organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o754-o755

Crystal structure of tetra­kis­(1-oxidopyridin-2-yl)methane methanol tetra­solvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Natural Sciences, Senshu University, Higashimita 2-1-1, Kawasaki, Kanagawa 214-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: matsumoto@isc.senshu-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 31 August 2015; accepted 9 September 2015; online 12 September 2015)

The asymmetric unit of the title compound, C21H16N4O4·4CH3OH, consists of a quarter mol­ecule of tetra­kis­(1-oxidopyridin-2-yl)methane and one methanol solvent mol­ecule. In the crystal, the pyridine N-oxide derivative is located about a fourfold rotoinversion axis and exhibits S4 symmetry along the c axis. An inter­molecular O—H⋯O hydrogen bond is observed between the O atom of the pyridine N-oxide and the OH group of the methanol. An inter­molecular C—H⋯O bond is also observed between adjacent pyridine N-oxide rings.

1. Related literature

For aspects of pyridine N-oxides, see: Katritzky & Lagowski (1971[Katritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-Oxides. New York: Academic Press.]). For reviews of metal complexes of pyridine N-oxides, see: Orchin & Schmidt (1968[Orchin, M. & Schmidt, P. J. (1968). Coord. Chem. Rev. 3, 345-373.]); Carlin & De Jongh (1986[Carlin, R. L. & De Jongh, L. J. (1986). Chem. Rev. 86, 659-680.]). For the synthesis of the title compound, see: Matsumoto et al. (2003[Matsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861-2864.]). For coordination polymers of pyridine N-oxides, see: Henkelis et al. (2012[Henkelis, J. J., Barnett, S. A., Harding, L. P. & Hardie, M. J. (2012). Inorg. Chem. 51, 10657-10674.]). For structures of related mol­ecules, see: Betz et al. (2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 603-604.]); Matsumoto et al. (2014[Matsumoto, K., Kannami, M., Fuyuhiro, A. & Oda, M. (2014). Acta Cryst. E70, o1277-o1278.]). For the effect of the formation of hydrogen bonds on the N—O bond length of pyridine N-oxides, see: Eichhorn (1987[Eichhorn, K. (1987). Acta Cryst. B43, 111-112.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H16N4O4·4CH4O

  • Mr = 516.54

  • Tetragonal, I 41 /a

  • a = 14.4474 (4) Å

  • c = 12.2965 (5) Å

  • V = 2566.62 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.2 × 0.2 × 0.1 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • 12321 measured reflections

  • 1470 independent reflections

  • 1289 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.07

  • 1470 reflections

  • 86 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H5⋯O1 0.84 1.90 2.7285 (15) 169
C4—H2⋯O1i 0.95 2.37 3.290 (2) 163
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. https://www.hat.hi-ho.ne.jp/k-wakita/yadokari .]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyridine N-oxides are one of the most common heterocyclic N-oxides and their physical and chemical properties are studied in detail (Katritzky & Lagowski, 1971). Pyridine N-oxides are the important compounds not only as the precursors of the substituted pyridine derivatives but also as the ligand molecules for the metal complexes (Orchin & Schmidt, 1968; Carlin & De Jongh, 1986). Recently, the bridging ligands containing more than two pyridine N-oxide groups were explored (Henkelis et al., 2012). In the course of our investigation of tetrakis(pyridin-2-yl)methane (Matsumoto et al., 2003), we are interested in the corresponding N-oxides as the bridging ligand and now we report the crystal structure of the title compound (Fig. 1). The bond lengths and angles of pyridine rings are similar to those of 2-methylpyridine N-oxide (Betz et al., 2011). The C1—C2 bond length [1.5472 (11) Å] is similar to that of tetrakis(pyridin-2-yl)methane [1.545 (2) Å] (Matsumoto et al., 2014) and the prominent C1—C2 bond elongation by N-oxidation is not observed. The N—O bond length [1.3174 (14) Å] is also normal value in considering the formation of hydrogen bond with methanol molecule (Eichhorn, 1987). The interatomic distance of hydrogen bond is O1···H5 = 1.90 Å [O1···O2 = 2.7285 (15) Å]. An intermolecular C—H···O bond is also observed between the adjacent pyridine N-oxide rings [C4···H2 = 2.37 Å, O1···O2 = 3.290 (2) Å; Table 1].

Related literature top

For aspects of pyridine N-oxides, see: Katritzky & Lagowski (1971). For reviews of metal complexes of pyridine N-oxides, see: Orchin & Schmidt (1968); Carlin & De Jongh (1986). For the synthesis of the title compound, see: Matsumoto et al. (2003). For coordination polymers of pyridine N-oxides, see: Henkelis et al. (2012). For structures of related molecules, see: Betz et al. (2011); Matsumoto et al. (2014). For the effect of the formation of hydrogen bonds on the N—O bond length of pyridine N-oxides, see: Eichhorn (1987).

Experimental top

To a solution of tetrakis(pyridin-2-yl)methane (100 mg, 0.3 mmol) in acetic acid (4.5 mL) was added 30% aqueous solution of hydrogen peroxide (66 mmol). The mixture was heated to 90 °C for 2.5 hours. After cooling to room temperature, acetone (20 mL) was added. When the mixture was stirred a few minutes, white precipitates appeared. Collection of the precipitate by filtration gave the title compound (120 mg, 46%) as colourless solid. The single crystals were prepared by slow evaporation of a solution of the title compound in methanol. The obtained single crystals were highly efflorescent and the exposure of the crystal to the air should be avoided.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O) for hydroxyl H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Yadokari-XG 2009 (Wakita, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound (viewed along the b axis). Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown in the dashed lines. [Symmetry codes: (i) -x, 1/2 - y, z; (ii) -1/4 + y, 1/4 - x, 5/4 - z; (iii) 1/4 - y, 1/4 + x, 5/4 - z.]
Tetrakis(1-oxidopyridin-2-yl)methane methanol tetrasolvate top
Crystal data top
C21H16N4O4·4CH4ODx = 1.337 Mg m3
Mr = 516.54Mo Kα radiation, λ = 0.71075 Å
Tetragonal, I41/aCell parameters from 9662 reflections
a = 14.4474 (4) Åθ = 3.6–27.4°
c = 12.2965 (5) ŵ = 0.10 mm1
V = 2566.62 (18) Å3T = 200 K
Z = 4Prism, colourless
F(000) = 10960.2 × 0.2 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
Rint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.6°
ω scansh = 1818
12321 measured reflectionsk = 1818
1470 independent reflectionsl = 1515
1289 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0821P)2 + 1.7364P]
where P = (Fo2 + 2Fc2)/3
1470 reflections(Δ/σ)max < 0.001
86 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H16N4O4·4CH4OZ = 4
Mr = 516.54Mo Kα radiation
Tetragonal, I41/aµ = 0.10 mm1
a = 14.4474 (4) ÅT = 200 K
c = 12.2965 (5) Å0.2 × 0.2 × 0.1 mm
V = 2566.62 (18) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1289 reflections with I > 2σ(I)
12321 measured reflectionsRint = 0.031
1470 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
1470 reflectionsΔρmin = 0.25 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00000.25000.62500.0172 (5)
C20.06345 (8)0.18960 (8)0.69738 (9)0.0181 (3)
C30.15822 (8)0.17917 (8)0.68249 (10)0.0218 (3)
H10.18730.20910.62280.026*
C40.21147 (9)0.12608 (9)0.75266 (11)0.0263 (3)
H20.27620.11980.74160.032*
C50.16814 (10)0.08235 (10)0.83934 (12)0.0299 (4)
H30.20300.04580.88870.036*
C60.07458 (9)0.09250 (10)0.85293 (11)0.0276 (3)
H40.04490.06230.91200.033*
C70.14412 (17)0.16009 (17)1.05514 (18)0.0626 (6)
H60.08220.18351.07270.094*
H70.17920.20821.01690.094*
H80.17640.14331.12240.094*
N10.02328 (7)0.14510 (7)0.78324 (8)0.0211 (3)
O10.06661 (6)0.15169 (7)0.79946 (8)0.0279 (3)
O20.13633 (12)0.08248 (11)0.98897 (12)0.0639 (5)
H50.11930.09870.92650.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (7)0.0179 (7)0.0159 (10)0.0000.0000.000
C20.0194 (6)0.0181 (5)0.0167 (6)0.0004 (4)0.0014 (4)0.0005 (4)
C30.0202 (6)0.0224 (6)0.0230 (6)0.0003 (4)0.0006 (4)0.0001 (5)
C40.0195 (6)0.0286 (7)0.0308 (7)0.0018 (5)0.0037 (5)0.0003 (5)
C50.0275 (7)0.0321 (7)0.0300 (7)0.0014 (5)0.0095 (5)0.0067 (5)
C60.0287 (7)0.0315 (7)0.0225 (6)0.0021 (5)0.0039 (5)0.0091 (5)
C70.0630 (13)0.0783 (15)0.0464 (11)0.0129 (11)0.0033 (9)0.0051 (10)
N10.0194 (5)0.0251 (5)0.0186 (5)0.0015 (4)0.0009 (4)0.0029 (4)
O10.0183 (5)0.0382 (6)0.0271 (5)0.0004 (4)0.0033 (3)0.0090 (4)
O20.0954 (12)0.0553 (9)0.0411 (8)0.0033 (7)0.0273 (7)0.0119 (6)
Geometric parameters (Å, º) top
C1—C21.5472 (11)C5—C61.3698 (19)
C1—C2i1.5472 (11)C5—H30.9500
C1—C2ii1.5472 (11)C6—N11.3643 (16)
C1—C2iii1.5472 (11)C6—H40.9500
C2—N11.3656 (16)C7—O21.390 (3)
C2—C31.3895 (16)C7—H60.9800
C3—C41.3874 (18)C7—H70.9800
C3—H10.9500C7—H80.9800
C4—C51.3881 (19)N1—O11.3174 (14)
C4—H20.9500O2—H50.8400
C2—C1—C2i109.77 (9)C6—C5—H3120.3
C2—C1—C2ii109.32 (4)C4—C5—H3120.3
C2i—C1—C2ii109.32 (4)N1—C6—C5121.26 (12)
C2—C1—C2iii109.32 (4)N1—C6—H4119.4
C2i—C1—C2iii109.32 (4)C5—C6—H4119.4
C2ii—C1—C2iii109.77 (9)O2—C7—H6109.5
N1—C2—C3118.00 (11)O2—C7—H7109.5
N1—C2—C1117.29 (9)H6—C7—H7109.5
C3—C2—C1124.69 (10)O2—C7—H8109.5
C4—C3—C2121.63 (11)H6—C7—H8109.5
C4—C3—H1119.2H7—C7—H8109.5
C2—C3—H1119.2O1—N1—C6118.73 (10)
C3—C4—C5118.62 (12)O1—N1—C2120.13 (10)
C3—C4—H2120.7C6—N1—C2121.13 (11)
C5—C4—H2120.7C7—O2—H5109.5
C6—C5—C4119.34 (12)
C2i—C1—C2—N145.51 (8)C3—C4—C5—C60.2 (2)
C2ii—C1—C2—N174.40 (6)C4—C5—C6—N10.3 (2)
C2iii—C1—C2—N1165.42 (10)C5—C6—N1—O1179.29 (12)
C2i—C1—C2—C3133.05 (13)C5—C6—N1—C20.0 (2)
C2ii—C1—C2—C3107.04 (14)C3—C2—N1—O1178.83 (10)
C2iii—C1—C2—C313.14 (11)C1—C2—N1—O12.51 (15)
N1—C2—C3—C40.59 (18)C3—C2—N1—C60.48 (18)
C1—C2—C3—C4177.96 (10)C1—C2—N1—C6178.18 (10)
C2—C3—C4—C50.2 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) y+1/4, x+1/4, z+5/4; (iii) y1/4, x+1/4, z+5/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···O10.841.902.7285 (15)169
C4—H2···O1iv0.952.373.290 (2)163
Symmetry code: (iv) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···O10.841.902.7285 (15)169
C4—H2···O1i0.952.373.290 (2)163
Symmetry code: (i) x1/2, y, z+3/2.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 24550049) from the Japan Society for the Promotion of Science.

References

First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 603–604.  CAS Google Scholar
First citationCarlin, R. L. & De Jongh, L. J. (1986). Chem. Rev. 86, 659–680.  CrossRef CAS Google Scholar
First citationEichhorn, K. (1987). Acta Cryst. B43, 111–112.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHenkelis, J. J., Barnett, S. A., Harding, L. P. & Hardie, M. J. (2012). Inorg. Chem. 51, 10657–10674.  CSD CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-Oxides. New York: Academic Press.  Google Scholar
First citationMatsumoto, K., Kannami, M., Fuyuhiro, A. & Oda, M. (2014). Acta Cryst. E70, o1277–o1278.  CSD CrossRef IUCr Journals Google Scholar
First citationMatsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861–2864.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrchin, M. & Schmidt, P. J. (1968). Coord. Chem. Rev. 3, 345–373.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. https://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o754-o755
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds