organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o780-o781

Crystal structure of tri­ethyl 2-(5-nitro-2H-indazol-2-yl)propane-1,2,3-tri­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mboulhaoua4@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 10 September 2015; accepted 15 September 2015; online 26 September 2015)

In the title compound, C19H23N3O8, the 5-nitro-2H-indazol-2-yl unit is almost planar, with the maximum deviation from the mean plane being 0.024 (2) Å. The fused-ring system is nearly perpendicular to the three carboxyl­ate groups, with dihedral angles of 90.0 (3), 83.8 (1) and 80.4 (1)°. The ethyl groups attached to both ends of the propane chain are each disordered over two sets of sites, with site-occupancy ratios of 0.425 (17):0.575 (17) and 0.302 (15):0.698 (15). In the crystal, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers. The dimers are further linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the pharmacological and biochemical properties of indazoles and their derivatives, see: Abbassi et al. (2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]); Li et al. (2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]); Lee et al. (2001[Lee, F.-Y., Lien, J.-C., Huang, L.-J., Huang, T.-M., Tsai, S.-C., Teng, C.-M., Wu, C.-C., Cheng, F.-C. & Kuo, S.-C. (2001). J. Med. Chem. 44, 3746-3749.]). For compounds with similar structures, see: El Brahmi et al. (2012[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.]); Chicha et al. (2013[Chicha, H., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1410.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H23N3O8

  • Mr = 421.40

  • Monoclinic, P 21 /c

  • a = 13.4555 (4) Å

  • b = 18.6185 (6) Å

  • c = 8.5258 (3) Å

  • β = 104.603 (1)°

  • V = 2066.90 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 36533 measured reflections

  • 4233 independent reflections

  • 3523 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.03

  • 4233 reflections

  • 309 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.93 2.53 3.443 (2) 168
C4—H4⋯O7ii 0.93 2.53 3.205 (2) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, a number of pharmacological tests revealed that the indazole derivatives present various biological activities and other chemical industries. With respect to biological applications, these derivatives are found potent anti-tumour (Abbassi et al., 2014), anti-microbial (Li et al., 2003) and anti-platelet (Lee et al., 2001). As a continuation of our research work devoted to the development of N-substituted indazole and trying potential pharmacological activities (El Brahmi et al., 2012; Chicha et al., 2013), we have studied the reaction of ethyl bromoacetate towards 5-nitro-1H-indazole under phase-transfer catalysis conditions using tetra-n-butylammonium iodide (TBAI) as catalyst and potassium carbonate as base. The title compound was isolated and its structure was established.

The molecule of the title compound is build up from two fused five- and six-membered rings linked to a nitro group and to propane-1,2,3-tricarboxylate, which are connected to three ethyl moieties as shown in Fig. 1. The two ethyl groups attached to both ends of the propane chain are each split with occupancy ratios of 0.425 (17) (Cl1A–C12A) : 0.575 (17) (Cl1B–C12B) and 0.302 (15) (C15A–C16A) : 0.698 (15) (C15B–C16B). The fused ring system is virtually planar with the largest deviation from the mean plane being 0.013 (2) Å at N2 and makes dihedral angles of 83.8 (1), 80.5 (1) and 90.0 (3)° with the three carboxylate groups (C10/O3/O4), (C14/O/5O6) and (C17/O7/O8), respectively. In the crystal, the molecules are linked together by non-classic hydrogen bonds, forming a three dimensional network (Fig. 2 and Table 1).

Related literature top

For the pharmacological and biochemical properties of indazoles and their derivatives, see: Abbassi et al. (2014); Li et al. (2003); Lee et al. (2001). For compounds with similar structures, see: El Brahmi et al. (2012); Chicha et al. (2013).

Experimental top

To a solution of 5-nitro-1H-indazole (0.5 g, 3 mmol) in THF (30 ml) was added ethyl bromoacetate (2 g, 12 mmol), potassium carbonate (1.24 g, 9 mmol) and a catalytic quantity of tetra-n-butylammonium iodide. The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol to afford the title compound as colourless crystals (yield: 66%; m.p. = 381 K).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq (aromatic and methylene C) and 1.5Ueq(methyl C). The two ethyl groups attached to both ends of the propane chain are disordered with occupancy ratios of 0.425 (17):0.575 (17) and 0.302 (15):0.698 (15). The C11A—C12A, C11B—C12B, C15A—C16A and C15A—C16B distances were restrained to 1.483 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A packing view of the title compound showing molecules linked together by hydrogen bonds as dashed lines.
Triethyl 2-(5-nitro-2H-indazol-2-yl)propane-1,2,3-tricarboxylate top
Crystal data top
C19H23N3O8F(000) = 888
Mr = 421.40Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4555 (4) ÅCell parameters from 4233 reflections
b = 18.6185 (6) Åθ = 2.7–26.4°
c = 8.5258 (3) ŵ = 0.11 mm1
β = 104.603 (1)°T = 296 K
V = 2066.90 (12) Å3Block, colourless
Z = 40.42 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
4233 independent reflections
Radiation source: fine-focus sealed tube3523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.673, Tmax = 0.746k = 2323
36533 measured reflectionsl = 1010
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.8225P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
4233 reflectionsΔρmax = 0.30 e Å3
309 parametersΔρmin = 0.25 e Å3
Crystal data top
C19H23N3O8V = 2066.90 (12) Å3
Mr = 421.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4555 (4) ŵ = 0.11 mm1
b = 18.6185 (6) ÅT = 296 K
c = 8.5258 (3) Å0.42 × 0.31 × 0.26 mm
β = 104.603 (1)°
Data collection top
Bruker X8 APEX
diffractometer
4233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3523 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.031
36533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
4233 reflectionsΔρmin = 0.25 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.57273 (14)0.40719 (9)0.4318 (2)0.0514 (4)
H10.57400.45660.41700.062*
C20.63996 (13)0.36345 (10)0.3833 (2)0.0510 (4)
H20.68820.38300.33440.061*
C30.63713 (11)0.28818 (9)0.4066 (2)0.0423 (4)
C40.56810 (11)0.25484 (8)0.4740 (2)0.0392 (3)
H40.56750.20520.48590.047*
C50.49768 (11)0.29933 (8)0.52479 (18)0.0340 (3)
C60.50052 (11)0.37504 (8)0.5058 (2)0.0385 (3)
C70.41751 (11)0.28790 (8)0.59778 (19)0.0360 (3)
H70.39480.24390.62720.043*
C80.29510 (11)0.37241 (8)0.69122 (19)0.0352 (3)
C90.22024 (12)0.42301 (8)0.5780 (2)0.0395 (3)
H9A0.16990.43990.63320.047*
H9B0.25790.46450.55510.047*
C100.16487 (13)0.38884 (9)0.4201 (2)0.0451 (4)
C11A0.0301 (7)0.4160 (8)0.1824 (13)0.074 (3)0.425 (17)
H11A0.05900.37640.13460.088*0.425 (17)
H11B0.03300.45960.12120.088*0.425 (17)
C12A0.0758 (10)0.4003 (13)0.194 (2)0.130 (6)0.425 (17)
H12A0.11910.39170.08760.195*0.425 (17)
H12B0.10180.44050.24190.195*0.425 (17)
H12C0.07520.35850.26010.195*0.425 (17)
C11B0.0141 (6)0.3852 (5)0.2097 (12)0.075 (2)0.575 (17)
H11C0.04920.38150.12360.090*0.575 (17)
H11D0.00050.33710.24150.090*0.575 (17)
C12B0.0826 (6)0.4264 (6)0.1532 (14)0.089 (3)0.575 (17)
H12D0.12470.40410.05790.134*0.575 (17)
H12E0.06690.47470.12810.134*0.575 (17)
H12F0.11870.42720.23690.134*0.575 (17)
C130.24285 (12)0.30296 (8)0.7280 (2)0.0393 (3)
H13A0.21980.27510.62930.047*
H13B0.29200.27420.80550.047*
C140.15273 (14)0.32020 (10)0.7957 (2)0.0503 (4)
C15A0.0178 (6)0.3478 (8)0.7695 (11)0.057 (3)0.302 (15)
H15A0.03690.31700.84880.069*0.302 (15)
H15B0.00800.39310.81980.069*0.302 (15)
C16A0.1043 (10)0.3585 (16)0.6243 (16)0.107 (7)0.302 (15)
H16A0.16390.37410.65740.161*0.302 (15)
H16B0.11910.31400.56610.161*0.302 (15)
H16C0.08580.39420.55550.161*0.302 (15)
C15B0.0333 (4)0.3135 (4)0.7256 (9)0.0766 (16)0.698 (15)
H15C0.02480.30550.84060.092*0.698 (15)
H15D0.07970.27730.66630.092*0.698 (15)
C16B0.0756 (7)0.3862 (2)0.6799 (14)0.106 (3)0.698 (15)
H16D0.14430.38880.69290.158*0.698 (15)
H16E0.07630.39570.56900.158*0.698 (15)
H16F0.03350.42130.74850.158*0.698 (15)
C170.34844 (12)0.40826 (9)0.8553 (2)0.0423 (4)
C180.35337 (18)0.50899 (12)1.0282 (3)0.0682 (6)
H18A0.42630.49891.06490.082*
H18B0.34510.56051.01310.082*
C190.3021 (2)0.48556 (16)1.1524 (3)0.0839 (7)
H19A0.33140.51031.25210.126*
H19B0.31120.43471.16900.126*
H19C0.23010.49631.11720.126*
N10.71300 (11)0.24372 (9)0.3546 (2)0.0561 (4)
N20.42831 (10)0.40789 (7)0.56357 (18)0.0432 (3)
N30.37965 (9)0.35279 (6)0.61715 (15)0.0346 (3)
O10.71038 (13)0.17910 (8)0.3693 (2)0.0810 (5)
O20.77500 (13)0.27406 (10)0.2951 (3)0.0952 (6)
O30.19189 (12)0.33658 (8)0.36163 (16)0.0686 (4)
O40.08034 (11)0.42484 (9)0.35264 (18)0.0758 (5)
O50.16075 (13)0.34111 (10)0.9308 (2)0.0840 (5)
O60.06455 (10)0.30905 (10)0.6864 (2)0.0762 (5)
O70.41569 (11)0.37912 (8)0.95228 (17)0.0683 (4)
O80.31115 (10)0.47256 (6)0.87260 (15)0.0528 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (10)0.0374 (8)0.0739 (12)0.0036 (7)0.0316 (9)0.0027 (8)
C20.0439 (9)0.0520 (10)0.0651 (12)0.0052 (7)0.0285 (8)0.0004 (8)
C30.0330 (7)0.0481 (9)0.0468 (9)0.0030 (6)0.0119 (7)0.0071 (7)
C40.0356 (7)0.0352 (7)0.0467 (9)0.0034 (6)0.0105 (7)0.0024 (6)
C50.0322 (7)0.0320 (7)0.0378 (8)0.0002 (5)0.0083 (6)0.0012 (6)
C60.0372 (7)0.0327 (7)0.0484 (9)0.0008 (6)0.0160 (7)0.0011 (6)
C70.0378 (7)0.0283 (7)0.0439 (8)0.0015 (6)0.0138 (6)0.0009 (6)
C80.0351 (7)0.0319 (7)0.0418 (8)0.0014 (6)0.0159 (6)0.0019 (6)
C90.0394 (8)0.0355 (7)0.0467 (9)0.0060 (6)0.0169 (7)0.0002 (6)
C100.0455 (9)0.0487 (9)0.0429 (9)0.0099 (7)0.0148 (7)0.0025 (7)
C11A0.077 (5)0.086 (7)0.051 (4)0.022 (4)0.004 (3)0.000 (4)
C12A0.091 (9)0.213 (17)0.077 (8)0.061 (9)0.004 (6)0.018 (9)
C11B0.068 (4)0.084 (5)0.058 (4)0.025 (3)0.013 (3)0.017 (3)
C12B0.065 (4)0.116 (5)0.077 (5)0.025 (3)0.003 (3)0.002 (3)
C130.0410 (8)0.0362 (8)0.0442 (9)0.0024 (6)0.0172 (7)0.0010 (6)
C140.0526 (10)0.0478 (9)0.0591 (11)0.0020 (8)0.0302 (9)0.0079 (8)
C15A0.042 (4)0.066 (7)0.073 (5)0.001 (4)0.031 (4)0.001 (4)
C16A0.050 (6)0.177 (19)0.095 (9)0.008 (8)0.020 (5)0.029 (10)
C15B0.048 (2)0.082 (3)0.111 (4)0.005 (2)0.039 (2)0.005 (3)
C16B0.078 (5)0.103 (4)0.152 (8)0.031 (3)0.058 (5)0.012 (4)
C170.0384 (8)0.0414 (8)0.0496 (9)0.0001 (6)0.0156 (7)0.0072 (7)
C180.0766 (14)0.0605 (12)0.0694 (14)0.0083 (10)0.0222 (11)0.0304 (10)
C190.0993 (18)0.0977 (18)0.0555 (13)0.0002 (15)0.0214 (13)0.0182 (12)
N10.0420 (8)0.0628 (10)0.0689 (11)0.0059 (7)0.0240 (7)0.0085 (8)
N20.0454 (7)0.0288 (6)0.0626 (9)0.0017 (5)0.0269 (7)0.0016 (6)
N30.0353 (6)0.0278 (6)0.0440 (7)0.0005 (5)0.0163 (5)0.0008 (5)
O10.0826 (11)0.0582 (9)0.1184 (14)0.0257 (8)0.0552 (10)0.0049 (9)
O20.0723 (10)0.0863 (12)0.1535 (18)0.0031 (9)0.0777 (12)0.0181 (11)
O30.0801 (10)0.0674 (9)0.0513 (8)0.0270 (7)0.0039 (7)0.0158 (7)
O40.0639 (9)0.0976 (11)0.0563 (8)0.0383 (8)0.0025 (7)0.0173 (8)
O50.0877 (11)0.1046 (13)0.0768 (11)0.0112 (9)0.0526 (9)0.0237 (9)
O60.0411 (7)0.1151 (13)0.0780 (10)0.0068 (7)0.0252 (7)0.0200 (9)
O70.0600 (8)0.0730 (9)0.0603 (8)0.0205 (7)0.0067 (7)0.0192 (7)
O80.0645 (8)0.0419 (6)0.0531 (7)0.0044 (5)0.0169 (6)0.0119 (5)
Geometric parameters (Å, º) top
C1—C21.357 (2)C12B—H12D0.9600
C1—C61.418 (2)C12B—H12E0.9600
C1—H10.9300C12B—H12F0.9600
C2—C31.417 (2)C13—C141.503 (2)
C2—H20.9300C13—H13A0.9700
C3—C41.359 (2)C13—H13B0.9700
C3—N11.467 (2)C14—O51.195 (2)
C4—C51.407 (2)C14—O61.327 (2)
C4—H40.9300C15A—C16A1.4828 (10)
C5—C71.391 (2)C15A—O61.627 (10)
C5—C61.420 (2)C15A—H15A0.9700
C6—N21.3424 (19)C15A—H15B0.9700
C7—N31.3375 (18)C16A—H16A0.9600
C7—H70.9300C16A—H16B0.9600
C8—N31.4794 (18)C16A—H16C0.9600
C8—C91.531 (2)C15B—O61.440 (4)
C8—C131.541 (2)C15B—C16B1.4825 (10)
C8—C171.553 (2)C15B—H15C0.9700
C9—C101.506 (2)C15B—H15D0.9700
C9—H9A0.9700C16B—H16D0.9600
C9—H9B0.9700C16B—H16E0.9600
C10—O31.191 (2)C16B—H16F0.9600
C10—O41.320 (2)C17—O71.191 (2)
C11A—O41.448 (11)C17—O81.3205 (19)
C11A—C12A1.4826 (10)C18—C191.468 (3)
C11A—H11A0.9700C18—O81.471 (2)
C11A—H11B0.9700C18—H18A0.9700
C12A—H12A0.9600C18—H18B0.9700
C12A—H12B0.9600C19—H19A0.9600
C12A—H12C0.9600C19—H19B0.9600
C11B—C12B1.4824 (10)C19—H19C0.9600
C11B—O41.508 (8)N1—O11.211 (2)
C11B—H11C0.9700N1—O21.219 (2)
C11B—H11D0.9700N2—N31.3567 (17)
C2—C1—C6117.83 (15)C14—C13—C8110.65 (13)
C2—C1—H1121.1C14—C13—H13A109.5
C6—C1—H1121.1C8—C13—H13A109.5
C1—C2—C3120.47 (15)C14—C13—H13B109.5
C1—C2—H2119.8C8—C13—H13B109.5
C3—C2—H2119.8H13A—C13—H13B108.1
C4—C3—C2123.80 (14)O5—C14—O6125.14 (18)
C4—C3—N1118.15 (15)O5—C14—C13123.66 (18)
C2—C3—N1118.05 (15)O6—C14—C13111.21 (16)
C3—C4—C5116.51 (14)C16A—C15A—O6100.0 (12)
C3—C4—H4121.7C16A—C15A—H15A111.8
C5—C4—H4121.7O6—C15A—H15A111.8
C7—C5—C4134.93 (14)C16A—C15A—H15B111.8
C7—C5—C6104.42 (12)O6—C15A—H15B111.8
C4—C5—C6120.65 (13)H15A—C15A—H15B109.5
N2—C6—C1127.71 (14)C15A—C16A—H16A109.5
N2—C6—C5111.56 (13)C15A—C16A—H16B109.5
C1—C6—C5120.72 (14)H16A—C16A—H16B109.5
N3—C7—C5106.23 (12)C15A—C16A—H16C109.5
N3—C7—H7126.9H16A—C16A—H16C109.5
C5—C7—H7126.9H16B—C16A—H16C109.5
N3—C8—C9109.71 (12)O6—C15B—C16B107.7 (4)
N3—C8—C13108.61 (11)O6—C15B—H15C110.2
C9—C8—C13112.54 (12)C16B—C15B—H15C110.2
N3—C8—C17105.09 (11)O6—C15B—H15D110.2
C9—C8—C17112.63 (12)C16B—C15B—H15D110.2
C13—C8—C17107.94 (13)H15C—C15B—H15D108.5
C10—C9—C8113.73 (13)C15B—C16B—H16D109.5
C10—C9—H9A108.8C15B—C16B—H16E109.5
C8—C9—H9A108.8H16D—C16B—H16E109.5
C10—C9—H9B108.8C15B—C16B—H16F109.5
C8—C9—H9B108.8H16D—C16B—H16F109.5
H9A—C9—H9B107.7H16E—C16B—H16F109.5
O3—C10—O4123.57 (17)O7—C17—O8125.39 (16)
O3—C10—C9125.79 (15)O7—C17—C8121.80 (14)
O4—C10—C9110.64 (14)O8—C17—C8112.81 (14)
O4—C11A—C12A99.7 (9)C19—C18—O8111.62 (18)
O4—C11A—H11A111.8C19—C18—H18A109.3
C12A—C11A—H11A111.8O8—C18—H18A109.3
O4—C11A—H11B111.8C19—C18—H18B109.3
C12A—C11A—H11B111.8O8—C18—H18B109.3
H11A—C11A—H11B109.5H18A—C18—H18B108.0
C11A—C12A—H12A109.5C18—C19—H19A109.5
C11A—C12A—H12B109.5C18—C19—H19B109.5
H12A—C12A—H12B109.5H19A—C19—H19B109.5
C11A—C12A—H12C109.5C18—C19—H19C109.5
H12A—C12A—H12C109.5H19A—C19—H19C109.5
H12B—C12A—H12C109.5H19B—C19—H19C109.5
C12B—C11B—O4107.5 (7)O1—N1—O2122.96 (16)
C12B—C11B—H11C110.2O1—N1—C3119.26 (15)
O4—C11B—H11C110.2O2—N1—C3117.76 (16)
C12B—C11B—H11D110.2C6—N2—N3103.56 (12)
O4—C11B—H11D110.2C7—N3—N2114.22 (12)
H11C—C11B—H11D108.5C7—N3—C8129.31 (12)
C11B—C12B—H12D109.5N2—N3—C8116.45 (11)
C11B—C12B—H12E109.5C10—O4—C11A120.8 (5)
H12D—C12B—H12E109.5C10—O4—C11B111.8 (3)
C11B—C12B—H12F109.5C14—O6—C15B122.4 (4)
H12D—C12B—H12F109.5C14—O6—C15A102.2 (4)
H12E—C12B—H12F109.5C17—O8—C18116.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.533.443 (2)168
C4—H4···O7ii0.932.533.205 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.533.443 (2)168
C4—H4···O7ii0.932.533.205 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Spinelli, D., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1410.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, F.-Y., Lien, J.-C., Huang, L.-J., Huang, T.-M., Tsai, S.-C., Teng, C.-M., Wu, C.-C., Cheng, F.-C. & Kuo, S.-C. (2001). J. Med. Chem. 44, 3746–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o780-o781
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds