organic compounds
O-ethyl N-(ethoxycarbonyl)thiocarbamate
ofaDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: barany@umn.edu
The title compound, C6H11NO3S, provides entries to novel carbamoyl disulfanes and related compounds of interest to our laboratory. The atoms of the central O(C=S)N(C=O)O fragment have an r.m.s. deviation of 0.1077 Å from the respective least-squares plane. While several conformational orientations are conceivable, the shows only the one in which the carbonyl and the thiocarbonyl moieties are anti to each other across the central conjugated C—N—C moiety. Pairs of 2.54 Å N—H⋯S=C hydrogen bonds between adjacent molecules form centrosymmetric dimers in the crystal.
Keywords: crystal structure; thiocarbamate; hydrogen bonding.
CCDC reference: 1423537
1. Related literature
A variety of methods to prepare the title compound and/or similar structures have been reported; see Delitsch (1874); Atkins et al. (1973); Barany (1977, and references therein); Vallejos et al. (2009, and references therein); Barany et al. (2015, and references therein). For closely related structures, see CSD (Groom & Allen, 2014) refcodes: BORBOA (Vallejos et al., 2009); GAPPAQ (Kang et al., 2012). For applications of the title compound in interesting chemistry, see: Atkins et al. (1973); Barany & Merrifield (1977); Shen et al. (1998, and references therein); Barany et al. (2006, 2015); Vallejos et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1423537
10.1107/S2056989015016989/ld2135sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015016989/ld2135Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015016989/ld2135Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989015016989/ld2135Isup4.cml
The title compound, O-ethyl N-(ethoxycarbonyl)thiocarbamate (1), C6H11NO3S, CAS registry
5585-23-9, also known as (N-ethoxythiocarbonyl)urethane, was of interest to a multifaceted organosulfur research program that includes among its goals the development of amino protecting groups removable under mild conditions (Barany, 1977; Barany & Merrifield; 1977; Barany et al., 2006, Barany et al., 2015). Specifically, we have shown that reaction of 1 with (chlorocarbonyl)sulfenyl chloride gives rise to the novel (chlorocarbonyl)(N-ethoxycarbonylcarbamoyl)disulfane, rather than the expected putative N-ethoxycarbonyl-1,2,4-dithiazolidine-3,5-dione (Barany et al., 2015). Variations in reaction conditions and/or the nature of sulfenyl chlorides that react with 1 result in additional unusual structures which model previously uncharacterized intermediates in the mechanisms of reactions that successfully elaborate N-alkyl-1,2,4-dithiazolidine-3,5-dione heterocycles. Thiocarbamate 1 is also useful as an entry to pharmaceutically relevant heterocycles (Atkins et al., 1973), as an additive in the purification of pyrite (Shen et al., 1998), and as a precursor to compounds of interest to the agrochemical industry (Vallejos et al., 2009).X-ray quality crystals of 1 were readily obtained after bulk purification (recrystallization from hot hexane, about 7 mL/g).
All molecular parameters of 1 are within expected ranges. Ignoring the ethyl groups, the central fragment of 1 has a r.m.s. deviation of 0.1077 Å from the least squares plane [i.e., the plane consisting of atoms O1, C1, S1, N1, C2, O2, O3]. The largest deviation of any torsion angle from 0 or 180° is 11.5 (3)° for C2—N1—C1—O1. Although there are multiple theoretically stable conformations of 1 (Vallejos et al., 2009), the molecule uniquely assumes the conformation where the carbonyl and the thiocarbonyl moieties are anti to each other across the central C–N–C moiety.
In the crystal, pairs of intermolecular N–H···S=C hydrogen bonds between two adjacent molecules form centrosymmetric dimers (see Figure 2).
A search of the Cambridge Structural Database (CSD; Version 5.36, update of November 2014; Groom & Allen, 2014) revealed two similar structures, O-benzyl N-(ethoxycarbonyl)thiocarbamate (2) (Kang et al., 2012) [i.e., BnO(C=S)NH(C=O)OEt], and O-ethyl N-(methoxycarbonyl)thiocarbamate (3) (Vallejos et al., 2009) [i.e., EtO(C=S)NH(C=O)OMe]. Interestingly, both 2 and 3 assume the same conformation as 1, where the thiocarbonyl and carbonyl moieties are anti to each other across the C–N–C moiety. In all three structures, similar length N–H···S=C hydrogen bonds form between adjacent molecules.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C6H11NO3S | Z = 2 |
Mr = 177.22 | F(000) = 188 |
Triclinic, P1 | Dx = 1.358 Mg m−3 |
a = 4.1782 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.236 (4) Å | Cell parameters from 1518 reflections |
c = 11.820 (5) Å | θ = 2.3–25.1° |
α = 98.190 (5)° | µ = 0.34 mm−1 |
β = 98.571 (5)° | T = 173 K |
γ = 102.360 (5)° | Thin plates, colorless |
V = 433.3 (3) Å3 | 0.50 × 0.10 × 0.05 mm |
Siemens SMART Platform CCD diffractometer | 1518 independent reflections |
Radiation source: normal-focus sealed tube | 1194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
area detector, ω scans per phi | θmax = 25.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −4→4 |
Tmin = 0.851, Tmax = 0.984 | k = −10→11 |
4216 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.149P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
1518 reflections | Δρmax = 0.25 e Å−3 |
102 parameters | Δρmin = −0.24 e Å−3 |
C6H11NO3S | γ = 102.360 (5)° |
Mr = 177.22 | V = 433.3 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.1782 (17) Å | Mo Kα radiation |
b = 9.236 (4) Å | µ = 0.34 mm−1 |
c = 11.820 (5) Å | T = 173 K |
α = 98.190 (5)° | 0.50 × 0.10 × 0.05 mm |
β = 98.571 (5)° |
Siemens SMART Platform CCD diffractometer | 1518 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1194 reflections with I > 2σ(I) |
Tmin = 0.851, Tmax = 0.984 | Rint = 0.037 |
4216 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.25 e Å−3 |
1518 reflections | Δρmin = −0.24 e Å−3 |
102 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.08610 (15) | 0.30032 (7) | 0.46293 (5) | 0.0321 (2) | |
O1 | 0.0371 (4) | 0.25383 (16) | 0.67694 (13) | 0.0305 (4) | |
O2 | 0.5131 (4) | 0.40638 (17) | 0.85405 (13) | 0.0346 (4) | |
O3 | 0.8025 (4) | 0.61521 (17) | 0.80409 (13) | 0.0331 (4) | |
N1 | 0.4306 (5) | 0.4541 (2) | 0.66587 (16) | 0.0300 (5) | |
H1A | 0.5091 | 0.5211 | 0.6247 | 0.036* | |
C1 | 0.1822 (5) | 0.3340 (2) | 0.60663 (19) | 0.0254 (5) | |
C2 | 0.5755 (6) | 0.4835 (3) | 0.78377 (19) | 0.0273 (5) | |
C3 | −0.2164 (6) | 0.1158 (2) | 0.6252 (2) | 0.0304 (6) | |
H3A | −0.1188 | 0.0435 | 0.5797 | 0.037* | |
H3B | −0.4004 | 0.1381 | 0.5728 | 0.037* | |
C4 | −0.3422 (6) | 0.0515 (3) | 0.7242 (2) | 0.0402 (6) | |
H4A | −0.5151 | −0.0417 | 0.6936 | 0.060* | |
H4B | −0.4363 | 0.1245 | 0.7687 | 0.060* | |
H4C | −0.1576 | 0.0295 | 0.7750 | 0.060* | |
C5 | 0.9980 (6) | 0.6597 (3) | 0.92221 (18) | 0.0301 (6) | |
H5A | 1.1317 | 0.5862 | 0.9389 | 0.036* | |
H5B | 0.8494 | 0.6647 | 0.9798 | 0.036* | |
C6 | 1.2223 (7) | 0.8123 (3) | 0.9279 (2) | 0.0413 (7) | |
H6A | 1.3678 | 0.8447 | 1.0045 | 0.062* | |
H6B | 1.0865 | 0.8850 | 0.9153 | 0.062* | |
H6C | 1.3588 | 0.8068 | 0.8675 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0366 (4) | 0.0312 (4) | 0.0232 (3) | 0.0006 (3) | −0.0001 (2) | 0.0045 (2) |
O1 | 0.0307 (9) | 0.0285 (9) | 0.0258 (9) | −0.0040 (7) | 0.0025 (7) | 0.0037 (7) |
O2 | 0.0404 (10) | 0.0341 (9) | 0.0241 (9) | −0.0032 (8) | 0.0031 (7) | 0.0103 (8) |
O3 | 0.0388 (10) | 0.0286 (9) | 0.0228 (8) | −0.0064 (8) | −0.0022 (7) | 0.0054 (7) |
N1 | 0.0348 (11) | 0.0271 (10) | 0.0229 (10) | −0.0034 (9) | 0.0018 (9) | 0.0082 (8) |
C1 | 0.0242 (12) | 0.0229 (12) | 0.0281 (12) | 0.0053 (10) | 0.0024 (10) | 0.0048 (10) |
C2 | 0.0302 (13) | 0.0290 (13) | 0.0222 (12) | 0.0064 (11) | 0.0056 (10) | 0.0037 (10) |
C3 | 0.0296 (13) | 0.0245 (12) | 0.0325 (13) | 0.0004 (10) | 0.0023 (11) | 0.0027 (10) |
C4 | 0.0386 (15) | 0.0377 (15) | 0.0406 (15) | −0.0014 (12) | 0.0064 (12) | 0.0121 (12) |
C5 | 0.0317 (13) | 0.0327 (13) | 0.0202 (12) | 0.0004 (11) | −0.0021 (10) | 0.0047 (10) |
C6 | 0.0447 (15) | 0.0356 (15) | 0.0337 (14) | −0.0040 (12) | −0.0033 (12) | 0.0055 (11) |
S1—C1 | 1.654 (2) | C3—H3B | 0.9900 |
O1—C1 | 1.319 (3) | C4—H4A | 0.9800 |
O1—C3 | 1.459 (3) | C4—H4B | 0.9800 |
O2—C2 | 1.191 (3) | C4—H4C | 0.9800 |
O3—C2 | 1.338 (3) | C5—C6 | 1.503 (3) |
O3—C5 | 1.462 (3) | C5—H5A | 0.9900 |
N1—C1 | 1.366 (3) | C5—H5B | 0.9900 |
N1—C2 | 1.397 (3) | C6—H6A | 0.9800 |
N1—H1A | 0.8800 | C6—H6B | 0.9800 |
C3—C4 | 1.498 (3) | C6—H6C | 0.9800 |
C3—H3A | 0.9900 | ||
C1—O1—C3 | 118.15 (17) | C3—C4—H4B | 109.5 |
C2—O3—C5 | 115.13 (16) | H4A—C4—H4B | 109.5 |
C1—N1—C2 | 128.02 (19) | C3—C4—H4C | 109.5 |
C1—N1—H1A | 116.0 | H4A—C4—H4C | 109.5 |
C2—N1—H1A | 116.0 | H4B—C4—H4C | 109.5 |
O1—C1—N1 | 112.26 (19) | O3—C5—C6 | 106.43 (18) |
O1—C1—S1 | 126.16 (16) | O3—C5—H5A | 110.4 |
N1—C1—S1 | 121.57 (17) | C6—C5—H5A | 110.4 |
O2—C2—O3 | 125.7 (2) | O3—C5—H5B | 110.4 |
O2—C2—N1 | 127.0 (2) | C6—C5—H5B | 110.4 |
O3—C2—N1 | 107.34 (18) | H5A—C5—H5B | 108.6 |
O1—C3—C4 | 106.44 (18) | C5—C6—H6A | 109.5 |
O1—C3—H3A | 110.4 | C5—C6—H6B | 109.5 |
C4—C3—H3A | 110.4 | H6A—C6—H6B | 109.5 |
O1—C3—H3B | 110.4 | C5—C6—H6C | 109.5 |
C4—C3—H3B | 110.4 | H6A—C6—H6C | 109.5 |
H3A—C3—H3B | 108.6 | H6B—C6—H6C | 109.5 |
C3—C4—H4A | 109.5 | ||
C3—O1—C1—N1 | −175.56 (18) | C5—O3—C2—N1 | −175.86 (18) |
C3—O1—C1—S1 | 4.8 (3) | C1—N1—C2—O2 | 2.0 (4) |
C2—N1—C1—O1 | 11.6 (3) | C1—N1—C2—O3 | −178.5 (2) |
C2—N1—C1—S1 | −168.77 (18) | C1—O1—C3—C4 | −178.52 (19) |
C5—O3—C2—O2 | 3.6 (3) | C2—O3—C5—C6 | −177.19 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.88 | 2.54 | 3.388 (2) | 161 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.88 | 2.54 | 3.388 (2) | 161.2 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
We thank the University of Minnesota CHEM 5755 class and X-Ray Crystallographic Laboratory for assistance with this structure determination.
References
Atkins, P. R., Glue, S. E. J. & Kay, I. T. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 2644–2646. CrossRef Google Scholar
Barany, G. (1977). PhD thesis, The Rockefeller University, New York, USA. Google Scholar
Barany, G., Britton, D., Chen, L., Hammer, R. P., Henley, M. J., Schrader, A. M. & Young, V. G. (2015). J. Org. Chem. 80. Submitted. Google Scholar
Barany, M. J., Corey, M. M., Hanson, M. C., Majerle, R. S., Hammer, R. P. & Barany, G. (2006). Understanding Biology Using Peptides. Proceedings of the Nineteenth American Peptide Symposium, edited by S. E. Blondelle, pp. 196–197. Berlin: Springer. Google Scholar
Barany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363–7365. CrossRef CAS PubMed Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delitsch, G. (1874). J. Prakt. Chem. 10, 116–128. CrossRef Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o300. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, W. Z., Fornasiero, D. & Ralston, J. (1998). Miner. Eng. 11, 145–158. CrossRef CAS Google Scholar
Vallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Védova, C. O. D. (2009). Polyhedron, 28, 937–946. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.