)
of acetonitrile[aUppsala University, Department of Chemistry – BMC, Box 576, 75123 Uppsala, Sweden, and bUppsala University, Department of Chemistry – Ångström Laboratories, Box 523, 75120 Uppsala, Sweden
*Correspondence e-mail: andreas.orthaber@kemi.uu.se, lukasz.pilarski@kemi.uu.se
In the title compound, [Ru(C10H14)(C12H9N3)(CH3CN)][SbF6]2, the ruthenium(II) cation is η6-coordinated by the para-cymene ligand with a Ru–centroid(η6-benzene) distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to the C and N atoms of the pyrimidyl indole ligand are found to be 1.986 (4) and 2.082 (3) Å, respectively. The typical piano-stool coordination environment is saturated with an acetonitrile solvent molecule with a Ru—N distance of 2.044 (3) Å. The indolyl ligand is protonated at the C3 position with the N=C imine bond length appropriate to that of related 3H-indole-based complexes. In the crystal, the complex cation is linked to the SbF6− ions through weak C—H⋯F hydrogen bonds.
Keywords: crystal structure; cyclometalated RuII; pyrimidyl-3H-indole; para-cymene; C—H⋯F hydrogen bonds.
CCDC reference: 1027878
1. Chemical context
Cyclometalated ruthenium compounds are well known catalytic intermediates in the C—H activation of various substrates (Arockiam et al., 2012; Li et al., 2012; Ferrer Flegeau et al., 2011). In a recent study on oxidative Ru-catalysed heteroarene C—H arylation (Wang et al., 2015; Ackermann & Lygin, 2011), we demonstrated that [{RuCl2(p-cymene)}2] in the presence of AgSbF6 selectively ruthenates the C2—H bond of N-pyrimidine-substituted pyrroles and indoles (Sollert et al., 2015). We concluded that in our catalytic system, the resulting ruthenacyclic species likely act as precursors rather than on-cycle intermediates. In the course of our studies we observed the unusual formation of the title complex, which shows protonation at the C3 position. The title compound and related cyclometalated ruthenium complexes are shown schematically in Fig. 1.
2. Structural commentary
In the title compound (Fig. 2), the ruthenium(II) cation is coordinated in an η6 fashion by a para-cymene unit. The Ru—Cp-cymene distances range from 2.197 (4) to 2.298 (4) Å. The centroid of the para-cymene benzene ring (Cg) shows an Ru1—Cg distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to C2 and N3 of the pyrimidyl indole are found to be 1.986 (4) and 2.082 (3) Å, respectively. The coordination environment is saturated with one acetonitrile solvent molecule, with an Ru1—N5 distance of 2.044 (3) Å. The least-squares planes of the 3H-indole ring system [r.m.s. deviation = 0.026 (4) Å] and the pyrimidine heterocycle [r.m.s. deviation = 0.013 (4) Å] are almost co-planar, making a dihedral angle of 2.6 (2)°. The Ru atom deviates by only 0.056 (1) Å from the 3H-indole plane. The 3H-indole shows a clear C2—N1 double bond of 1.345 (5) Å in the typical range for this class of compounds. The coordinating acetonitrile solvent molecule shows slight deviation from a linear arrangement [C27—N5—Ru1 = 170.4 (3)°].
3. Supramolecular features
The packing allows no direct interaction of equivalent ruthenium complexes. The crystal packing shows a complex pattern in which two crystallographically independent SbF6− counter-ions occupy a void formed by symmetry-equivalent metal complexes. C—⋯H hydrogen bonds of the pyrimidylindole and para-cymene ligands with the SbF6− ions mainly account for the observed packing pattern (Table 1).
4. Database survey
This structure is related to chloro(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]ruthenium (Sollert et al., 2015), in which the double bond is at C2=C3. The Ru1—C2 and Ru1-cymene distances, however, are almost unaltered. This is consistent with the development of a positive charge at N1 to effect the C3 protonation rather than at the RuII atom. The C2 atom in the title compound is therefore formally an anionic ligand, and not a carbene carbon. A similar cyclometalated pyrrolinyl complex (2) Buil et al., 2015; Fig. 1) was obtained through HBF4-mediated rearrangement of N-allylic substituents. The Ru—C distances of 2.077 (4) Å (Buil et al., 2003) are comparable to the Ru1—C2 distance of the title compound. The Ru-catalysed rearrangement of a 1,7-eneyne afforded the C2-cyclometalated 3H-indole (3) (Chiang et al., 2010; Fig. 1). Structural parameters of this cyclopentadienyl-coordinated ruthenium complex are in good agreement with the title compound.
5. Synthesis and crystallization
A pre-dried Young's tube was charged with chlorido(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]ruthenium (50 mg, 1.0 equiv., 0.11 mmol) and AgSbF6 (76 mg, 2.0 equiv., 0.22 mmol). The tube was evacuated and backfilled with argon three times. The tube was equipped with a rubber septum and anhydrous MeCN (2 mL) was added via a syringe. The septum was removed, the tube sealed and wrapped in aluminium foil to protect the reaction mixture from light. The mixture was left stirring at room temperature for 18 h, after which the resulting precipitate was filtered off rapidly under air and the filtrate transferred immediately into a pre-dried round-bottom flask under argon. The solvent was evaporated under reduced pressure and a green solid was obtained. The solid was dissolved in d8-THF and transferred into a NMR tube under argon. The title compound was obtained as green crystals upon slow evaporation of the solvent.
6. Refinement
Crystal data, data collection and . All H atoms on carbon were placed at calculated positions [C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) and 1.00 (methine) Å] using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The Ru—C bonds were ignored in the ideal placement of the aromatic H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1027878
10.1107/S2056989015016710/is5413sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016710/is5413Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016710/is5413Isup3.mol
Cyclometalated ruthenium compounds are well known catalytic intermediates in the C—H activation of various substrates (Arockiam et al., 2012; Li et al., 2012; Ferrer Flegeau et al., 2011). In a recent study on oxidative Ru-catalysed heteroarene C—H arylation (Wang et al., 2015; Ackermann & Lygin, 2011), we demonstrated that [{RuCl2(p-cymene)}2] in the presence of AgSbF6 selectively ruthenates the C2—H bond of N-pyrimidine-substituted pyrroles and indoles (Sollert et al., 2015). We concluded that in our catalytic system, the resulting ruthenacyclic species likely act as precursors rather than on-cycle intermediates. In the course of our studies we observed the unusual formation of the title complex, which shows protonation at the C3 position.
In the title compound, the ruthenium cation is coordinated in an η6 fashion by a para-cymene unit. The Ru—Cp-cymene distances range from 2.197 (4) to 2.298 (4) Å. The centroid of the para-cymene benzene ring (Cg) shows a Ru1—Cg distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to C2 and N3 of the pyrimidyl indole are found to be 1.986 (4) and 2.082 (3) Å, respectively. The coordination environment is saturated with one acetonitrile solvent molecule, with an Ru1—N5 distance of 2.044 (3) Å. The least-squares planes of the 3H-indole ring system [r.m.s. deviation = 0.026 (4) Å] and the pyrimidine heterocycle [r.m.s. deviation = 0.013 (4) Å] are almost co-planar, making a dihedral angle of 2.6 (2)°. The Ru atom deviates by only 0.056 (1) Å from the 3H-indole plane. The 3H-indole shows a clear C2—N1 double bond of 1.345 (5) Å in the typical range for this class of compounds. The coordinated acetonitrile solvent molecule shows slight deviation from a linear arrangement [C27—N5—Ru1 = 170.4 (3)°].
The packing allows no direct interaction of equivalent ruthenium complexes. The crystal packing shows a complex pattern in which two crystallographically independent SbF6- counter-ions occupy a void formed by symmetry-equivalent metal complexes. The hydrogen bonds of the pyrimidylindole and para-cymene ligands with the SbF6- ions mainly account for the observed packing pattern (Table 1).
This structure is related to chloro(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]ruthenium, in which the double bond is at C2═C3. The Ru1—C2 and Ru1-cymene distances, however, are almost unaltered. This is consistent with the development of a positive charge at N1 to effect the C3 protonation rather than at the Ru centre. The C2 atom in the title compound is therefore formally an anionic ligand, and not a carbene carbon. A similar cyclometalated pyrrolinyl complex (2) (Sollert et al., 2015) was obtained through HBF4-mediated rearrangement of N-allylic substituents. The Ru—C distances of 2.077 (4) Å (Buil et al., 2003) are comparable to the Ru1—C2 distance of the title compound. The Ru-catalysed rearrangement of a 1,7-eneyne afforded the C2-cyclometalated 3H-indole (3) (Chiang et al., 2010). Structural parameters of this cyclopentadienyl-coordinated ruthenium complex are in good agreement with the title compound.
A pre-dried Young's tube was charged with chloro(η6-para-cymene)[κ2-N,C-1-(pyrimidin-2-yl)-1H-indole]ruthenium (50 mg, 1.0 equiv., 0.11 mmol) and AgSbF6 (76 mg, 2.0 equiv., 0.22 mmol). The tube was evacuated and backfilled with argon three times. The tube was equipped with a rubber septum and anhydrous MeCN (2 mL) was added via a syringe. The septum was removed, the tube sealed and wrapped in aluminium foil to protect the reaction mixture from light. The mixture was left stirring at room temperature for 18 h, after which the resulting precipitate was filtered off rapidly under air and the filtrate transferred immediately into a pre-dried round-bottom flask under argon. The solvent was evaporated under reduced pressure and a green solid was obtained. The solid was dissolved in d8-THF and transferred into a NMR tube under argon. The title compound was obtained as green crystals upon slow evaporation of the solvent.
Crystal data, data collection and
details are summarized in Table 2. All H atoms on carbon were placed at calculated positions [C—H = 0.95 (aromatic), 0.98 (methyl), 0.99 (methylene) and 1.00 (methine) Å] using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl) . The Ru—C bonds were ignored in the ideal placement of the aromatic H-atoms.Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. Title compound (I) and related cyclometalated ruthenium complexes (II) (Sollert et al., 2015) and (III) (Chiang et al., 2010). | |
Fig. 2. ORTEP representation of the molecular structure of the title compound, showing 50% probability displacement ellipsoids. |
[Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2 | Dx = 2.078 Mg m−3 |
Mr = 943.06 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4920 reflections |
a = 16.6046 (8) Å | θ = 1.8–25.2° |
b = 15.5955 (7) Å | µ = 2.37 mm−1 |
c = 23.2786 (12) Å | T = 100 K |
V = 6028.2 (5) Å3 | Plate, green |
Z = 8 | 0.18 × 0.17 × 0.08 mm |
F(000) = 3616 |
BrukerAPEXII with CCD diffractometer | 6643 independent reflections |
Radiation source: fine-focus sealed tube | 4920 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω scans | θmax = 27.2°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −21→20 |
Tmin = 0.578, Tmax = 0.746 | k = −19→19 |
27645 measured reflections | l = −29→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0294P)2 + 2.8958P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
6643 reflections | Δρmax = 0.89 e Å−3 |
392 parameters | Δρmin = −1.00 e Å−3 |
[Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2 | V = 6028.2 (5) Å3 |
Mr = 943.06 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 16.6046 (8) Å | µ = 2.37 mm−1 |
b = 15.5955 (7) Å | T = 100 K |
c = 23.2786 (12) Å | 0.18 × 0.17 × 0.08 mm |
BrukerAPEXII with CCD diffractometer | 6643 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4920 reflections with I > 2σ(I) |
Tmin = 0.578, Tmax = 0.746 | Rint = 0.054 |
27645 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.89 e Å−3 |
6643 reflections | Δρmin = −1.00 e Å−3 |
392 parameters |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equipped with an APEX II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.93384 (2) | 0.22549 (2) | 0.87058 (2) | 0.01738 (8) | |
Sb1 | 0.85442 (2) | −0.13417 (2) | 0.94657 (2) | 0.02309 (8) | |
Sb2 | 0.78888 (2) | 0.49530 (2) | 0.71378 (2) | 0.02768 (8) | |
F1 | 0.89213 (19) | −0.09995 (16) | 1.01877 (12) | 0.0461 (8) | |
F2 | 0.93350 (14) | −0.06576 (14) | 0.91106 (11) | 0.0282 (6) | |
F3 | 0.77479 (15) | −0.20299 (16) | 0.98028 (12) | 0.0372 (7) | |
F4 | 0.92598 (15) | −0.22620 (14) | 0.94954 (12) | 0.0359 (6) | |
F5 | 0.82004 (18) | −0.1684 (2) | 0.87420 (12) | 0.0517 (8) | |
F6 | 0.78500 (18) | −0.04062 (18) | 0.94558 (15) | 0.0605 (10) | |
F7 | 0.7883 (2) | 0.37969 (16) | 0.69278 (13) | 0.0558 (9) | |
F8 | 0.7572 (2) | 0.46434 (18) | 0.78733 (12) | 0.0538 (9) | |
F9 | 0.79200 (19) | 0.61114 (16) | 0.73516 (12) | 0.0464 (8) | |
F10 | 0.6831 (2) | 0.5081 (2) | 0.69167 (18) | 0.0795 (12) | |
F11 | 0.89525 (19) | 0.48324 (19) | 0.73806 (18) | 0.0732 (11) | |
F12 | 0.8239 (3) | 0.5243 (2) | 0.64075 (14) | 0.0872 (14) | |
N1 | 0.90603 (19) | 0.3372 (2) | 0.96626 (14) | 0.0178 (7) | |
N2 | 0.8897 (2) | 0.2522 (2) | 1.04905 (14) | 0.0214 (8) | |
N3 | 0.91640 (18) | 0.1923 (2) | 0.95632 (14) | 0.0176 (7) | |
N5 | 1.0551 (2) | 0.2291 (2) | 0.88533 (14) | 0.0210 (8) | |
C2 | 0.9204 (2) | 0.3380 (3) | 0.90940 (18) | 0.0206 (9) | |
C3 | 0.9232 (3) | 0.4290 (2) | 0.89077 (17) | 0.0223 (9) | |
H3A | 0.8806 | 0.4410 | 0.8621 | 0.027* | |
H3B | 0.9762 | 0.4431 | 0.8738 | 0.027* | |
C4 | 0.9091 (2) | 0.4796 (2) | 0.94537 (18) | 0.0214 (9) | |
C5 | 0.9052 (3) | 0.5662 (3) | 0.95639 (19) | 0.0263 (10) | |
H5 | 0.9146 | 0.6068 | 0.9267 | 0.032* | |
C6 | 0.8872 (3) | 0.5931 (3) | 1.0116 (2) | 0.0281 (10) | |
H6 | 0.8847 | 0.6528 | 1.0196 | 0.034* | |
C7 | 0.8729 (3) | 0.5347 (3) | 1.05571 (19) | 0.0267 (10) | |
H7 | 0.8592 | 0.5549 | 1.0930 | 0.032* | |
C8 | 0.8786 (2) | 0.4467 (3) | 1.04542 (18) | 0.0223 (9) | |
H8 | 0.8703 | 0.4058 | 1.0751 | 0.027* | |
C9 | 0.8969 (2) | 0.4222 (2) | 0.99016 (18) | 0.0191 (9) | |
C10 | 0.9032 (2) | 0.2573 (2) | 0.99352 (18) | 0.0190 (9) | |
C11 | 0.8882 (2) | 0.1724 (3) | 1.07022 (18) | 0.0230 (9) | |
H11 | 0.8788 | 0.1650 | 1.1102 | 0.028* | |
C12 | 0.8997 (2) | 0.1006 (3) | 1.03687 (17) | 0.0229 (9) | |
H12 | 0.8967 | 0.0446 | 1.0527 | 0.028* | |
C13 | 0.9157 (2) | 0.1136 (2) | 0.97918 (18) | 0.0219 (9) | |
H13 | 0.9264 | 0.0655 | 0.9553 | 0.026* | |
C27 | 1.1233 (3) | 0.2267 (2) | 0.88601 (17) | 0.0209 (9) | |
C28 | 1.2103 (3) | 0.2249 (3) | 0.8860 (2) | 0.0326 (11) | |
H28A | 1.2303 | 0.2392 | 0.8476 | 0.049* | |
H28B | 1.2289 | 0.1674 | 0.8967 | 0.049* | |
H28C | 1.2307 | 0.2668 | 0.9138 | 0.049* | |
C50 | 0.9606 (3) | 0.2124 (3) | 0.77680 (18) | 0.0247 (10) | |
C51 | 0.9519 (3) | 0.1264 (3) | 0.79863 (17) | 0.0241 (10) | |
H51 | 0.9932 | 0.0856 | 0.7916 | 0.029* | |
C52 | 0.8850 (3) | 0.1023 (3) | 0.82936 (17) | 0.0227 (9) | |
H52 | 0.8808 | 0.0452 | 0.8433 | 0.027* | |
C53 | 0.8216 (2) | 0.1625 (3) | 0.84050 (18) | 0.0207 (9) | |
C54 | 0.8274 (2) | 0.2446 (2) | 0.81594 (16) | 0.0196 (9) | |
H54 | 0.7842 | 0.2840 | 0.8205 | 0.024* | |
C55 | 0.8962 (2) | 0.2697 (3) | 0.78465 (17) | 0.0213 (9) | |
H55 | 0.8990 | 0.3257 | 0.7687 | 0.026* | |
C56 | 1.0360 (3) | 0.2354 (3) | 0.74384 (19) | 0.0305 (11) | |
H56 | 1.0823 | 0.2063 | 0.7631 | 0.037* | |
C57 | 1.0281 (3) | 0.1975 (3) | 0.6834 (2) | 0.0448 (14) | |
H57A | 1.0189 | 0.1355 | 0.6861 | 0.067* | |
H57B | 1.0777 | 0.2083 | 0.6617 | 0.067* | |
H57C | 0.9825 | 0.2244 | 0.6635 | 0.067* | |
C58 | 1.0541 (3) | 0.3316 (3) | 0.7425 (2) | 0.0445 (13) | |
H58A | 1.1071 | 0.3411 | 0.7252 | 0.067* | |
H58C | 1.0539 | 0.3542 | 0.7818 | 0.067* | |
H58B | 1.0129 | 0.3611 | 0.7198 | 0.067* | |
C59 | 0.7499 (3) | 0.1355 (3) | 0.87511 (19) | 0.0283 (10) | |
H59C | 0.7273 | 0.1855 | 0.8949 | 0.042* | |
H59B | 0.7664 | 0.0926 | 0.9035 | 0.042* | |
H59A | 0.7091 | 0.1108 | 0.8496 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01528 (16) | 0.01805 (16) | 0.01879 (17) | 0.00165 (13) | 0.00117 (14) | −0.00097 (14) |
Sb1 | 0.01982 (15) | 0.02391 (15) | 0.02554 (16) | 0.00207 (12) | 0.00044 (13) | 0.00291 (13) |
Sb2 | 0.03160 (17) | 0.02741 (16) | 0.02404 (16) | 0.00270 (13) | 0.00236 (13) | −0.00066 (13) |
F1 | 0.073 (2) | 0.0358 (15) | 0.0295 (16) | −0.0094 (15) | 0.0018 (15) | −0.0053 (13) |
F2 | 0.0254 (13) | 0.0237 (12) | 0.0354 (15) | −0.0027 (11) | −0.0018 (12) | 0.0042 (11) |
F3 | 0.0258 (15) | 0.0391 (15) | 0.0466 (17) | −0.0006 (12) | 0.0117 (13) | 0.0062 (13) |
F4 | 0.0288 (15) | 0.0234 (13) | 0.0557 (18) | 0.0042 (11) | 0.0071 (13) | 0.0046 (13) |
F5 | 0.0488 (19) | 0.075 (2) | 0.0315 (17) | −0.0302 (17) | −0.0106 (14) | 0.0072 (15) |
F6 | 0.0386 (18) | 0.0464 (17) | 0.096 (3) | 0.0217 (14) | 0.0235 (18) | 0.0285 (18) |
F7 | 0.089 (3) | 0.0309 (16) | 0.0481 (19) | 0.0035 (15) | 0.0041 (18) | −0.0131 (14) |
F8 | 0.082 (2) | 0.0438 (17) | 0.0351 (17) | −0.0126 (17) | 0.0162 (16) | 0.0004 (14) |
F9 | 0.068 (2) | 0.0297 (15) | 0.0410 (17) | −0.0018 (14) | 0.0026 (16) | 0.0015 (13) |
F10 | 0.055 (2) | 0.085 (3) | 0.098 (3) | 0.011 (2) | −0.041 (2) | −0.017 (2) |
F11 | 0.0317 (18) | 0.0531 (19) | 0.135 (4) | 0.0016 (15) | −0.007 (2) | 0.019 (2) |
F12 | 0.164 (4) | 0.055 (2) | 0.042 (2) | 0.028 (2) | 0.048 (2) | 0.0118 (17) |
N1 | 0.0178 (17) | 0.0198 (17) | 0.0158 (18) | 0.0006 (14) | 0.0008 (14) | −0.0036 (14) |
N2 | 0.0171 (18) | 0.0243 (19) | 0.023 (2) | 0.0003 (15) | −0.0010 (15) | −0.0002 (16) |
N3 | 0.0131 (17) | 0.0188 (17) | 0.0209 (19) | 0.0016 (13) | 0.0025 (14) | −0.0020 (15) |
N5 | 0.023 (2) | 0.0222 (18) | 0.0182 (19) | 0.0017 (15) | 0.0006 (15) | −0.0003 (15) |
C2 | 0.010 (2) | 0.027 (2) | 0.024 (2) | 0.0011 (16) | −0.0018 (17) | −0.0022 (18) |
C3 | 0.025 (2) | 0.025 (2) | 0.017 (2) | −0.0011 (18) | 0.0005 (18) | 0.0039 (18) |
C4 | 0.014 (2) | 0.023 (2) | 0.027 (2) | 0.0000 (16) | −0.0017 (18) | −0.0017 (19) |
C5 | 0.022 (2) | 0.027 (2) | 0.030 (3) | 0.0025 (18) | −0.0022 (19) | 0.003 (2) |
C6 | 0.024 (2) | 0.025 (2) | 0.035 (3) | 0.0022 (19) | −0.002 (2) | −0.009 (2) |
C7 | 0.025 (2) | 0.028 (2) | 0.027 (2) | −0.0029 (19) | 0.002 (2) | −0.008 (2) |
C8 | 0.020 (2) | 0.022 (2) | 0.024 (2) | −0.0023 (17) | 0.0005 (18) | −0.0019 (19) |
C9 | 0.013 (2) | 0.019 (2) | 0.025 (2) | −0.0008 (16) | −0.0015 (17) | −0.0016 (18) |
C10 | 0.0097 (19) | 0.025 (2) | 0.022 (2) | −0.0012 (16) | −0.0028 (17) | −0.0017 (18) |
C11 | 0.020 (2) | 0.030 (2) | 0.020 (2) | 0.0007 (18) | −0.0028 (18) | 0.0031 (19) |
C12 | 0.022 (2) | 0.027 (2) | 0.020 (2) | −0.0031 (18) | −0.0039 (18) | 0.0056 (19) |
C13 | 0.020 (2) | 0.020 (2) | 0.026 (2) | 0.0012 (16) | −0.0060 (19) | −0.0006 (18) |
C27 | 0.026 (2) | 0.020 (2) | 0.017 (2) | −0.0017 (18) | 0.0019 (18) | −0.0029 (17) |
C28 | 0.020 (2) | 0.043 (3) | 0.035 (3) | −0.005 (2) | 0.002 (2) | −0.007 (2) |
C50 | 0.024 (2) | 0.032 (2) | 0.018 (2) | 0.0057 (19) | −0.0021 (18) | −0.0047 (19) |
C51 | 0.026 (2) | 0.027 (2) | 0.019 (2) | 0.0100 (18) | −0.0035 (18) | −0.0101 (19) |
C52 | 0.027 (2) | 0.022 (2) | 0.020 (2) | −0.0010 (18) | −0.0037 (19) | −0.0070 (18) |
C53 | 0.015 (2) | 0.025 (2) | 0.022 (2) | 0.0001 (17) | −0.0028 (18) | −0.0043 (18) |
C54 | 0.016 (2) | 0.025 (2) | 0.017 (2) | 0.0041 (17) | −0.0047 (17) | −0.0043 (18) |
C55 | 0.024 (2) | 0.024 (2) | 0.016 (2) | 0.0022 (18) | −0.0005 (18) | 0.0024 (18) |
C56 | 0.026 (2) | 0.043 (3) | 0.022 (2) | 0.005 (2) | 0.007 (2) | 0.003 (2) |
C57 | 0.045 (3) | 0.066 (4) | 0.023 (3) | 0.003 (3) | 0.014 (2) | 0.001 (3) |
C58 | 0.036 (3) | 0.053 (3) | 0.045 (3) | −0.004 (3) | 0.013 (3) | 0.001 (3) |
C59 | 0.026 (2) | 0.028 (2) | 0.031 (3) | −0.006 (2) | −0.001 (2) | −0.001 (2) |
Ru1—C2 | 1.986 (4) | C56—C57 | 1.533 (6) |
Ru1—N3 | 2.082 (3) | C56—H56 | 1.0000 |
Ru1—N5 | 2.044 (3) | C57—H57A | 0.9800 |
Ru1—C50 | 2.237 (4) | C57—H57B | 0.9800 |
Ru1—C51 | 2.298 (4) | C57—H57C | 0.9800 |
Ru1—C52 | 2.296 (4) | C58—H58A | 0.9800 |
Ru1—C53 | 2.220 (4) | C58—H58C | 0.9800 |
Ru1—C54 | 2.197 (4) | C58—H58B | 0.9800 |
Ru1—C55 | 2.206 (4) | C2—N1 | 1.345 (5) |
Sb1—F1 | 1.871 (3) | C2—C3 | 1.485 (5) |
Sb1—F2 | 1.883 (2) | C3—C4 | 1.514 (5) |
Sb1—F3 | 1.875 (2) | C3—H3A | 0.9900 |
Sb1—F4 | 1.865 (2) | C3—H3B | 0.9900 |
Sb1—F5 | 1.857 (3) | C4—C5 | 1.377 (6) |
Sb1—F6 | 1.860 (3) | C4—C9 | 1.388 (5) |
Sb2—F7 | 1.868 (3) | C9—C8 | 1.376 (5) |
Sb2—F8 | 1.855 (3) | C9—N1 | 1.447 (5) |
Sb2—F9 | 1.875 (3) | C8—C7 | 1.396 (6) |
Sb2—F10 | 1.841 (3) | C8—H8 | 0.9500 |
Sb2—F11 | 1.864 (3) | C7—C6 | 1.393 (6) |
Sb2—F12 | 1.853 (3) | C7—H7 | 0.9500 |
N5—C27 | 1.133 (5) | C6—C5 | 1.384 (6) |
C50—C55 | 1.406 (6) | C6—H6 | 0.9500 |
C50—C51 | 1.442 (6) | C5—H5 | 0.9500 |
C50—C56 | 1.510 (6) | N1—C10 | 1.399 (5) |
C51—C52 | 1.373 (6) | C10—N2 | 1.314 (5) |
C51—H51 | 0.9500 | C10—N3 | 1.351 (5) |
C52—C53 | 1.436 (5) | N2—C11 | 1.339 (5) |
C52—H52 | 0.9500 | C11—C12 | 1.375 (6) |
C53—C54 | 1.406 (5) | C11—H11 | 0.9500 |
C53—C59 | 1.497 (6) | C12—C13 | 1.384 (6) |
C54—C55 | 1.409 (6) | C12—H12 | 0.9500 |
C54—H54 | 0.9500 | C13—N3 | 1.338 (5) |
C55—H55 | 0.9500 | C13—H13 | 0.9500 |
C59—H59C | 0.9800 | C27—C28 | 1.444 (6) |
C59—H59B | 0.9800 | C28—H28A | 0.9800 |
C59—H59A | 0.9800 | C28—H28B | 0.9800 |
C56—C58 | 1.531 (6) | C28—H28C | 0.9800 |
C2—Ru1—N5 | 90.54 (14) | C59—C53—Ru1 | 128.4 (3) |
C2—Ru1—N3 | 76.59 (15) | C53—C54—C55 | 121.3 (4) |
N5—Ru1—N3 | 89.02 (13) | C53—C54—Ru1 | 72.3 (2) |
C2—Ru1—C54 | 93.05 (15) | C55—C54—Ru1 | 71.7 (2) |
N5—Ru1—C54 | 152.34 (14) | C53—C54—H54 | 119.4 |
N3—Ru1—C54 | 118.48 (14) | C55—C54—H54 | 119.4 |
C2—Ru1—C55 | 96.00 (16) | Ru1—C54—H54 | 129.0 |
N5—Ru1—C55 | 115.03 (14) | C50—C55—C54 | 120.5 (4) |
N3—Ru1—C55 | 155.13 (14) | C50—C55—Ru1 | 72.7 (2) |
C54—Ru1—C55 | 37.32 (15) | C54—C55—Ru1 | 71.0 (2) |
C2—Ru1—C53 | 116.11 (15) | C50—C55—H55 | 119.8 |
N5—Ru1—C53 | 153.20 (14) | C54—C55—H55 | 119.8 |
N3—Ru1—C53 | 94.33 (14) | Ru1—C55—H55 | 128.8 |
C54—Ru1—C53 | 37.11 (14) | C53—C59—H59C | 109.5 |
C55—Ru1—C53 | 67.31 (15) | C53—C59—H59B | 109.5 |
C2—Ru1—C50 | 123.14 (16) | H59C—C59—H59B | 109.5 |
N5—Ru1—C50 | 88.31 (14) | C53—C59—H59A | 109.5 |
N3—Ru1—C50 | 160.11 (14) | H59C—C59—H59A | 109.5 |
C54—Ru1—C50 | 66.88 (15) | H59B—C59—H59A | 109.5 |
C55—Ru1—C50 | 36.89 (14) | C50—C56—C58 | 113.9 (4) |
C53—Ru1—C50 | 79.57 (15) | C50—C56—C57 | 107.7 (4) |
C2—Ru1—C52 | 152.89 (15) | C58—C56—C57 | 112.1 (4) |
N5—Ru1—C52 | 116.18 (14) | C50—C56—H56 | 107.6 |
N3—Ru1—C52 | 98.24 (14) | C58—C56—H56 | 107.6 |
C54—Ru1—C52 | 65.67 (15) | C57—C56—H56 | 107.6 |
C55—Ru1—C52 | 77.44 (15) | C56—C57—H57A | 109.5 |
C53—Ru1—C52 | 37.03 (14) | C56—C57—H57B | 109.5 |
C50—Ru1—C52 | 65.55 (15) | H57A—C57—H57B | 109.5 |
C2—Ru1—C51 | 160.05 (16) | C56—C57—H57C | 109.5 |
N5—Ru1—C51 | 90.72 (14) | H57A—C57—H57C | 109.5 |
N3—Ru1—C51 | 123.34 (14) | H57B—C57—H57C | 109.5 |
C54—Ru1—C51 | 76.96 (15) | C56—C58—H58A | 109.5 |
C55—Ru1—C51 | 65.56 (15) | C56—C58—H58C | 109.5 |
C53—Ru1—C51 | 65.32 (15) | H58A—C58—H58C | 109.5 |
C50—Ru1—C51 | 37.03 (15) | C56—C58—H58B | 109.5 |
C52—Ru1—C51 | 34.79 (15) | H58A—C58—H58B | 109.5 |
F5—Sb1—F6 | 91.35 (15) | H58C—C58—H58B | 109.5 |
F5—Sb1—F4 | 90.48 (13) | N1—C2—C3 | 107.6 (3) |
F6—Sb1—F4 | 178.08 (15) | N1—C2—Ru1 | 117.3 (3) |
F5—Sb1—F1 | 178.35 (14) | C3—C2—Ru1 | 135.1 (3) |
F6—Sb1—F1 | 89.71 (14) | C2—C3—C4 | 104.4 (3) |
F4—Sb1—F1 | 88.45 (12) | C2—C3—H3A | 110.9 |
F5—Sb1—F3 | 89.91 (12) | C4—C3—H3A | 110.9 |
F6—Sb1—F3 | 90.98 (12) | C2—C3—H3B | 110.9 |
F4—Sb1—F3 | 89.61 (11) | C4—C3—H3B | 110.9 |
F1—Sb1—F3 | 91.34 (12) | H3A—C3—H3B | 108.9 |
F5—Sb1—F2 | 88.79 (11) | C5—C4—C9 | 119.0 (4) |
F6—Sb1—F2 | 88.99 (11) | C5—C4—C3 | 132.5 (4) |
F4—Sb1—F2 | 90.46 (10) | C9—C4—C3 | 108.5 (3) |
F1—Sb1—F2 | 89.96 (12) | C8—C9—C4 | 123.8 (4) |
F3—Sb1—F2 | 178.70 (12) | C8—C9—N1 | 129.6 (4) |
F10—Sb2—F12 | 91.0 (2) | C4—C9—N1 | 106.7 (3) |
F10—Sb2—F8 | 90.89 (17) | C9—C8—C7 | 116.6 (4) |
F12—Sb2—F8 | 178.02 (18) | C9—C8—H8 | 121.7 |
F10—Sb2—F11 | 178.52 (18) | C7—C8—H8 | 121.7 |
F12—Sb2—F11 | 90.30 (19) | C6—C7—C8 | 120.3 (4) |
F8—Sb2—F11 | 87.86 (17) | C6—C7—H7 | 119.8 |
F10—Sb2—F7 | 91.56 (15) | C8—C7—H7 | 119.8 |
F12—Sb2—F7 | 89.85 (14) | C5—C6—C7 | 121.5 (4) |
F8—Sb2—F7 | 89.37 (13) | C5—C6—H6 | 119.2 |
F11—Sb2—F7 | 89.24 (15) | C7—C6—H6 | 119.2 |
F10—Sb2—F9 | 89.76 (14) | C4—C5—C6 | 118.7 (4) |
F12—Sb2—F9 | 89.97 (14) | C4—C5—H5 | 120.6 |
F8—Sb2—F9 | 90.77 (12) | C6—C5—H5 | 120.6 |
F11—Sb2—F9 | 89.45 (14) | C2—N1—C10 | 117.4 (3) |
F7—Sb2—F9 | 178.67 (15) | C2—N1—C9 | 112.8 (3) |
C27—N5—Ru1 | 170.4 (3) | C10—N1—C9 | 129.7 (3) |
C55—C50—C51 | 117.9 (4) | N2—C10—N3 | 127.8 (4) |
C55—C50—C56 | 123.1 (4) | N2—C10—N1 | 120.4 (4) |
C51—C50—C56 | 118.9 (4) | N3—C10—N1 | 111.8 (3) |
C55—C50—Ru1 | 70.4 (2) | C10—N2—C11 | 114.9 (4) |
C51—C50—Ru1 | 73.8 (2) | N2—C11—C12 | 123.1 (4) |
C56—C50—Ru1 | 129.7 (3) | N2—C11—H11 | 118.5 |
C52—C51—C50 | 121.4 (4) | C12—C11—H11 | 118.5 |
C52—C51—Ru1 | 72.5 (2) | C11—C12—C13 | 117.1 (4) |
C50—C51—Ru1 | 69.2 (2) | C11—C12—H12 | 121.4 |
C52—C51—H51 | 119.3 | C13—C12—H12 | 121.4 |
C50—C51—H51 | 119.3 | N3—C13—C12 | 121.4 (4) |
Ru1—C51—H51 | 132.0 | N3—C13—H13 | 119.3 |
C51—C52—C53 | 120.5 (4) | C12—C13—H13 | 119.3 |
C51—C52—Ru1 | 72.7 (2) | C13—N3—C10 | 115.6 (3) |
C53—C52—Ru1 | 68.6 (2) | C13—N3—Ru1 | 127.6 (3) |
C51—C52—H52 | 119.7 | C10—N3—Ru1 | 116.8 (3) |
C53—C52—H52 | 119.7 | N5—C27—C28 | 178.9 (5) |
Ru1—C52—H52 | 131.8 | C27—C28—H28A | 109.5 |
C54—C53—C52 | 118.2 (4) | C27—C28—H28B | 109.5 |
C54—C53—C59 | 122.0 (4) | H28A—C28—H28B | 109.5 |
C52—C53—C59 | 119.8 (4) | C27—C28—H28C | 109.5 |
C54—C53—Ru1 | 70.6 (2) | H28A—C28—H28C | 109.5 |
C52—C53—Ru1 | 74.3 (2) | H28B—C28—H28C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···F7i | 0.95 | 2.54 | 3.398 (6) | 151 |
C12—H12···F1 | 0.95 | 2.39 | 3.157 (5) | 138 |
C13—H13···F2 | 0.95 | 2.30 | 3.229 (5) | 167 |
C51—H51···F11ii | 0.95 | 2.54 | 3.485 (6) | 174 |
C52—H52···F2 | 0.95 | 2.50 | 3.337 (5) | 147 |
C54—H54···F5iii | 0.95 | 2.26 | 3.110 (5) | 148 |
C59—H59B···F6 | 0.98 | 2.32 | 3.253 (6) | 158 |
C59—H59C···F5iii | 0.98 | 2.45 | 3.270 (6) | 141 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···F7i | 0.95 | 2.54 | 3.398 (6) | 151 |
C12—H12···F1 | 0.95 | 2.39 | 3.157 (5) | 138 |
C13—H13···F2 | 0.95 | 2.30 | 3.229 (5) | 167 |
C51—H51···F11ii | 0.95 | 2.54 | 3.485 (6) | 174 |
C52—H52···F2 | 0.95 | 2.50 | 3.337 (5) | 147 |
C54—H54···F5iii | 0.95 | 2.26 | 3.110 (5) | 148 |
C59—H59B···F6 | 0.98 | 2.32 | 3.253 (6) | 158 |
C59—H59C···F5iii | 0.98 | 2.45 | 3.270 (6) | 141 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Ru(C10H14)(C12H9N3)(C2H3N)][SbF6]2 |
Mr | 943.06 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 16.6046 (8), 15.5955 (7), 23.2786 (12) |
V (Å3) | 6028.2 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.37 |
Crystal size (mm) | 0.18 × 0.17 × 0.08 |
Data collection | |
Diffractometer | BrukerAPEXII with CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.578, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27645, 6643, 4920 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.643 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.074, 1.01 |
No. of reflections | 6643 |
No. of parameters | 392 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −1.00 |
Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012).
Acknowledgements
The authors would like to thank the Swedish research council (Vetenskapsrådet) for support.
References
Ackermann, L. & Lygin, A. V. (2011). Org. Lett. 13, 3332–3335. CrossRef CAS PubMed Google Scholar
Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. (2012). Chem. Rev. 112, 5879–5918. CrossRef CAS PubMed Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Buil, M. L., Esteruelas, M. A., López, A. M. & Oñate, E. (2003). Organometallics, 22, 5274–5284. CSD CrossRef CAS Google Scholar
Chiang, P.-Y., Lin, Y.-C., Wang, Y. & Liu, Y.-H. (2010). Organometallics, 29, 5776–5782. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferrer Flegeau, E., Bruneau, C., Dixneuf, P. H. & Jutand, A. (2011). J. Am. Chem. Soc. 133, 10161–10170. CrossRef PubMed Google Scholar
Li, B., Roisnel, T., Darcel, C. & Dixneuf, P. H. (2012). Dalton Trans. 41, 10934–10937. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sollert, C., Devaraj, K., Orthaber, A., Gates, P. J. & Pilarski, L. T. (2015). Chem. Eur. J. 21, 5380–5386. CSD CrossRef CAS PubMed Google Scholar
Wang, L., Yang, D., Han, F., Li, D., Zhao, D. & Wang, R. (2015). Org. Lett. 17, 176–179. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.