research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1193-1195

Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe-OBn chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aUniversité de Lorraine, UMR 7036 CRM2, Vandoeuvre-lès-Nancy, France, bCNRS, UMR 7036 CRM2, Vandoeuvre-lès-Nancy, France, and cIBMM, UMR 5247 CNRS-Université Montpellier–ENSCM, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
*Correspondence e-mail: claude.didierjean@univ-lorraine.fr

Edited by H. Ishida, Okayama University, Japan (Received 25 August 2015; accepted 10 September 2015; online 17 September 2015)

In the title compound, phenyl (S)-2-[(S)-(1-{2-[(S)-(1-{[(tert-but­oxy)carbon­yl]amino}­bicyclo­[2.2.2]octan-2-yl)formamido]­propanamido}­bicyclo­[2.2.2]octan-2-yl)formamido]-3-phenyl­propano­ate chloro­form monosolvate, C42H56N4O7·CHCl3, the α,β-hybrid peptide contains two non-proteinogenic amino acid residues of (S)-1-amino­bicyclo­[2.2.2]octane-2-carb­oxy­lic acid [(S)-ABOC], two amino acid residues of (S)-2-amino­propanoic acid [(S)-Ala] and (S)-2-amino-3-phenyl­propanoic acid [(S)-Phe], and protecting groups of tert-but­oxy­carbonyl (Boc) and benzyl ester (OBn). The tetra­mer folds into a right-handed mixed 11/9 helix stabilized by intra­molecular i,i + 3 and i,i − 1 C=O⋯H—N hydrogen bonds. In the crystal, the oligomers are linked by N—H⋯O=C hydrogen bonds into chains along the a-axis direction. The chloro­form solvent mol­ecules are inter­calated between the folded chains via C—H⋯O=C inter­actions.

1. Chemical context

The title compound is an α,β-hybrid tetra­peptide with alternating proteogenic α-amino acid and ABOC residues. (S)-1-amino­bicyclo­[2.2.2]octane-2-carb­oxy­lic acid [(S)-ABOC] is a β2,3,3-tris­ubstituted bicyclic amino acid which exhibits a high propensity to induce both a reverse turn into short peptides and helices in oligoureas and in α,β-hybrid peptides (Songis et al., 2007[Songis, O., Didierjean, C., Laurent, C., Martinez, J. & Calmès, M. (2007). Eur. J. Org. Chem. pp. 3166-3172.]; André et al., 2012[André, C., Legrand, B., Deng, C., Didierjean, C., Pickaert, G., Martinez, J., Averlant-Petit, M. C., Amblard, M. & Calmes, M. (2012). Org. Lett. 14, 960-963.], 2013[André, C., Legrand, B., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Amblard, M. & Calmes, M. (2013). Chem. Eur. J. 19, 16963-16971.]; Legrand et al., 2012[Legrand, B., André, C., Wenger, E., Didierjean, C., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2012). Angew. Chem. Int. Ed. 51, 11267-11270.], 2014[Legrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131-13135.]). In our last study we showed that short oligomers adopted an 11/9 helix, whereas an 18/16 helix was favored for longer oligomers in solution. NMR studies suggested a rapid inter­conversion between the 11/9 helix and the 18/16 helix for oligomers of inter­mediate length. In the solid state, only the 11/9 helix has been observed whatever the length of the oligomers capped by an iPrCO and an OBn group (Legrand et al., 2014[Legrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131-13135.]).

[Scheme 1]

2. Structural commentary

For the title compound (Fig. 1[link]), the triclinic unit cell consists of one mol­ecule of α,β-hybrid tetra­mer and one mol­ecule of chloro­form. The oligomer exhibits a right-handed mixed 11/9 helix stabilized by backbone C=O⋯HN hydrogen bonds (Table 1[link]), forming one C11 pseudocycle between the CO of the β-residue (i) and the NH of the α-residue (i + 3) and two C9 pseudocycles between the CO of the α-residue (i) and the NH of the β-residue (i − 1). The backbone torsion angles are quite similar to those of the characteristic 11/9 helix reported in the same α,β-hybrid oligomers (Legrand et al., 2014[Legrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131-13135.]) and other α/β-peptides (Lee et al., 2013[Lee, M., Shim, J., Kang, P., Guzei, I. A. & Choi, S. H. (2013). Angew. Chem. Int. Ed. 52, 12564-12567.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.88 2.16 2.994 (4) 157
N2—H2⋯O5i 0.88 2.12 2.914 (3) 150
N3—H3N⋯O6 0.88 2.51 3.159 (3) 131
N4—H4⋯O3 0.88 2.20 3.009 (3) 153
C1′—H1′⋯O2 1.00 2.09 3.071 (4) 167
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme. All non-H atoms are represented by 25% probability displacement ellipsoids. H atoms are omitted for clarity.

3. Supra­molecular features

The inter­molecular inter­action N2—H2⋯O5i (Table 1[link]) connects the title α,β-hybrid tetra­mer to form infinite chains along the a-axis direction (Fig. 2[link]). In the ac plane the chloro­form mol­ecules link the chains via a C—Cl⋯N inter­action [Cl⋯N = 3.281 (3) Å] and a C—H⋯O hydrogen bond [C⋯O = 3.071 (4) Å].

[Figure 2]
Figure 2
Partial packing view of the title compound in the ac plane. Only selected H atoms are shown for clarity. Intra­molecular hydrogen bonds are shown as magenta dashed lines. Inter­molecular strong hydrogen bonds are shown as black dashed lines. Inter­molecular weak hydrogen bonds are shown as red dashed lines. Inter­molecular C—Cl⋯N inter­actions are shown as orange dashed lines.

4. Comparison with related structures

The crystals of the title compound and those of the same tetra­mer with the N-terminal capping group iPrCO instead of Boc are not isomorphous. This latter crystallized in the space group P21 with two independent mol­ecules in the asymmetric unit. One independent mol­ecule shows a single fully folded 11/9 helix as the title compound while the hydrogen-bond network is incomplete in the other mol­ecule. The last C9 hydrogen bond between the carbonyl of the Phe residue and the β-residue amide proton was disrupted by the incorporation of a water mol­ecule (Legrand et al., 2014[Legrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131-13135.]). This inter­calation of water mol­ecules has already been observed in oligoureas (Legrand et al., 2012[Legrand, B., André, C., Wenger, E., Didierjean, C., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2012). Angew. Chem. Int. Ed. 51, 11267-11270.]) and highlighted in an enzyme involved in the mitochondrial respiratory chain i.e. the mitochondrial bc1 complex. Its bovine crystal structure (Huang et al., 2005[Huang, L.-S., Cobessi, D., Tung, E. Y. & Berry, E. A. (2005). J. Mol. Biol. 351, 573-597.]) revealed that an inter­calated water mol­ecule in an α-helix took part in the stabilization of the high potential cytochrome b heme. Usually, α-helices inter­act laterally with their side chains. Water mol­ecules adsorption on an α-helice groove is an alternative tool available to the helical system to inter­act with partners.

For further related articles on hybrid peptides, see: Hayen et al. (2004[Hayen, A., Schmitt, M. A., Ngassa, F. N., Thomasson, K. A. & Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505-510.]); Sharma et al. (2009[Sharma, G. V. M., Chandramouli, N., Choudhary, M., Nagendar, P., Ramakrishna, K. V. S., Kunwar, A. C., Schramm, P. & Hofmann, H.-J. (2009). J. Am. Chem. Soc. 131, 17335-17344.]); Vasudev et al. (2011[Vasudev, P. G., Chatterjee, S., Shamala, N. & Balaram, P. (2011). Chem. Rev. 111, 657-687.]); Berlicki et al. (2012[Berlicki, L., Pilsl, L., Wéber, E., Mándity, I. M., Cabrele, C., Martinek, T. A., Fülöp, F. & Reiser, O. (2012). Angew. Chem. Int. Ed. 51, 2208-2212.]);

5. Synthesis and crystallization

The synthesis of the title compound has recently been reported by Legrand et al. (2014[Legrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131-13135.]). Single crystals were obtained by slow evaporation of a chloro­form solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference Fourier map. The C/N-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å and N—H = 0.88 Å. The Uiso(H) parameters were fixed at 1.2Ueq(C, N) for methine, methyl­ene, aromatic groups and NH groups, and at 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C42H56N4O7·CHCl3
Mr 848.27
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 9.2194 (6), 10.8908 (6), 11.8698 (7)
α, β, γ (°) 63.489 (2), 86.467 (2), 89.069 (2)
V3) 1064.38 (11)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.4 × 0.1 × 0.1
 
Data collection
Diffractometer D8 Venture Bruker
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.908, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 42849, 8712, 8015
Rint 0.037
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.08
No. of reflections 8712
No. of parameters 518
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Absolute structure Flack x determined using 3702 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.006 (18)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), pyMOL (DeLano, 2002[DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Chemical context top

The title compound is an α,β-hybrid tetra­peptide with alternating proteogenic α-amino acid and ABOC residues. (S)-1-amino­bicyclo­[2.2.2]o­ctane-2-carb­oxy­lic acid [(S)-ABOC] is a β2,3,3-tris­ubstituted bicyclic amino acid which exhibits a high propensity to induce both a reverse turn into short peptides and helices in oligoureas and in α,β-hybrid peptides (Songis et al., 2007; André et al., 2012, 2013; Legrand et al., 2012, 2014). In our last study we showed that short oligomers adopted an 11/9 helix, whereas an 18/16 helix was favored for longer oligomers in solution. NMR studies suggested a rapid inter­conversion between the 11/9 helix and the 18/16 helix for oligomers of inter­mediate length. In the solid state, only the 11/9 helix has been observed whatever the length of the oligomers capped by an iPrCO and an OBn group (Legrand et al., 2014).

Structural commentary top

For the title compound (Fig. 1), the triclinic unit cell consists of one molecule of α,β-hybrid tetra­mer and one molecule of chloro­form. The oligomer exhibits a right-handed mixed 11/9 helix stabilized by backbone CO···HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the β-residue (i) and the NH of the α-residue (i+3) and two C9 pseudocycles between the CO of the α-residue (i) and the NH of the β-residue (i-1). The backbone torsion angles are quite similar to those of the characteristic 11/9 helix reported in the same α,β-hybrid oligomers (Legrand et al., 2014) and other α/β-peptides (Lee et al., 2013).

The crystals of the title compound and those of the same tetra­mer with the N-terminal capping group iPrCO instead of Boc are not isomorphous. This latter crystallized in the space group P21 with two independent molecules in the asymmetric unit. One independent molecule shows a single fully folded 11/9 helix as the title compound while the hydrogen-bond network is incomplete in the other molecule. The last C9 hydrogen bond between the carbonyl of the Phe residue and the β-residue amide proton was disrupted by the incorporation of a water molecule (Legrand et al., 2014). This inter­calation of water molecules has already been observed in oligoureas (Legrand et al., 2012) and highlighted in an enzyme involved in the mitochondrial respiratory chain i.e. the mitochondrial bc1 complex. Its bovine crystal structure (Huang et al., 2005) revealed that an inter­calated water molecule in an α-helix took part in the stabilization of the high potential cytochrome b heme. Usually, α-helices inter­act laterally with their side chains. Water molecules adsorption on an α-helice groove is an alternative tool available to the helical system to inter­act with partners.

Supra­molecular features top

The inter­molecular inter­action N2—H2···O5i (Table 1) connects the title α,β-hybrid tetra­mer to form infinite chains along the a-axis direction. In the plane perpendicular to the b* axis the chloro­form molecules link the chains via a C—Cl···N inter­action [Cl···N = 3.281 (3) Å] and a C—H···O hydrogen bond [C···O = 3.071 (4) Å].

Comparison with related structures top

The crystals of the title compound and those of the same tetra­mer with the N-terminal capping group iPrCO instead of Boc are not isomorphous. This latter crystallized in the space group P21 with two independent molecules in the asymmetric unit. One independent molecule shows a single fully folded 11/9 helix as the title compound while the hydrogen-bond network is incomplete in the other molecule. The last C9 hydrogen bond between the carbonyl of the Phe residue and the β-residue amide proton was disrupted by the incorporation of a water molecule (Legrand et al., 2014). This inter­calation of water molecules has already been observed in oligoureas (Legrand et al., 2012) and highlighted in an enzyme involved in the mitochondrial respiratory chain i.e. the mitochondrial bc1 complex. Its bovine crystal structure (Huang et al., 2005) revealed that an inter­calated water molecule in an α-helix took part in the stabilization of the high potential cytochrome b heme. Usually, α-helices inter­act laterally with their side chains. Water molecules adsorption on an α-helice groove is an alternative tool available to the helical system to inter­act with partners.

For further related articles on hybrid peptides, see: Hayen et al. (2004); Sharma et al. (2009); Vasudev et al. (2011); Berlicki et al. (2012);

Synthesis and crystallization top

The synthesis of the title compound has recently been reported by Legrand et al. (2014). Single crystals were obtained by slow evaporation of a chloro­form solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference Fourier map. The C/N-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å and N—H = 0.88 Å. The Uiso(H) parameters were fixed at 1.2Ueq(C, N) for methine, methyl­ene, aromatic groups and NH groups, and at 1.5Ueq(C) for methyl groups.

Related literature top

For articles on hybrid peptides, see: Hayen et al. (2004); Sharma et al. (2009); Vasudev et al. (2011); Berlicki et al. (2012); Lee et al. (2013). For synthesis, conformations and structural features of the ABOC residue, see: Songis et al. (2007); André et al. (2012, 2013); Legrand et al. (2012, 2014); Huang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and pyMOL (DeLano, 2002); software used to prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. All non-H atoms are represented by 25% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing view of the title compound in the ac plane. Only selected H atoms are shown for clarity. Intramolecular hydrogen bonds are shown as magenta dashed lines. Intermolecular strong hydrogen bonds are shown as black dashed lines. Intermolecular weak hydrogen bonds are shown as red dashed lines. Intermolecular C—Cl···N interactions are shown as orange dashed lines.
Phenyl (S)-2-[(S)-(1-{2-[(S)-(1-{[(tert-butoxy)carbonyl]amino}bicyclo[2.2.2]octan-2-yl)formamido]propanamido}bicyclo[2.2.2]octan-2-yl)formamido]-3-phenylpropanoate chloroform monosolvate top
Crystal data top
C42H56N4O7·CHCl3Z = 1
Mr = 848.27F(000) = 450
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2194 (6) ÅCell parameters from 9972 reflections
b = 10.8908 (6) Åθ = 5.7–52.9°
c = 11.8698 (7) ŵ = 0.27 mm1
α = 63.489 (2)°T = 100 K
β = 86.467 (2)°Needle, colourless
γ = 89.069 (2)°0.4 × 0.1 × 0.1 mm
V = 1064.38 (11) Å3
Data collection top
D8 Venture Bruker
diffractometer
8015 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.4°, θmin = 2.8°
Tmin = 0.908, Tmax = 0.963h = 1111
42849 measured reflectionsk = 1313
8712 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.6225P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.30 e Å3
8712 reflectionsΔρmin = 0.32 e Å3
518 parametersAbsolute structure: Flack x determined using 3702 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.006 (18)
Crystal data top
C42H56N4O7·CHCl3γ = 89.069 (2)°
Mr = 848.27V = 1064.38 (11) Å3
Triclinic, P1Z = 1
a = 9.2194 (6) ÅMo Kα radiation
b = 10.8908 (6) ŵ = 0.27 mm1
c = 11.8698 (7) ÅT = 100 K
α = 63.489 (2)°0.4 × 0.1 × 0.1 mm
β = 86.467 (2)°
Data collection top
D8 Venture Bruker
diffractometer
8712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
8015 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.963Rint = 0.037
42849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.30 e Å3
S = 1.08Δρmin = 0.32 e Å3
8712 reflectionsAbsolute structure: Flack x determined using 3702 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
518 parametersAbsolute structure parameter: 0.006 (18)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0678 (2)0.1293 (2)0.8411 (2)0.0231 (5)
O21.1876 (3)0.3080 (2)0.8461 (2)0.0250 (5)
O30.9584 (2)0.4011 (2)0.4043 (2)0.0217 (5)
O40.9878 (3)0.1030 (2)0.5964 (2)0.0291 (6)
O60.6629 (2)0.2149 (2)0.2316 (2)0.0227 (5)
O50.4408 (2)0.2042 (2)0.4540 (2)0.0255 (5)
O70.4784 (3)0.3516 (2)0.1340 (2)0.0258 (5)
N11.1424 (3)0.3010 (3)0.6606 (2)0.0193 (5)
H11.12040.24440.62940.023*
N21.1419 (3)0.2721 (3)0.3845 (2)0.0184 (5)
H21.23650.26430.3750.022*
N30.8189 (3)0.0590 (3)0.4865 (2)0.0182 (5)
H3N0.80470.05820.41430.022*
N40.6448 (3)0.3312 (3)0.4007 (2)0.0201 (6)
H40.72470.3540.42410.024*
C21.0641 (4)0.0413 (3)0.9781 (3)0.0247 (7)
C30.9992 (4)0.1148 (4)1.0520 (3)0.0320 (8)
H3A1.07220.17711.05570.048*
H3B0.96880.04721.13780.048*
H3C0.91480.16761.01010.048*
C41.2169 (4)0.0068 (4)1.0145 (3)0.0340 (8)
H4A1.25510.05380.96550.051*
H4B1.21520.07011.10460.051*
H4C1.27930.07260.99680.051*
C50.9658 (5)0.0760 (4)0.9937 (3)0.0337 (8)
H5A0.86810.04130.96940.051*
H5B0.96090.14551.0820.051*
H5C1.00480.11710.93980.051*
C61.1374 (3)0.2516 (3)0.7879 (3)0.0188 (6)
C71.1821 (3)0.4427 (3)0.5718 (3)0.0184 (6)
C81.3291 (3)0.4874 (3)0.5974 (3)0.0209 (6)
H8A1.40240.4160.60870.025*
H8B1.31920.49870.67570.025*
C91.3792 (4)0.6251 (3)0.4845 (3)0.0228 (7)
H9A1.42020.68650.51610.027*
H9B1.45570.60790.43120.027*
C101.0661 (4)0.5433 (3)0.5752 (3)0.0212 (7)
H10A1.04240.52610.66360.025*
H10B0.97630.52930.54050.025*
C111.1215 (4)0.6921 (3)0.4972 (3)0.0250 (7)
H11A1.15380.72930.5540.03*
H11B1.04230.75030.44830.03*
C121.2495 (4)0.6932 (3)0.4068 (3)0.0229 (7)
H121.27490.78930.34340.027*
C131.2037 (4)0.6084 (3)0.3410 (3)0.0209 (6)
H13A1.2730.62440.26850.025*
H13B1.10590.63620.30880.025*
C141.2014 (3)0.4545 (3)0.4365 (3)0.0180 (6)
H141.29890.41670.42830.022*
C151.0890 (3)0.3744 (3)0.4071 (3)0.0168 (6)
C161.0454 (3)0.1744 (3)0.3755 (3)0.0196 (6)
H160.98420.22240.30180.024*
C171.1352 (4)0.0646 (3)0.3577 (3)0.0259 (7)
H17A1.07010.0020.35150.039*
H17B1.19510.01760.43010.039*
H17C1.19820.10780.28030.039*
C180.9468 (3)0.1090 (3)0.4981 (3)0.0197 (6)
C190.7011 (3)0.0056 (3)0.5867 (3)0.0201 (6)
C200.7585 (4)0.0962 (4)0.7133 (3)0.0283 (8)
H20A0.81610.16780.70190.034*
H20B0.82290.04740.74430.034*
C210.6307 (4)0.1633 (4)0.8104 (3)0.0329 (8)
H21A0.62280.26160.83050.04*
H21B0.64760.1570.88920.04*
C220.4899 (4)0.0907 (4)0.7570 (3)0.0291 (8)
H220.40810.12830.82290.035*
C230.5919 (3)0.0714 (3)0.5489 (3)0.0215 (7)
H23A0.63790.15390.54830.026*
H23B0.56160.01170.46290.026*
C240.4578 (4)0.1144 (4)0.6431 (3)0.0251 (7)
H24A0.37290.05960.60170.03*
H24B0.43440.21250.67110.03*
C250.5078 (4)0.0630 (4)0.7147 (3)0.0293 (8)
H25A0.53630.07860.78640.035*
H25B0.41410.10910.68710.035*
C260.6258 (4)0.1254 (3)0.6041 (3)0.0208 (7)
H260.69980.17570.62640.025*
C270.5618 (3)0.2238 (3)0.4817 (3)0.0199 (7)
C280.5981 (3)0.4082 (3)0.2734 (3)0.0184 (6)
H280.49970.44610.27850.022*
C290.7008 (3)0.5276 (3)0.1918 (3)0.0201 (6)
H29A0.80230.49640.20740.024*
H29B0.68590.55480.10190.024*
C300.6795 (3)0.6509 (3)0.2164 (3)0.0184 (6)
C310.7622 (3)0.6728 (3)0.3003 (3)0.0215 (7)
H310.83320.60770.34490.026*
C320.7416 (4)0.7892 (3)0.3191 (3)0.0234 (7)
H320.79840.80320.37660.028*
C330.6387 (4)0.8849 (3)0.2545 (3)0.0241 (7)
H330.62580.96520.26630.029*
C340.5550 (4)0.8624 (3)0.1729 (3)0.0232 (7)
H340.48320.9270.12930.028*
C350.5748 (4)0.7466 (3)0.1541 (3)0.0215 (7)
H350.51610.73230.09780.026*
C360.5859 (3)0.3116 (3)0.2127 (3)0.0210 (7)
C370.4548 (4)0.2729 (3)0.0647 (3)0.0239 (7)
H37A0.35120.27830.04560.029*
H37B0.47690.17530.11820.029*
C380.5472 (4)0.3240 (4)0.0556 (3)0.0245 (7)
C390.5375 (4)0.4594 (4)0.1454 (4)0.0319 (8)
H390.47580.52070.12840.038*
C400.6175 (5)0.5056 (5)0.2598 (4)0.0459 (11)
H400.61110.59850.32090.055*
C410.7064 (4)0.4168 (5)0.2849 (4)0.0455 (12)
H410.75960.44820.36410.055*
C420.7187 (4)0.2817 (5)0.1953 (4)0.0383 (9)
H420.7810.22090.21230.046*
C430.6393 (4)0.2362 (4)0.0806 (3)0.0284 (8)
H430.64820.1440.01860.034*
C1'1.0834 (4)0.5291 (4)0.9249 (3)0.0258 (7)
H1'1.1320.46450.89610.031*
Cl1'0.89599 (9)0.52131 (11)0.91218 (9)0.0383 (2)
Cl2'1.12316 (10)0.47771 (11)1.08293 (9)0.0413 (2)
Cl3'1.15106 (13)0.69484 (11)0.82768 (10)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0315 (13)0.0226 (12)0.0123 (11)0.0053 (10)0.0028 (9)0.0049 (9)
O20.0315 (13)0.0266 (12)0.0178 (11)0.0034 (10)0.0019 (9)0.0107 (10)
O30.0192 (12)0.0247 (12)0.0221 (12)0.0005 (9)0.0045 (9)0.0107 (10)
O40.0364 (14)0.0320 (13)0.0152 (11)0.0141 (11)0.0039 (10)0.0065 (10)
O60.0273 (12)0.0230 (12)0.0203 (11)0.0059 (10)0.0049 (9)0.0117 (9)
O50.0175 (11)0.0283 (12)0.0307 (13)0.0003 (9)0.0002 (9)0.0134 (10)
O70.0270 (12)0.0291 (13)0.0284 (13)0.0060 (10)0.0111 (10)0.0183 (11)
N10.0228 (14)0.0205 (13)0.0144 (13)0.0030 (11)0.0014 (10)0.0076 (11)
N20.0145 (12)0.0208 (13)0.0193 (13)0.0031 (10)0.0017 (10)0.0085 (11)
N30.0204 (13)0.0207 (13)0.0124 (12)0.0024 (11)0.0011 (10)0.0064 (11)
N40.0206 (14)0.0229 (14)0.0185 (13)0.0018 (11)0.0017 (10)0.0105 (11)
C20.0307 (18)0.0261 (18)0.0108 (15)0.0006 (14)0.0026 (13)0.0022 (13)
C30.033 (2)0.043 (2)0.0204 (17)0.0050 (17)0.0013 (15)0.0156 (16)
C40.036 (2)0.034 (2)0.0256 (19)0.0067 (16)0.0073 (15)0.0063 (16)
C50.045 (2)0.0283 (19)0.0205 (18)0.0120 (16)0.0028 (16)0.0042 (15)
C60.0206 (15)0.0198 (15)0.0149 (14)0.0002 (12)0.0006 (12)0.0069 (12)
C70.0208 (16)0.0194 (15)0.0153 (15)0.0035 (12)0.0003 (12)0.0081 (12)
C80.0216 (16)0.0232 (17)0.0173 (15)0.0031 (13)0.0017 (12)0.0083 (13)
C90.0219 (16)0.0243 (17)0.0225 (17)0.0079 (13)0.0009 (13)0.0107 (14)
C100.0216 (16)0.0236 (17)0.0188 (16)0.0002 (13)0.0024 (13)0.0103 (14)
C110.0296 (18)0.0217 (17)0.0235 (17)0.0009 (14)0.0018 (14)0.0103 (14)
C120.0258 (17)0.0193 (16)0.0216 (16)0.0055 (13)0.0003 (13)0.0075 (13)
C130.0227 (16)0.0205 (16)0.0159 (15)0.0059 (13)0.0009 (12)0.0049 (13)
C140.0161 (15)0.0211 (15)0.0161 (15)0.0010 (12)0.0002 (12)0.0078 (13)
C150.0185 (15)0.0184 (15)0.0096 (13)0.0018 (12)0.0005 (11)0.0028 (12)
C160.0183 (15)0.0200 (16)0.0213 (16)0.0020 (12)0.0027 (12)0.0097 (13)
C170.0273 (18)0.0232 (17)0.0287 (18)0.0008 (14)0.0001 (14)0.0132 (15)
C180.0242 (16)0.0149 (15)0.0183 (15)0.0009 (12)0.0027 (13)0.0057 (12)
C190.0224 (16)0.0203 (16)0.0153 (15)0.0048 (12)0.0004 (12)0.0060 (13)
C200.036 (2)0.0286 (18)0.0153 (16)0.0058 (15)0.0033 (14)0.0054 (14)
C210.044 (2)0.033 (2)0.0163 (17)0.0165 (17)0.0027 (15)0.0052 (15)
C220.0334 (19)0.035 (2)0.0195 (17)0.0143 (16)0.0082 (14)0.0134 (15)
C230.0250 (17)0.0222 (16)0.0181 (16)0.0039 (13)0.0003 (13)0.0095 (13)
C240.0272 (17)0.0287 (18)0.0207 (16)0.0105 (14)0.0048 (14)0.0126 (14)
C250.037 (2)0.036 (2)0.0196 (17)0.0117 (16)0.0106 (14)0.0177 (15)
C260.0248 (16)0.0233 (16)0.0167 (15)0.0053 (13)0.0028 (12)0.0116 (13)
C270.0179 (16)0.0224 (16)0.0244 (16)0.0025 (13)0.0035 (13)0.0155 (14)
C280.0189 (15)0.0212 (16)0.0179 (15)0.0026 (12)0.0040 (12)0.0110 (13)
C290.0196 (16)0.0223 (16)0.0186 (15)0.0004 (13)0.0003 (12)0.0095 (13)
C300.0200 (15)0.0181 (15)0.0150 (14)0.0017 (12)0.0050 (12)0.0060 (12)
C310.0211 (16)0.0214 (16)0.0193 (16)0.0001 (13)0.0015 (12)0.0072 (13)
C320.0238 (17)0.0259 (17)0.0237 (17)0.0005 (13)0.0011 (13)0.0139 (14)
C330.0279 (17)0.0187 (16)0.0265 (17)0.0018 (13)0.0046 (14)0.0116 (14)
C340.0229 (16)0.0182 (16)0.0238 (17)0.0028 (13)0.0011 (13)0.0054 (13)
C350.0221 (16)0.0233 (16)0.0168 (15)0.0017 (13)0.0016 (13)0.0073 (13)
C360.0208 (16)0.0229 (17)0.0197 (16)0.0012 (13)0.0019 (13)0.0097 (13)
C370.0280 (18)0.0236 (17)0.0233 (17)0.0008 (14)0.0059 (14)0.0126 (14)
C380.0238 (17)0.0284 (17)0.0238 (17)0.0042 (14)0.0102 (14)0.0128 (15)
C390.0273 (19)0.0280 (19)0.034 (2)0.0013 (15)0.0129 (15)0.0069 (16)
C400.036 (2)0.045 (2)0.035 (2)0.0161 (19)0.0136 (18)0.0036 (19)
C410.027 (2)0.075 (3)0.027 (2)0.023 (2)0.0011 (16)0.015 (2)
C420.028 (2)0.061 (3)0.037 (2)0.0103 (18)0.0017 (16)0.031 (2)
C430.0280 (18)0.0317 (19)0.0279 (18)0.0047 (15)0.0034 (14)0.0150 (15)
C1'0.0252 (17)0.0344 (19)0.0222 (16)0.0014 (14)0.0004 (13)0.0165 (15)
Cl1'0.0243 (4)0.0616 (6)0.0342 (5)0.0032 (4)0.0015 (4)0.0259 (5)
Cl2'0.0409 (5)0.0598 (6)0.0259 (5)0.0046 (5)0.0090 (4)0.0208 (5)
Cl3'0.0607 (7)0.0457 (6)0.0387 (6)0.0254 (5)0.0144 (5)0.0172 (5)
Geometric parameters (Å, º) top
O1—C61.346 (4)C17—H17B0.98
O1—C21.472 (4)C17—H17C0.98
O2—C61.222 (4)C19—C231.529 (4)
O3—C151.233 (4)C19—C201.536 (4)
O4—C181.221 (4)C19—C261.556 (4)
O6—C361.203 (4)C20—C211.536 (5)
O5—C271.231 (4)C20—H20A0.99
O7—C361.334 (4)C20—H20B0.99
O7—C371.454 (4)C21—C221.527 (6)
N1—C61.357 (4)C21—H21A0.99
N1—C71.465 (4)C21—H21B0.99
N1—H10.88C22—C251.527 (5)
N2—C151.336 (4)C22—C241.531 (5)
N2—C161.442 (4)C22—H221
N2—H20.88C23—C241.542 (4)
N3—C181.346 (4)C23—H23A0.99
N3—C191.475 (4)C23—H23B0.99
N3—H3N0.88C24—H24A0.99
N4—C271.347 (4)C24—H24B0.99
N4—C281.452 (4)C25—C261.556 (4)
N4—H40.88C25—H25A0.99
C2—C51.514 (5)C25—H25B0.99
C2—C41.515 (5)C26—C271.517 (5)
C2—C31.521 (5)C26—H261
C3—H3A0.98C28—C291.526 (4)
C3—H3B0.98C28—C361.527 (4)
C3—H3C0.98C28—H281
C4—H4A0.98C29—C301.503 (4)
C4—H4B0.98C29—H29A0.99
C4—H4C0.98C29—H29B0.99
C5—H5A0.98C30—C351.391 (5)
C5—H5B0.98C30—C311.393 (5)
C5—H5C0.98C31—C321.391 (5)
C7—C101.530 (4)C31—H310.95
C7—C81.539 (4)C32—C331.385 (5)
C7—C141.552 (4)C32—H320.95
C8—C91.553 (4)C33—C341.380 (5)
C8—H8A0.99C33—H330.95
C8—H8B0.99C34—C351.383 (5)
C9—C121.525 (5)C34—H340.95
C9—H9A0.99C35—H350.95
C9—H9B0.99C37—C381.494 (5)
C10—C111.540 (4)C37—H37A0.99
C10—H10A0.99C37—H37B0.99
C10—H10B0.99C38—C431.385 (5)
C11—C121.542 (5)C38—C391.387 (5)
C11—H11A0.99C39—C401.386 (6)
C11—H11B0.99C39—H390.95
C12—C131.529 (5)C40—C411.378 (7)
C12—H121C40—H400.95
C13—C141.548 (4)C41—C421.386 (6)
C13—H13A0.99C41—H410.95
C13—H13B0.99C42—C431.385 (5)
C14—C151.518 (4)C42—H420.95
C14—H141C43—H430.95
C16—C171.526 (4)C1'—Cl3'1.751 (4)
C16—C181.545 (4)C1'—Cl1'1.751 (3)
C16—H161C1'—Cl2'1.762 (3)
C17—H17A0.98C1'—H1'1
C6—O1—C2121.4 (2)C23—C19—C26110.5 (3)
C36—O7—C37117.1 (3)C20—C19—C26108.6 (3)
C6—N1—C7124.1 (3)C21—C20—C19109.8 (3)
C6—N1—H1118C21—C20—H20A109.7
C7—N1—H1118C19—C20—H20A109.7
C15—N2—C16120.6 (3)C21—C20—H20B109.7
C15—N2—H2119.7C19—C20—H20B109.7
C16—N2—H2119.7H20A—C20—H20B108.2
C18—N3—C19124.5 (3)C22—C21—C20109.6 (3)
C18—N3—H3N117.8C22—C21—H21A109.7
C19—N3—H3N117.8C20—C21—H21A109.7
C27—N4—C28117.8 (3)C22—C21—H21B109.7
C27—N4—H4121.1C20—C21—H21B109.7
C28—N4—H4121.1H21A—C21—H21B108.2
O1—C2—C5102.2 (3)C25—C22—C21109.5 (3)
O1—C2—C4108.5 (3)C25—C22—C24109.2 (3)
C5—C2—C4111.6 (3)C21—C22—C24108.9 (3)
O1—C2—C3111.8 (3)C25—C22—H22109.8
C5—C2—C3110.5 (3)C21—C22—H22109.8
C4—C2—C3111.7 (3)C24—C22—H22109.8
C2—C3—H3A109.5C19—C23—C24109.9 (3)
C2—C3—H3B109.5C19—C23—H23A109.7
H3A—C3—H3B109.5C24—C23—H23A109.7
C2—C3—H3C109.5C19—C23—H23B109.7
H3A—C3—H3C109.5C24—C23—H23B109.7
H3B—C3—H3C109.5H23A—C23—H23B108.2
C2—C4—H4A109.5C22—C24—C23109.3 (3)
C2—C4—H4B109.5C22—C24—H24A109.8
H4A—C4—H4B109.5C23—C24—H24A109.8
C2—C4—H4C109.5C22—C24—H24B109.8
H4A—C4—H4C109.5C23—C24—H24B109.8
H4B—C4—H4C109.5H24A—C24—H24B108.3
C2—C5—H5A109.5C22—C25—C26110.4 (3)
C2—C5—H5B109.5C22—C25—H25A109.6
H5A—C5—H5B109.5C26—C25—H25A109.6
C2—C5—H5C109.5C22—C25—H25B109.6
H5A—C5—H5C109.5C26—C25—H25B109.6
H5B—C5—H5C109.5H25A—C25—H25B108.1
O2—C6—O1125.0 (3)C27—C26—C25112.1 (3)
O2—C6—N1126.0 (3)C27—C26—C19109.6 (2)
O1—C6—N1109.0 (3)C25—C26—C19108.2 (3)
N1—C7—C10111.5 (2)C27—C26—H26109
N1—C7—C8112.5 (2)C25—C26—H26109
C10—C7—C8108.5 (3)C19—C26—H26109
N1—C7—C14109.2 (2)O5—C27—N4120.5 (3)
C10—C7—C14109.5 (2)O5—C27—C26121.8 (3)
C8—C7—C14105.5 (2)N4—C27—C26117.7 (3)
C7—C8—C9109.4 (3)N4—C28—C29112.5 (2)
C7—C8—H8A109.8N4—C28—C36109.2 (2)
C9—C8—H8A109.8C29—C28—C36109.9 (3)
C7—C8—H8B109.8N4—C28—H28108.4
C9—C8—H8B109.8C29—C28—H28108.4
H8A—C8—H8B108.2C36—C28—H28108.4
C12—C9—C8109.3 (3)C30—C29—C28113.4 (3)
C12—C9—H9A109.8C30—C29—H29A108.9
C8—C9—H9A109.8C28—C29—H29A108.9
C12—C9—H9B109.8C30—C29—H29B108.9
C8—C9—H9B109.8C28—C29—H29B108.9
H9A—C9—H9B108.3H29A—C29—H29B107.7
C7—C10—C11110.1 (3)C35—C30—C31118.5 (3)
C7—C10—H10A109.6C35—C30—C29119.6 (3)
C11—C10—H10A109.6C31—C30—C29121.9 (3)
C7—C10—H10B109.6C32—C31—C30120.4 (3)
C11—C10—H10B109.6C32—C31—H31119.8
H10A—C10—H10B108.2C30—C31—H31119.8
C10—C11—C12108.8 (3)C33—C32—C31120.4 (3)
C10—C11—H11A109.9C33—C32—H32119.8
C12—C11—H11A109.9C31—C32—H32119.8
C10—C11—H11B109.9C34—C33—C32119.4 (3)
C12—C11—H11B109.9C34—C33—H33120.3
H11A—C11—H11B108.3C32—C33—H33120.3
C9—C12—C13108.9 (3)C33—C34—C35120.5 (3)
C9—C12—C11108.5 (3)C33—C34—H34119.7
C13—C12—C11107.8 (3)C35—C34—H34119.7
C9—C12—H12110.5C34—C35—C30120.8 (3)
C13—C12—H12110.5C34—C35—H35119.6
C11—C12—H12110.5C30—C35—H35119.6
C12—C13—C14109.0 (3)O6—C36—O7125.0 (3)
C12—C13—H13A109.9O6—C36—C28125.1 (3)
C14—C13—H13A109.9O7—C36—C28109.9 (3)
C12—C13—H13B109.9O7—C37—C38112.1 (3)
C14—C13—H13B109.9O7—C37—H37A109.2
H13A—C13—H13B108.3C38—C37—H37A109.2
C15—C14—C13111.6 (3)O7—C37—H37B109.2
C15—C14—C7114.1 (2)C38—C37—H37B109.2
C13—C14—C7108.5 (2)H37A—C37—H37B107.9
C15—C14—H14107.4C43—C38—C39119.4 (3)
C13—C14—H14107.4C43—C38—C37120.7 (3)
C7—C14—H14107.4C39—C38—C37119.9 (3)
O3—C15—N2122.2 (3)C40—C39—C38120.1 (4)
O3—C15—C14122.8 (3)C40—C39—H39119.9
N2—C15—C14115.0 (3)C38—C39—H39119.9
N2—C16—C17109.2 (3)C41—C40—C39120.0 (4)
N2—C16—C18108.5 (2)C41—C40—H40120
C17—C16—C18110.5 (3)C39—C40—H40120
N2—C16—H16109.6C40—C41—C42120.3 (4)
C17—C16—H16109.6C40—C41—H41119.8
C18—C16—H16109.6C42—C41—H41119.8
C16—C17—H17A109.5C43—C42—C41119.4 (4)
C16—C17—H17B109.5C43—C42—H42120.3
H17A—C17—H17B109.5C41—C42—H42120.3
C16—C17—H17C109.5C42—C43—C38120.6 (4)
H17A—C17—H17C109.5C42—C43—H43119.7
H17B—C17—H17C109.5C38—C43—H43119.7
O4—C18—N3124.9 (3)Cl3'—C1'—Cl1'110.4 (2)
O4—C18—C16120.3 (3)Cl3'—C1'—Cl2'110.83 (19)
N3—C18—C16114.8 (3)Cl1'—C1'—Cl2'110.70 (19)
N3—C19—C23108.1 (2)Cl3'—C1'—H1'108.3
N3—C19—C20111.5 (3)Cl1'—C1'—H1'108.3
C23—C19—C20107.7 (3)Cl2'—C1'—H1'108.3
N3—C19—C26110.3 (2)
C2—O1—C6—N1171.0 (3)N3—C19—C20—C21172.7 (3)
C6—N1—C7—C14170.3 (3)C23—C19—C20—C2154.2 (4)
N1—C7—C14—C1540.5 (3)C26—C19—C20—C2165.5 (3)
C7—C14—C15—N2115.8 (3)C19—C20—C21—C229.3 (4)
C14—C15—N2—C16169.9 (3)C20—C21—C22—C2554.1 (4)
C15—N2—C16—C1856.0 (4)C20—C21—C22—C2465.1 (4)
N2—C16—C18—N3155.4 (3)N3—C19—C23—C24173.3 (3)
C16—C18—N3—C19173.2 (3)C20—C19—C23—C2466.0 (3)
C18—N3—C19—C2672.4 (4)C26—C19—C23—C2452.5 (3)
N3—C19—C26—C2760.2 (3)C25—C22—C24—C2366.2 (4)
C19—C26—C27—N492.4 (3)C21—C22—C24—C2353.3 (4)
C26—C27—N4—C28167.0 (3)C19—C23—C24—C2210.8 (4)
C27—N4—C28—C3658.1 (4)C21—C22—C25—C2664.3 (4)
N4—C28—C36—O7147.0 (3)C24—C22—C25—C2654.8 (4)
C6—O1—C2—C5175.6 (3)C22—C25—C26—C27113.0 (3)
C6—O1—C2—C466.3 (4)C22—C25—C26—C197.9 (4)
C6—O1—C2—C357.3 (4)C23—C19—C26—C2759.3 (3)
C2—O1—C6—O29.0 (5)C20—C19—C26—C27177.3 (3)
C7—N1—C6—O213.3 (5)N3—C19—C26—C25177.4 (3)
C7—N1—C6—O1166.7 (3)C23—C19—C26—C2563.2 (3)
C6—N1—C7—C1068.6 (4)C20—C19—C26—C2554.8 (3)
C6—N1—C7—C853.5 (4)C28—N4—C27—O510.1 (4)
N1—C7—C8—C9168.0 (2)C25—C26—C27—O535.5 (4)
C10—C7—C8—C968.2 (3)C19—C26—C27—O584.6 (4)
C14—C7—C8—C949.1 (3)C25—C26—C27—N4147.5 (3)
C7—C8—C9—C1217.7 (4)C27—N4—C28—C29179.6 (3)
N1—C7—C10—C11171.1 (3)N4—C28—C29—C3078.8 (3)
C8—C7—C10—C1146.7 (3)C36—C28—C29—C30159.3 (3)
C14—C7—C10—C1168.0 (3)C28—C29—C30—C3585.7 (4)
C7—C10—C11—C1218.9 (4)C28—C29—C30—C3194.4 (3)
C8—C9—C12—C1368.8 (3)C35—C30—C31—C321.1 (5)
C8—C9—C12—C1148.2 (3)C29—C30—C31—C32178.8 (3)
C10—C11—C12—C969.9 (3)C30—C31—C32—C330.1 (5)
C10—C11—C12—C1347.9 (4)C31—C32—C33—C341.1 (5)
C9—C12—C13—C1444.8 (3)C32—C33—C34—C350.9 (5)
C11—C12—C13—C1472.7 (3)C33—C34—C35—C300.3 (5)
C12—C13—C14—C15150.0 (3)C31—C30—C35—C341.3 (5)
C12—C13—C14—C723.4 (3)C29—C30—C35—C34178.6 (3)
C10—C7—C14—C1581.8 (3)C37—O7—C36—O61.0 (5)
C8—C7—C14—C15161.6 (3)C37—O7—C36—C28178.1 (3)
N1—C7—C14—C13165.6 (2)N4—C28—C36—O633.9 (4)
C10—C7—C14—C1343.3 (3)C29—C28—C36—O690.0 (4)
C8—C7—C14—C1373.3 (3)C29—C28—C36—O789.1 (3)
C16—N2—C15—O310.0 (4)C36—O7—C37—C3887.1 (3)
C13—C14—C15—O359.4 (4)O7—C37—C38—C43124.5 (3)
C7—C14—C15—O364.1 (4)O7—C37—C38—C3957.7 (4)
C13—C14—C15—N2120.7 (3)C43—C38—C39—C401.1 (5)
C15—N2—C16—C17176.4 (3)C37—C38—C39—C40176.7 (3)
C19—N3—C18—O48.4 (5)C38—C39—C40—C410.3 (6)
N2—C16—C18—O426.1 (4)C39—C40—C41—C421.3 (6)
C17—C16—C18—O493.5 (4)C40—C41—C42—C430.8 (6)
C17—C16—C18—N385.0 (3)C41—C42—C43—C380.6 (5)
C18—N3—C19—C23166.8 (3)C39—C38—C43—C421.6 (5)
C18—N3—C19—C2048.5 (4)C37—C38—C43—C42176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.882.162.994 (4)157
N2—H2···O5i0.882.122.914 (3)150
N3—H3N···O60.882.513.159 (3)131
N4—H4···O30.882.203.009 (3)153
C1—H1···O21.002.093.071 (4)167
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.882.162.994 (4)157
N2—H2···O5i0.882.122.914 (3)150
N3—H3N···O60.882.513.159 (3)131
N4—H4···O30.882.203.009 (3)153
C1'—H1'···O21.002.093.071 (4)167
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC42H56N4O7·CHCl3
Mr848.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2194 (6), 10.8908 (6), 11.8698 (7)
α, β, γ (°)63.489 (2), 86.467 (2), 89.069 (2)
V3)1064.38 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerD8 Venture Bruker
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.908, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
42849, 8712, 8015
Rint0.037
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.08
No. of reflections8712
No. of parameters518
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.32
Absolute structureFlack x determined using 3702 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.006 (18)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SIR2008 (Burla et al., 2007), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and pyMOL (DeLano, 2002), WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

 

Acknowledgements

The Plateforme de mesures de diffraction X of the Université de Lorraine is thanked for providing access to crystallographic facilities.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndré, C., Legrand, B., Deng, C., Didierjean, C., Pickaert, G., Martinez, J., Averlant-Petit, M. C., Amblard, M. & Calmes, M. (2012). Org. Lett. 14, 960–963.  PubMed Google Scholar
First citationAndré, C., Legrand, B., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Amblard, M. & Calmes, M. (2013). Chem. Eur. J. 19, 16963–16971.  PubMed Google Scholar
First citationBerlicki, L., Pilsl, L., Wéber, E., Mándity, I. M., Cabrele, C., Martinek, T. A., Fülöp, F. & Reiser, O. (2012). Angew. Chem. Int. Ed. 51, 2208–2212.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHayen, A., Schmitt, M. A., Ngassa, F. N., Thomasson, K. A. & Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505–510.  Web of Science CrossRef CAS Google Scholar
First citationHuang, L.-S., Cobessi, D., Tung, E. Y. & Berry, E. A. (2005). J. Mol. Biol. 351, 573–597.  CrossRef PubMed CAS Google Scholar
First citationLee, M., Shim, J., Kang, P., Guzei, I. A. & Choi, S. H. (2013). Angew. Chem. Int. Ed. 52, 12564–12567.  CSD CrossRef CAS Google Scholar
First citationLegrand, B., André, C., Moulat, L., Wenger, E., Didierjean, C., Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131–13135.  CSD CrossRef CAS Google Scholar
First citationLegrand, B., André, C., Wenger, E., Didierjean, C., Averlant-Petit, M. C., Martinez, J., Calmes, M. & Amblard, M. (2012). Angew. Chem. Int. Ed. 51, 11267–11270.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharma, G. V. M., Chandramouli, N., Choudhary, M., Nagendar, P., Ramakrishna, K. V. S., Kunwar, A. C., Schramm, P. & Hofmann, H.-J. (2009). J. Am. Chem. Soc. 131, 17335–17344.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSongis, O., Didierjean, C., Laurent, C., Martinez, J. & Calmès, M. (2007). Eur. J. Org. Chem. pp. 3166–3172.  CSD CrossRef Google Scholar
First citationVasudev, P. G., Chatterjee, S., Shamala, N. & Balaram, P. (2011). Chem. Rev. 111, 657–687.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1193-1195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds