organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o778-o779

Crystal structure of tetra­ethyl 27,30-dioxo-7,12,20,25-tetra-tert-but­yl-3,16-dioxa-9,22,28,31-tetra­thia­hepta­cyclo­[21.3.1.11,5.14,8.110,14.114,18.117,21]dotriaconta-4,6,8(29),10,12,17,19,21(32),23,25-deca­ene-2,2,15,15-tetra­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eMedical Laboratory Department, College of Science, Majmaah University, 11932, Saudi Arabia, fChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and gKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 16 September 2015; accepted 18 September 2015; online 26 September 2015)

The asymmetric unit of the title compound, C54H64O12S4, consists of one half of the mol­ecule, which is located on an inversion centre. The heterocyclic six-membered ring adopts a distorted envelope conformation with the spiro C atom as the flap. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds with an R22(14) motif, forming a chain along the b-axis direction.

1. Related literature

For industrial application of calixarenes, see: Shokova & Kovalev (2003[Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1-28.]); Stoikov et al. (2003[Stoikov, I. I., Omran, O. A., Solovieva, S. E., Latypov, S. K., Enikeev, K. M., Gubaidullin, A. T., Antipin, I. S. & Konovalov, A. I. (2003). Tetrahedron, 59, 1469-1476.]). For macrocyclic reactions of calixarenes, see: Agrawal & Pancholi (2007[Agrawal, Y. K. & Pancholi, J. P. (2007). Indian. J. Chem. Sect. A, 46, 1377-1382.]); Higuchi et al. (2000[Higuchi, Y., Narita, M., Niimi, T., Ogawa, N., Hamada, F., Kumagai, H., Iki, N., Miyano, S. & Kabuto, C. (2000). Tetrahedron, 56, 4659-4666.]); Omran & Anti­pin (2014[Omran, A. O. & Antipin, I. S. (2014). J. Incl Phenom. Macrocycl Chem. 78, 121-126.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C54H64O12S4

  • Mr = 1033.29

  • Triclinic, [P \overline 1]

  • a = 10.9366 (6) Å

  • b = 11.7386 (5) Å

  • c = 12.6262 (8) Å

  • α = 100.018 (4)°

  • β = 113.884 (6)°

  • γ = 105.884 (4)°

  • V = 1348.75 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.49 × 0.32 × 0.14 mm

2.2. Data collection

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.715, Tmax = 0.967

  • 16365 measured reflections

  • 8908 independent reflections

  • 6481 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.169

  • S = 1.07

  • 8908 reflections

  • 324 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯O4i 0.97 2.35 3.298 (5) 164
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The macrocyclic calixarenes have been considered to be not only as good substrats in industrial chemistry but also in research field of supramolecular chemistry (Agrawal & Pancholi, 2007; Higuchi et al., 2000; Omran & Antipin, 2014). They have also been used as sensors, catalysis and molecular recognition or ion separtion (Shokova & Kovalev, 2003; Stoikov et al., 2003). In this context and following to our on-going study we report in this study the synthesis and crystal structure of the title compound.

Figure 1 shows the title molecule which lies on a crystallographic inversion centre. The heterocyclic six-membered ring (S1/C2/C21/O2/C13/C14) adopts a distorted envelope conformation with the puckering parameters of QT = 0.547 (2) Å, θ = 50.6 (2)° and φ = 65.2 (3)°. In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules, forming fourteen-membered rings with R22(14) ring motifs, into chains along the b axis (Fig. 2).

Related literature top

For industrial application of calixarenes, see: Shokova & Kovalev (2003); Stoikov et al. (2003). For macrocyclic reactions of calixarenes, see: Agrawal & Pancholi (2007); Higuchi et al. (2000); Omran & Antipin (2014).

Experimental top

A mixture of 1.5 g (2.08 mmol) thiacalexarene (TCA), 10 g sodium carbonate, 0.5 g of tetraethylammonium bromide (TEAB) and diethyl bromomalonate 3 ml (8. 02 mmol) in 50 ml benzene was heated at 373 K with stirring for 6 days. The reaction mixture was filtered off and the benzene layer was evaporated under vacuum to dryness. The solid residue was washed by hydrochloric diluted solution and extracted by methylene chloride (3 times). The methylene chloride portions were concentrated and methanol was added. Yellow color of two solid mixture products were precipitated and filtered off. The mixture was separated by fractional crystallization by using a mixture of methylene chloride / methanol (1:1 v:v) to afford the title compound as yellow crystals in 85% yield.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq (C). The (-2 5 1), (-2 5 0), (2 - 2 4), (-3 - 7 1), (-4 7 1), (1 6 0), (-5 1 2), (1 - 2 3), (-3 - 1 8), (5 - 4 3), (0 - 3 2), (-2 5 4), (1–8 3), (3 4 7), (-8 - 6 2), (5 - 10 4), (1 6 4), (7 - 3 2), (2 - 8 1), (6 0 2), (-1 - 9 4), (-5 4 8), (-7 6 12), (-8 3 0), (-3 2 8) and (-8 0 2) reflections were omitted owing to very bad agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry code: (a) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. The molecular packing of the title compound viewed down the a axis. H atoms not involved in the C—H···O hydrogen bonds are omitted for clarity.
Tetraethyl 27,30-dioxo-7,12,20,25-tetra-tert-butyl-3,16-dioxa-9,22,28,31-tetrathiaheptacyclo[21.3.1.11,5.14,8.110,14.114,18.117,21]dotriaconta-4,6,8(29),10,12,17,19,21 (32),23,25-decaene-2,2,15,15-tetracarboxylate top
Crystal data top
C54H64O12S4Z = 1
Mr = 1033.29F(000) = 548
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9366 (6) ÅCell parameters from 4552 reflections
b = 11.7386 (5) Åθ = 3.6–32.8°
c = 12.6262 (8) ŵ = 0.24 mm1
α = 100.018 (4)°T = 293 K
β = 113.884 (6)°Prism, yellow
γ = 105.884 (4)°0.49 × 0.32 × 0.14 mm
V = 1348.75 (16) Å3
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
8908 independent reflections
Radiation source: Enhance (Mo) X-ray Source6481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.3°
ω scansh = 1416
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1617
Tmin = 0.715, Tmax = 0.967l = 1817
16365 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0595P)2 + 1.2423P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
8908 reflectionsΔρmax = 0.58 e Å3
324 parametersΔρmin = 0.38 e Å3
Crystal data top
C54H64O12S4γ = 105.884 (4)°
Mr = 1033.29V = 1348.75 (16) Å3
Triclinic, P1Z = 1
a = 10.9366 (6) ÅMo Kα radiation
b = 11.7386 (5) ŵ = 0.24 mm1
c = 12.6262 (8) ÅT = 293 K
α = 100.018 (4)°0.49 × 0.32 × 0.14 mm
β = 113.884 (6)°
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
8908 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
6481 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.967Rint = 0.036
16365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
8908 reflectionsΔρmin = 0.38 e Å3
324 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38215 (6)0.57806 (5)0.18169 (5)0.0238 (2)
S20.76046 (6)0.40179 (5)0.44376 (5)0.0202 (1)
O10.49791 (19)0.46545 (16)0.38746 (17)0.0296 (5)
O20.42622 (17)0.67374 (14)0.44663 (14)0.0215 (4)
O30.7778 (2)0.76578 (19)0.56813 (17)0.0372 (6)
O40.6528 (2)0.86471 (17)0.62364 (16)0.0335 (5)
O50.3815 (2)0.84596 (18)0.33706 (19)0.0389 (6)
O60.6192 (2)0.93356 (16)0.39687 (19)0.0357 (6)
C10.6629 (3)0.7156 (2)0.2902 (2)0.0234 (6)
C20.5554 (2)0.64613 (19)0.32531 (19)0.0207 (6)
C30.5857 (2)0.53717 (19)0.37028 (19)0.0207 (6)
C40.7215 (2)0.52250 (18)0.38669 (18)0.0181 (5)
C50.8098 (2)0.59444 (19)0.35403 (19)0.0212 (6)
C60.7789 (2)0.69103 (19)0.30120 (19)0.0208 (6)
C70.8882 (3)0.7654 (2)0.2675 (3)0.0311 (7)
C80.9031 (5)0.6736 (3)0.1744 (4)0.0612 (16)
C90.8420 (4)0.8595 (3)0.2101 (4)0.0574 (14)
C101.0347 (4)0.8317 (3)0.3815 (4)0.0619 (13)
C110.9349 (2)0.56128 (19)0.68011 (19)0.0211 (6)
C120.8017 (2)0.46496 (19)0.59880 (18)0.0188 (5)
C130.2968 (2)0.58308 (18)0.35982 (18)0.0183 (5)
C140.2600 (2)0.53000 (19)0.23855 (19)0.0198 (5)
C150.8742 (2)0.5656 (2)0.84102 (19)0.0227 (6)
C160.9745 (2)0.61370 (19)0.8030 (2)0.0215 (6)
C171.1205 (3)0.7230 (2)0.8879 (2)0.0267 (6)
C181.1203 (3)0.8358 (3)0.8437 (3)0.0508 (10)
C191.2448 (3)0.6880 (3)0.8872 (3)0.0381 (8)
C201.1473 (3)0.7592 (3)1.0203 (3)0.0459 (9)
C210.5354 (2)0.73515 (19)0.41950 (19)0.0206 (6)
C220.6726 (2)0.7896 (2)0.5459 (2)0.0230 (6)
C230.7668 (3)0.9188 (3)0.7497 (2)0.0388 (8)
C240.7386 (4)0.8350 (4)0.8208 (3)0.0584 (11)
C250.4997 (3)0.8438 (2)0.3777 (2)0.0254 (6)
C260.6045 (4)1.0460 (2)0.3669 (3)0.0421 (9)
C270.5772 (5)1.0344 (4)0.2411 (4)0.0649 (16)
H10.647600.779500.258900.0280*
H50.894100.582100.365600.0250*
H8A0.972200.719400.153200.0920*
H8B0.811000.629800.102000.0920*
H8C0.935400.614500.209900.0920*
H9A0.834000.918800.267200.0860*
H9B0.749900.816800.137400.0860*
H9C0.912700.902700.189200.0860*
H10A1.104500.875900.360300.0930*
H10B1.064500.771200.416200.0930*
H10C1.027700.890000.440300.0930*
H110.999400.591700.651700.0250*
H150.897600.598500.922400.0270*
H18A1.044300.859900.846700.0760*
H18B1.104500.814400.761100.0760*
H18C1.211800.904200.895500.0760*
H19A1.233400.669300.805900.0570*
H19B1.244000.615900.913400.0570*
H19C1.335100.756800.942000.0570*
H20A1.138900.686801.046600.0690*
H20B1.077200.791301.024900.0690*
H20C1.242800.822201.072400.0690*
H23A0.770401.000600.785500.0460*
H23B0.859400.929300.752900.0460*
H24A0.813100.871900.904700.0870*
H24B0.738000.755000.786700.0870*
H24C0.646400.824300.816800.0870*
H26A0.525301.059100.376600.0510*
H26B0.692501.118300.423300.0510*
H27A0.569001.109300.224200.0980*
H27B0.488800.964100.185100.0980*
H27C0.655901.022000.231600.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (3)0.0322 (3)0.0206 (2)0.0101 (2)0.0132 (2)0.0111 (2)
S20.0258 (3)0.0211 (2)0.0220 (2)0.0135 (2)0.0152 (2)0.0090 (2)
O10.0275 (9)0.0328 (8)0.0439 (10)0.0162 (7)0.0236 (8)0.0235 (7)
O20.0186 (7)0.0234 (7)0.0220 (7)0.0053 (6)0.0113 (6)0.0066 (6)
O30.0275 (9)0.0493 (11)0.0312 (9)0.0218 (8)0.0096 (8)0.0042 (8)
O40.0275 (9)0.0360 (9)0.0298 (9)0.0157 (7)0.0094 (7)0.0006 (7)
O50.0309 (10)0.0413 (10)0.0516 (12)0.0237 (8)0.0174 (9)0.0208 (9)
O60.0345 (10)0.0260 (8)0.0558 (12)0.0153 (7)0.0238 (9)0.0225 (8)
C10.0257 (11)0.0233 (10)0.0301 (11)0.0105 (8)0.0183 (9)0.0143 (8)
C20.0197 (10)0.0225 (9)0.0244 (10)0.0099 (8)0.0123 (8)0.0106 (8)
C30.0223 (10)0.0222 (9)0.0248 (10)0.0113 (8)0.0146 (8)0.0113 (8)
C40.0204 (9)0.0182 (8)0.0208 (9)0.0092 (7)0.0130 (8)0.0072 (7)
C50.0213 (10)0.0233 (9)0.0254 (10)0.0104 (8)0.0151 (8)0.0092 (8)
C60.0219 (10)0.0208 (9)0.0235 (10)0.0067 (7)0.0146 (8)0.0088 (7)
C70.0292 (12)0.0331 (12)0.0461 (14)0.0133 (10)0.0268 (11)0.0227 (11)
C80.087 (3)0.065 (2)0.083 (3)0.038 (2)0.074 (2)0.0424 (19)
C90.0498 (19)0.066 (2)0.099 (3)0.0315 (16)0.053 (2)0.064 (2)
C100.0328 (17)0.056 (2)0.080 (3)0.0015 (14)0.0203 (17)0.0304 (18)
C110.0205 (10)0.0255 (10)0.0250 (10)0.0122 (8)0.0141 (8)0.0119 (8)
C120.0199 (9)0.0231 (9)0.0188 (9)0.0120 (7)0.0103 (8)0.0104 (7)
C130.0182 (9)0.0205 (9)0.0206 (9)0.0104 (7)0.0103 (8)0.0092 (7)
C140.0189 (10)0.0249 (9)0.0210 (9)0.0106 (8)0.0117 (8)0.0106 (7)
C150.0227 (10)0.0277 (10)0.0199 (9)0.0118 (8)0.0105 (8)0.0084 (8)
C160.0191 (10)0.0221 (9)0.0241 (10)0.0091 (8)0.0101 (8)0.0076 (8)
C170.0194 (10)0.0289 (11)0.0273 (11)0.0068 (8)0.0102 (9)0.0051 (8)
C180.0352 (16)0.0312 (13)0.069 (2)0.0051 (11)0.0135 (15)0.0188 (14)
C190.0202 (12)0.0452 (15)0.0366 (14)0.0085 (10)0.0095 (10)0.0018 (11)
C200.0297 (14)0.0549 (18)0.0319 (14)0.0008 (12)0.0132 (12)0.0052 (12)
C210.0189 (10)0.0215 (9)0.0245 (10)0.0092 (7)0.0111 (8)0.0100 (8)
C220.0228 (10)0.0218 (9)0.0261 (10)0.0098 (8)0.0117 (9)0.0094 (8)
C230.0336 (14)0.0396 (14)0.0291 (12)0.0133 (11)0.0083 (11)0.0026 (10)
C240.061 (2)0.072 (2)0.0471 (19)0.0313 (19)0.0247 (17)0.0234 (17)
C250.0264 (11)0.0260 (10)0.0295 (11)0.0143 (9)0.0149 (9)0.0109 (8)
C260.0486 (17)0.0243 (11)0.0596 (18)0.0177 (11)0.0259 (15)0.0214 (12)
C270.090 (3)0.064 (2)0.085 (3)0.046 (2)0.060 (3)0.052 (2)
Geometric parameters (Å, º) top
S1—C21.844 (2)C21—C251.548 (3)
S1—C141.767 (2)C23—C241.495 (5)
S2—C41.774 (2)C26—C271.466 (6)
S2—C121.784 (2)C1—H10.9300
O1—C31.211 (3)C5—H50.9300
O2—C131.360 (3)C8—H8A0.9600
O2—C211.417 (3)C8—H8B0.9600
O3—C221.193 (3)C8—H8C0.9600
O4—C221.328 (3)C9—H9A0.9600
O4—C231.449 (3)C9—H9B0.9600
O5—C251.192 (4)C9—H9C0.9600
O6—C251.334 (4)C10—H10A0.9600
O6—C261.467 (3)C10—H10B0.9600
C1—C21.506 (4)C10—H10C0.9600
C1—C61.336 (4)C11—H110.9300
C2—C31.549 (3)C15—H150.9300
C2—C211.568 (3)C18—H18A0.9600
C3—C41.477 (3)C18—H18B0.9600
C4—C51.347 (3)C18—H18C0.9600
C5—C61.461 (3)C19—H19A0.9600
C6—C71.530 (4)C19—H19B0.9600
C7—C81.543 (6)C19—H19C0.9600
C7—C91.513 (5)C20—H20A0.9600
C7—C101.518 (6)C20—H20B0.9600
C11—C121.392 (3)C20—H20C0.9600
C11—C161.397 (3)C23—H23A0.9700
C12—C13i1.406 (3)C23—H23B0.9700
C13—C141.388 (3)C24—H24A0.9600
C14—C15i1.391 (3)C24—H24B0.9600
C15—C161.391 (3)C24—H24C0.9600
C16—C171.536 (4)C26—H26A0.9700
C17—C181.524 (4)C26—H26B0.9700
C17—C191.527 (5)C27—H27A0.9600
C17—C201.533 (4)C27—H27B0.9600
C21—C221.545 (3)C27—H27C0.9600
C2—S1—C14100.38 (10)C4—C5—H5119.00
C4—S2—C12100.21 (10)C6—C5—H5119.00
C13—O2—C21122.89 (17)C7—C8—H8A109.00
C22—O4—C23117.2 (2)C7—C8—H8B110.00
C25—O6—C26117.2 (3)C7—C8—H8C109.00
C2—C1—C6124.0 (2)H8A—C8—H8B109.00
S1—C2—C1104.10 (15)H8A—C8—H8C109.00
S1—C2—C3107.77 (15)H8B—C8—H8C109.00
S1—C2—C21106.81 (16)C7—C9—H9A109.00
C1—C2—C3114.2 (2)C7—C9—H9B110.00
C1—C2—C21112.76 (19)C7—C9—H9C109.00
C3—C2—C21110.56 (17)H9A—C9—H9B109.00
O1—C3—C2120.2 (2)H9A—C9—H9C109.00
O1—C3—C4122.2 (2)H9B—C9—H9C109.00
C2—C3—C4117.6 (2)C7—C10—H10A110.00
S2—C4—C3117.90 (16)C7—C10—H10B109.00
S2—C4—C5120.84 (19)C7—C10—H10C109.00
C3—C4—C5121.2 (2)H10A—C10—H10B110.00
C4—C5—C6122.9 (2)H10A—C10—H10C109.00
C1—C6—C5119.7 (2)H10B—C10—H10C109.00
C1—C6—C7122.8 (2)C12—C11—H11119.00
C5—C6—C7117.4 (2)C16—C11—H11119.00
C6—C7—C8108.9 (2)C16—C15—H15119.00
C6—C7—C9112.4 (3)C14i—C15—H15119.00
C6—C7—C10109.2 (3)C17—C18—H18A109.00
C8—C7—C9108.0 (3)C17—C18—H18B110.00
C8—C7—C10108.3 (3)C17—C18—H18C109.00
C9—C7—C10110.0 (3)H18A—C18—H18B109.00
C12—C11—C16122.0 (2)H18A—C18—H18C109.00
S2—C12—C11119.17 (18)H18B—C18—H18C110.00
S2—C12—C13i120.95 (16)C17—C19—H19A109.00
C11—C12—C13i119.87 (19)C17—C19—H19B109.00
O2—C13—C14125.4 (2)C17—C19—H19C109.00
O2—C13—C12i115.73 (18)H19A—C19—H19B110.00
C12i—C13—C14118.7 (2)H19A—C19—H19C110.00
S1—C14—C13121.56 (18)H19B—C19—H19C109.00
S1—C14—C15i118.17 (16)C17—C20—H20A110.00
C13—C14—C15i120.3 (2)C17—C20—H20B109.00
C14i—C15—C16122.2 (2)C17—C20—H20C109.00
C11—C16—C15116.9 (2)H20A—C20—H20B110.00
C11—C16—C17120.0 (2)H20A—C20—H20C109.00
C15—C16—C17123.1 (2)H20B—C20—H20C109.00
C16—C17—C18108.9 (2)O4—C23—H23A110.00
C16—C17—C19110.7 (2)O4—C23—H23B110.00
C16—C17—C20111.3 (2)C24—C23—H23A110.00
C18—C17—C19109.2 (3)C24—C23—H23B110.00
C18—C17—C20108.8 (2)H23A—C23—H23B108.00
C19—C17—C20107.8 (2)C23—C24—H24A110.00
O2—C21—C2114.06 (18)C23—C24—H24B110.00
O2—C21—C22102.53 (17)C23—C24—H24C109.00
O2—C21—C25106.9 (2)H24A—C24—H24B110.00
C2—C21—C22110.37 (19)H24A—C24—H24C109.00
C2—C21—C25113.09 (18)H24B—C24—H24C109.00
C22—C21—C25109.30 (18)O6—C26—H26A109.00
O3—C22—O4126.5 (2)O6—C26—H26B109.00
O3—C22—C21124.4 (2)C27—C26—H26A109.00
O4—C22—C21109.1 (2)C27—C26—H26B109.00
O4—C23—C24109.6 (3)H26A—C26—H26B108.00
O5—C25—O6125.9 (2)C26—C27—H27A109.00
O5—C25—C21123.6 (2)C26—C27—H27B109.00
O6—C25—C21110.5 (3)C26—C27—H27C109.00
O6—C26—C27111.2 (3)H27A—C27—H27B109.00
C2—C1—H1118.00H27A—C27—H27C109.00
C6—C1—H1118.00H27B—C27—H27C109.00
C14—S1—C2—C2148.10 (17)C3—C4—C5—C60.2 (3)
C2—S1—C14—C1322.1 (2)S2—C4—C5—C6177.04 (16)
C2—S1—C14—C15i156.25 (19)C4—C5—C6—C7179.6 (2)
C14—S1—C2—C1167.61 (17)C4—C5—C6—C13.9 (3)
C14—S1—C2—C370.72 (17)C5—C6—C7—C1059.5 (3)
C12—S2—C4—C5111.75 (19)C1—C6—C7—C8125.1 (3)
C4—S2—C12—C13i105.5 (2)C1—C6—C7—C10116.9 (3)
C12—S2—C4—C371.32 (18)C5—C6—C7—C9178.2 (3)
C4—S2—C12—C1176.0 (2)C5—C6—C7—C858.5 (3)
C13—O2—C21—C2584.7 (2)C1—C6—C7—C95.4 (4)
C13—O2—C21—C241.1 (3)C16—C11—C12—S2179.19 (18)
C13—O2—C21—C22160.4 (2)C16—C11—C12—C13i0.6 (4)
C21—O2—C13—C147.0 (3)C12—C11—C16—C150.3 (3)
C21—O2—C13—C12i177.6 (2)C12—C11—C16—C17177.8 (2)
C23—O4—C22—O33.3 (4)S2—C12—C13i—O2i3.9 (3)
C22—O4—C23—C2490.8 (3)C11—C12—C13i—C14i2.0 (3)
C23—O4—C22—C21176.2 (2)S2—C12—C13i—C14i179.51 (18)
C25—O6—C26—C2792.1 (4)C11—C12—C13i—O2i177.6 (2)
C26—O6—C25—C21177.4 (2)O2—C13—C14—S10.7 (3)
C26—O6—C25—O50.9 (4)C12i—C13—C14—C15i2.4 (3)
C6—C1—C2—C21124.4 (2)C12i—C13—C14—S1175.92 (17)
C6—C1—C2—C32.9 (3)O2—C13—C14—C15i177.6 (2)
C2—C1—C6—C7178.5 (2)S1—C14—C15i—C16i176.83 (19)
C2—C1—C6—C52.2 (3)C13—C14—C15i—C16i1.6 (4)
C6—C1—C2—S1120.2 (2)C14i—C15—C16—C110.2 (4)
C1—C2—C21—O2175.07 (19)C14i—C15—C16—C17177.3 (2)
C1—C2—C3—O1171.4 (2)C15—C16—C17—C207.1 (4)
S1—C2—C3—C4121.69 (18)C15—C16—C17—C18112.9 (3)
C1—C2—C3—C46.6 (3)C15—C16—C17—C19127.0 (3)
S1—C2—C21—C22176.10 (15)C11—C16—C17—C1955.6 (3)
S1—C2—C21—C2561.1 (2)C11—C16—C17—C20175.5 (2)
S1—C2—C3—O156.3 (2)C11—C16—C17—C1864.5 (3)
C3—C2—C21—C25178.1 (2)C2—C21—C22—O4179.86 (19)
C21—C2—C3—C4121.9 (2)C25—C21—C22—O3125.7 (3)
C1—C2—C21—C2270.1 (2)C2—C21—C25—O5103.3 (3)
S1—C2—C21—O261.3 (2)C2—C21—C25—O678.3 (2)
C3—C2—C21—C2259.1 (2)C22—C21—C25—O5133.3 (2)
C1—C2—C21—C2552.7 (3)C22—C21—C25—O645.1 (3)
C3—C2—C21—O255.7 (2)C25—C21—C22—O454.9 (3)
C21—C2—C3—O160.2 (3)O2—C21—C25—O523.0 (3)
C2—C3—C4—C55.5 (3)O2—C21—C25—O6155.34 (19)
C2—C3—C4—S2177.62 (15)O2—C21—C22—O3121.2 (3)
O1—C3—C4—C5172.4 (2)O2—C21—C22—O458.3 (2)
O1—C3—C4—S24.5 (3)C2—C21—C22—O30.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···O4ii0.972.353.298 (5)164
Symmetry code: (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···O4i0.972.353.298 (5)164
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

OAO would like to acknowledge support from the Deanship of Scientific Research, Majmaah University, for funding this work under project No. 1. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAgrawal, Y. K. & Pancholi, J. P. (2007). Indian. J. Chem. Sect. A, 46, 1377–1382.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHiguchi, Y., Narita, M., Niimi, T., Ogawa, N., Hamada, F., Kumagai, H., Iki, N., Miyano, S. & Kabuto, C. (2000). Tetrahedron, 56, 4659–4666.  CSD CrossRef CAS Google Scholar
First citationOmran, A. O. & Antipin, I. S. (2014). J. Incl Phenom. Macrocycl Chem. 78, 121–126.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoikov, I. I., Omran, O. A., Solovieva, S. E., Latypov, S. K., Enikeev, K. M., Gubaidullin, A. T., Antipin, I. S. & Konovalov, A. I. (2003). Tetrahedron, 59, 1469–1476.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o778-o779
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds