organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o719-o720

Crystal structure of β-D,L-fructose

CROSSMARK_Color_square_no_text.svg

aDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, bRare Sugar Research Center, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, cDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, and dDepartment of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
*Correspondence e-mail: tishii@eng.kagawa-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 25 August 2015; accepted 4 September 2015; online 12 September 2015)

The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of D- and L-fructose (1,3,4,5,6-penta­hydroxy­hexan-2-one, arabino-hexulose or levu­lose), and it was confirmed that D-fructose (or L-fructose) formed β-pyran­ose with a 2C5 (or 5C2) conformation. In the crystal, two O—H⋯O hydrogen bonds between the hy­droxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral mol­ecules into a column along the a axis. The columns are linked by other O—H⋯O hydrogen bonds between D- and L-fructose mol­ecules, forming a three-dimensional network.

1. Related literature

For crystal structures of chiral β-D-fructose, racemic β-D,L-allose and racemic β-D,L-psicose, see: Kanters et al. (1977[Kanters, J. A., Roelofsen, G., Alblas, B. P. & Meinders, I. (1977). Acta Cryst. B33, 665-672.]); Ishii, Senoo et al. (2015[Ishii, T., Senoo, T., Kozakai, T., Fukada, K. & Sakane, G. (2015). Acta Cryst. E71, o139.]); Ishii, Sakane et al. (2015[Ishii, T., Sakane, G., Yoshihara, A., Fukada, K. & Senoo, T. (2015). Acta Cryst. E71, o289-o290.]), respectively. For the synthesis of chiral L-fructose, see: Itoh & Izumori (1996[Itoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351-353.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H12O6

  • Mr = 180.16

  • Triclinic, [P \overline 1]

  • a = 5.43124 (19) Å

  • b = 7.2727 (3) Å

  • c = 10.1342 (4) Å

  • α = 69.120 (2)°

  • β = 83.907 (2)°

  • γ = 78.381 (2)°

  • V = 366.09 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.10 × 0.10 × 0.10 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.729, Tmax = 0.878

  • 6710 measured reflections

  • 1329 independent reflections

  • 1211 reflections with F2 > 2.0σ(F2)

  • Rint = 0.079

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.08

  • 1329 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.82 2.28 2.9202 (14) 135
O2—H2A⋯O1ii 0.82 1.93 2.7224 (13) 161
O3—H3A⋯O4iii 0.82 1.96 2.7831 (18) 177
O4—H4A⋯O5iv 0.82 2.01 2.7893 (13) 158
O5—H5A⋯O4v 0.82 2.05 2.8431 (12) 163
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2009[Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Fructose, especially in D-fructose, is one of the most famous, fundamental and important monosaccharides in sugar family, and has been under intense investigation. On the other hand, L-fructose is classified into a rare sugar, and hardly exists in nature. In this study we investigate to create a novel racemic single-crystal including these D- and L-fructoses together with the ratio of 1: 1. The space group is triclinic P1 (Z = 2), which is significantly different from our previous reports of the racemic β-D,L-allose (monoclinic P21/c, Z = 4; Ishii, Senoo et al., 2015) and psicose (orthorhombic Pna21, Z = 4; Ishii, Sakane et al., 2015). In the unit cell, the D- and L-molecules are located with the heterochiral hydrogen bonding networks (O3—H3A···O4). As shown in Fig. 2, two homochiral hydrogen bonding networks (O1—H1A···O3 and O4—H4A···O5) have also been observed along to the a-axis. Additional two heterochiral hydrogen bonds (O2—H2A···O1 and O5—H5A···O4) are also confirmed (Fig. 3).

Related literature top

For crystal structures of chiral β-D-fructose, racemic β-D,L-allose and racemic β-D,L-psicose, see: Kanters et al. (1977); Ishii, Senoo et al. (2015); Ishii, Sakane et al. (2015), respectively. For the synthesis of chiral L-fructose, see: Itoh & Izumori (1996).

Experimental top

D-Fructose was purchased from Wako Pure Chemical Industries. L-Fructose was prepared from L-psicose by enzymatic epimerization using D-tagatose 3-epimerase (Itoh & Izumori, 1996). D-Fructose and L-fructose were mixed in equal amount and dissolved in hot water to give a 70 wt% solution. And these samples were kept at room temperature. After one day, small single crystals were obtained in a hermetically sealed test tube.

Refinement top

H atoms bounded to methine-type C (H3B, H4B, H5B) and methylene-type C (H1B, H1C, H6A, H6B) were positioned geometrically with C—H = 0.98 and 0.97 Å, respectively, and refined using a riding model with Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H5A) were positioned geometrically (O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the packing diagram of the title compound viewed down the c-axis, showing the hydrogen-bonding network (green solid lines).
[Figure 3] Fig. 3. Part of the packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green solid lines).
1,3,4,5,6-Pentahydroxyhexan-2-one top
Crystal data top
C6H12O6Z = 2
Mr = 180.16F(000) = 192.00
Triclinic, P1Dx = 1.634 Mg m3
a = 5.43124 (19) ÅCu Kα radiation, λ = 1.54187 Å
b = 7.2727 (3) ÅCell parameters from 4534 reflections
c = 10.1342 (4) Åθ = 4.7–68.4°
α = 69.120 (2)°µ = 1.30 mm1
β = 83.907 (2)°T = 296 K
γ = 78.381 (2)°Block, colorless
V = 366.09 (2) Å30.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1211 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.079
ω scansθmax = 68.2°, θmin = 4.7°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 66
Tmin = 0.729, Tmax = 0.878k = 88
6710 measured reflectionsl = 1212
1329 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1404P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1329 reflectionsΔρmax = 0.32 e Å3
115 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.125 (6)
Secondary atom site location: difference Fourier map
Crystal data top
C6H12O6γ = 78.381 (2)°
Mr = 180.16V = 366.09 (2) Å3
Triclinic, P1Z = 2
a = 5.43124 (19) ÅCu Kα radiation
b = 7.2727 (3) ŵ = 1.30 mm1
c = 10.1342 (4) ÅT = 296 K
α = 69.120 (2)°0.10 × 0.10 × 0.10 mm
β = 83.907 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1329 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
1211 reflections with F2 > 2.0σ(F2)
Tmin = 0.729, Tmax = 0.878Rint = 0.079
6710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
1329 reflectionsΔρmin = 0.23 e Å3
115 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.19555 (19)0.09152 (15)0.87814 (12)0.0325 (3)
O20.66671 (18)0.27440 (15)0.92243 (11)0.0287 (3)
O30.50386 (19)0.33842 (16)0.65941 (12)0.0294 (3)
O40.34223 (18)0.76120 (15)0.58108 (11)0.0264 (3)
O50.81908 (18)0.84537 (14)0.60893 (12)0.0290 (3)
O60.96847 (17)0.47716 (14)0.82413 (11)0.0223 (3)
C11.0136 (3)0.1818 (2)0.77318 (17)0.0265 (4)
C20.8236 (2)0.34747 (19)0.80373 (15)0.0195 (3)
C30.6557 (2)0.46432 (19)0.67791 (15)0.0190 (3)
C40.4906 (3)0.6455 (2)0.70256 (15)0.0200 (3)
C50.6558 (3)0.77295 (19)0.72899 (16)0.0223 (3)
C60.8182 (3)0.6457 (2)0.85210 (16)0.0254 (4)
H1A1.307790.158120.860620.0390*
H1C0.925940.080850.768110.0318*
H1B1.09760.236530.682080.0318*
H2A0.741360.169950.977160.0345*
H3A0.553670.310420.588470.0353*
H3B0.762160.50970.592440.0227*
H4A0.193530.753920.601780.0317*
H4B0.378320.600410.785450.0240*
H5A0.745520.949020.552850.0348*
H5B0.550620.88580.750580.0268*
H6A0.926690.725070.869230.0305*
H6B0.712310.599810.936330.0305*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (6)0.0153 (5)0.0465 (8)0.0003 (4)0.0014 (5)0.0066 (5)
O20.0251 (6)0.0190 (5)0.0265 (6)0.0006 (4)0.0037 (5)0.0074 (4)
O30.0292 (6)0.0280 (6)0.0361 (7)0.0153 (5)0.0002 (5)0.0118 (5)
O40.0160 (5)0.0236 (6)0.0298 (6)0.0001 (4)0.0051 (4)0.0019 (5)
O50.0208 (5)0.0154 (5)0.0385 (7)0.0035 (4)0.0014 (5)0.0060 (5)
O60.0186 (5)0.0164 (5)0.0309 (6)0.0004 (4)0.0061 (4)0.0071 (4)
C10.0223 (7)0.0144 (7)0.0389 (9)0.0022 (6)0.0001 (6)0.0054 (6)
C20.0176 (7)0.0123 (6)0.0242 (8)0.0039 (5)0.0003 (6)0.0007 (5)
C30.0177 (7)0.0140 (7)0.0233 (8)0.0070 (5)0.0006 (6)0.0020 (6)
C40.0158 (7)0.0163 (7)0.0213 (8)0.0018 (5)0.0019 (6)0.0013 (6)
C50.0198 (7)0.0131 (7)0.0315 (9)0.0005 (5)0.0002 (6)0.0060 (6)
C60.0272 (8)0.0199 (7)0.0304 (8)0.0015 (6)0.0044 (6)0.0107 (6)
Geometric parameters (Å, º) top
O1—C11.4153 (19)O1—H1A0.820
O2—C21.4017 (16)O2—H2A0.820
O3—C31.419 (2)O3—H3A0.820
O4—C41.4395 (16)O4—H4A0.820
O5—C51.4305 (17)O5—H5A0.820
O6—C21.423 (2)C1—H1C0.970
O6—C61.4298 (19)C1—H1B0.970
C1—C21.520 (2)C3—H3B0.980
C2—C31.5304 (19)C4—H4B0.980
C3—C41.521 (2)C5—H5B0.980
C4—C51.517 (2)C6—H6A0.970
C5—C61.5075 (19)C6—H6B0.970
C2—O6—C6113.25 (10)C4—O4—H4A109.467
O1—C1—C2111.97 (14)C5—O5—H5A109.473
O2—C2—O6111.23 (13)O1—C1—H1C109.215
O2—C2—C1112.44 (10)O1—C1—H1B109.220
O2—C2—C3107.69 (10)C2—C1—H1C109.218
O6—C2—C1105.55 (11)C2—C1—H1B109.221
O6—C2—C3109.06 (10)H1C—C1—H1B107.907
C1—C2—C3110.86 (13)O3—C3—H3B109.026
O3—C3—C2109.62 (10)C2—C3—H3B109.028
O3—C3—C4110.08 (11)C4—C3—H3B109.024
C2—C3—C4110.04 (13)O4—C4—H4B109.255
O4—C4—C3110.05 (13)C3—C4—H4B109.253
O4—C4—C5109.74 (10)C5—C4—H4B109.254
C3—C4—C5109.27 (11)O5—C5—H5B109.808
O5—C5—C4110.97 (14)C4—C5—H5B109.810
O5—C5—C6107.71 (11)C6—C5—H5B109.807
C4—C5—C6108.69 (11)O6—C6—H6A109.512
O6—C6—C5110.67 (14)O6—C6—H6B109.511
C1—O1—H1A109.469C5—C6—H6A109.511
C2—O2—H2A109.478C5—C6—H6B109.513
C3—O3—H3A109.476H6A—C6—H6B108.082
C2—O6—C6—C561.73 (13)C1—C2—C3—C4172.62 (10)
C6—O6—C2—O258.74 (12)O3—C3—C4—O462.10 (13)
C6—O6—C2—C1179.03 (9)O3—C3—C4—C5177.33 (9)
C6—O6—C2—C359.88 (13)C2—C3—C4—O4176.97 (10)
O1—C1—C2—O268.49 (15)C2—C3—C4—C556.41 (12)
O1—C1—C2—O652.95 (13)O4—C4—C5—O558.98 (13)
O1—C1—C2—C3170.90 (9)O4—C4—C5—C6177.25 (10)
O2—C2—C3—O357.21 (15)C3—C4—C5—O561.77 (12)
O2—C2—C3—C463.99 (14)C3—C4—C5—C656.50 (14)
O6—C2—C3—O3178.02 (10)O5—C5—C6—O661.97 (15)
O6—C2—C3—C456.82 (13)C4—C5—C6—O658.34 (14)
C1—C2—C3—O366.18 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.822.282.9202 (14)135
O2—H2A···O10.822.602.9721 (14)110
O2—H2A···O1ii0.821.932.7224 (13)161
O3—H3A···O4iii0.821.962.7831 (18)177
O4—H4A···O5iv0.822.012.7893 (13)158
O5—H5A···O4v0.822.052.8431 (12)163
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.822.282.9202 (14)135
O2—H2A···O10.822.602.9721 (14)110
O2—H2A···O1ii0.821.932.7224 (13)161
O3—H3A···O4iii0.821.962.7831 (18)177
O4—H4A···O5iv0.822.012.7893 (13)158
O5—H5A···O4v0.822.052.8431 (12)163
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+2; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to Grants-in-Aid for Rare Sugar Research of Kagawa University.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshii, T., Sakane, G., Yoshihara, A., Fukada, K. & Senoo, T. (2015). Acta Cryst. E71, o289–o290.  CSD CrossRef IUCr Journals Google Scholar
First citationIshii, T., Senoo, T., Kozakai, T., Fukada, K. & Sakane, G. (2015). Acta Cryst. E71, o139.  CSD CrossRef IUCr Journals Google Scholar
First citationItoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351–353.  CrossRef CAS Web of Science Google Scholar
First citationKanters, J. A., Roelofsen, G., Alblas, B. P. & Meinders, I. (1977). Acta Cryst. B33, 665–672.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o719-o720
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds