organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o699-o700

Crystal structure of ethyl 4-(2-fluoro­phen­yl)-6-methyl-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 8 August 2015; accepted 14 August 2015; online 12 September 2015)

The title compound, C14H15FN2O2S, crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the pyrimidine ring adopts a sofa conformation with the sp3-hybridized C atom forming the flap and the fluoro-substituted ring in an axial position. In the crystal, mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains of R22(8) rings along [100]. In one independent mol­ecule, an intra­molecular C—H⋯O hydrogen bond is observed.

1. Related literature

For the therapeutic and pharmacological properties of 3,4-di­hydro­pyrimidin-2(1H)-ones, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Hurst & Hull (1961[Hurst, E. W. & Hull, R. (1961). J. Med. Pharm. Chem. 3, 215-229.]); Mayer et al. (1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971-974.]); Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]). For their applications in calcium-channel modulators, see: Kappe (1998[Kappe, C. O. (1998). Molecules, 3, 1-20.]); Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]); Krishnamurthy & Begum (2015[Krishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o268-o269.]). For the bioactivity of organo–fluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]). For examples of fluorine-directed crystal packing, see: Prasanna & Guru Row (2001[Prasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55-61.]). For related structures, see: Qin et al. (2006[Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215-o5216.]); Krishnamurthy & Begum (2015[Krishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o268-o269.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H15FN2O2S

  • Mr = 294.34

  • Triclinic, [P \overline 1]

  • a = 8.9298 (6) Å

  • b = 11.5870 (8) Å

  • c = 15.7459 (11) Å

  • α = 100.940 (2)°

  • β = 104.804 (2)°

  • γ = 98.153 (2)°

  • V = 1515.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.965

  • 17808 measured reflections

  • 5328 independent reflections

  • 3389 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.228

  • S = 0.98

  • 5328 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1′i 0.88 2.83 3.703 (4) 170
N1′—H1′⋯S1 0.88 2.84 3.711 (4) 171
N2—H2⋯S1′ 0.88 2.52 3.337 (4) 155
N2′—H2′⋯S1ii 0.88 2.50 3.335 (5) 158
C1′—H1′1⋯O1′ 0.98 2.14 2.861 (6) 129
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The Biginelli reaction is a three-component condensation of ethyl acetoacetate, benzaldehyde and urea for the synthesis of 3,4-dihydropyrimidine-2(1H) -ones (abbreviated as DHPMs). DHPMs have recently emerged as important target molecules because of their therapeutic and pharmacological properties (Kappe, 2000), such as antiviral (Hurst & Hull, 1961), antimitotic (Mayer et al., 1999), anticarcinogenic and antihypertensive (Atwal et al., 1991). They are also noteworthy as calcium channel modulators (Kappe, 1998; Jauk et al., 2000). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). Guru Row and co-workers have extensively studied the structural property of fluorine and they have presented several elegant examples of fluorine directed crystal packing (Prasanna & Guru Row, 2001). Herein, we report the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. There are two indpendent molecules in the asymmetric unit. The bond lengths and bond angles are in good agreement with the corresponding bond distances and angles reported in closely related structures (Qin et al., 2006; Krishnamurthy & Begum, 2015). In each molecule, the pyrimidine ring adopts a sofa conformation with the sp3 hybridized carbon atom [C4 and C4'] forming the flap and the fluoro-substituted ring in an axial position. The carbonyl group of the exocyclic ester at C5 and C5' adopts a cis orientation with respect to the C5C6 and C5'C6 double bond. The fluoro-substituted benzene ring adopts an syn periplanar conformation with respect to the C4—H4 and C4'—H4' bonds. In the crystal, molecules are linked via N—H···S hydrogen bonds forming chains of R22(8) rings (Bernstein et al., 1995) along [100] (Fig. 2). In one independent molecule an intramolecular C—H···O hydrogen bond is observed.

Related literature top

For the therapeutic and pharmacological properties of 3,4-dihydropyrimidin-2(1H)-ones, see: Kappe (2000); Hurst & Hull (1961); Mayer et al. (1999); Atwal et al., (1991). For their applications in calcium-channel modulators, see: Kappe (1998); Jauk et al. (2000); Krishnamurthy & Begum (2015). For the bioactivity of organo–fluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For examples of fluorine-directed crystal packing, see: Prasanna & Guru Row (2001). For related structures, see: Qin et al. (2006); Krishnamurthy & Begum (2015). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by the reaction of 2-fluorobenzaldehyde (1.24 g, 10 mmol), ethylacetoacetate (1.52 g, 12 mmol) and thiourea (1.14 g, 15 mmol) in 15 ml ethanol was refluxed for 6 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with TLC and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered and dried. The compound was recrystallized from ethanol solvent by slow evaporation method, yielding colorless blocks suitable for X-ray diffraction studies (yield 76%; m.p. 485 K).

Refinement top

The H atoms were placed in calculated positions in a riding-model approximation with N—H = 0.86° A; C—H = 0.93° A, 0.96 ° A and 0.97 ° A for aromatic, methyl and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Ethyl 4-(2-fluorophenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C14H15FN2O2SZ = 4
Mr = 294.34F(000) = 616
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9298 (6) ÅCell parameters from 5328 reflections
b = 11.5870 (8) Åθ = 2.4–25.0°
c = 15.7459 (11) ŵ = 0.23 mm1
α = 100.940 (2)°T = 100 K
β = 104.804 (2)°Block, colourless
γ = 98.153 (2)°0.18 × 0.16 × 0.16 mm
V = 1515.11 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5328 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.960, Tmax = 0.965k = 1313
17808 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1269P)2 + 1.4728P]
where P = (Fo2 + 2Fc2)/3
5328 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H15FN2O2Sγ = 98.153 (2)°
Mr = 294.34V = 1515.11 (18) Å3
Triclinic, P1Z = 4
a = 8.9298 (6) ÅMo Kα radiation
b = 11.5870 (8) ŵ = 0.23 mm1
c = 15.7459 (11) ÅT = 100 K
α = 100.940 (2)°0.18 × 0.16 × 0.16 mm
β = 104.804 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3389 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.965Rint = 0.039
17808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 0.98Δρmax = 1.04 e Å3
5328 reflectionsΔρmin = 0.35 e Å3
365 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86288 (13)0.90033 (10)0.07601 (7)0.0522 (3)
O10.6733 (4)0.6314 (3)0.3693 (2)0.0743 (10)
O20.4450 (4)0.6240 (3)0.33627 (19)0.0701 (10)
N10.8792 (4)0.8058 (3)0.0880 (2)0.0489 (9)
H10.98220.82290.06310.059*
N20.6330 (4)0.7993 (3)0.0734 (2)0.0414 (8)
H20.57170.83120.04390.050*
F10.2317 (4)0.6093 (4)0.2084 (3)0.1226 (14)
C10.9490 (6)0.7543 (5)0.2257 (3)0.0738 (15)
H1A0.94920.67150.25440.111*
H1B1.05190.79000.18100.111*
H1C0.92940.80100.27170.111*
C20.7856 (5)0.8314 (3)0.0339 (3)0.0412 (9)
C30.6001 (5)0.6538 (4)0.3149 (3)0.0499 (10)
C40.5536 (4)0.7162 (3)0.1611 (2)0.0382 (9)
H40.46110.74760.19220.046*
C50.6672 (5)0.7122 (3)0.2183 (3)0.0415 (9)
C60.8224 (5)0.7548 (4)0.1798 (3)0.0460 (10)
C70.3610 (7)0.5580 (6)0.4281 (3)0.0891 (19)
H7A0.35930.61280.46940.107*
H7B0.41620.49390.44710.107*
C80.2083 (10)0.5082 (10)0.4334 (5)0.172 (5)
H8A0.20910.47150.38220.258*
H8B0.16200.44670.49010.258*
H8C0.14530.57080.43190.258*
C90.4933 (5)0.5941 (4)0.1489 (3)0.0455 (10)
C100.5973 (7)0.5272 (4)0.1092 (3)0.0641 (13)
H100.70800.55840.09050.077*
C110.5406 (10)0.4154 (5)0.0968 (4)0.091 (2)
H110.61210.36980.07060.109*
C120.3822 (15)0.3718 (6)0.1225 (5)0.121 (3)
H120.34390.29590.11300.145*
C130.2769 (9)0.4347 (7)0.1617 (5)0.103 (2)
H130.16640.40310.18070.123*
C140.3357 (6)0.5445 (5)0.1726 (3)0.0669 (13)
S1'0.31495 (13)0.84530 (11)0.00790 (7)0.0544 (4)
O1'0.6197 (5)1.1437 (4)0.4307 (3)0.0940 (13)
O2'0.3597 (4)1.0906 (3)0.4089 (2)0.0683 (9)
N1'0.5140 (4)0.9516 (3)0.1541 (2)0.0490 (9)
H1'0.58890.93630.12910.059*
N2'0.2541 (4)0.9254 (3)0.1455 (2)0.0463 (8)
H2'0.15590.91560.11180.056*
F1'0.0344 (4)0.9094 (4)0.3206 (3)0.1074 (12)
C1'0.7322 (5)1.0702 (5)0.2784 (3)0.0692 (14)
H1'10.76511.08660.34460.104*
H1'20.75281.14530.25950.104*
H1'30.79211.01410.25440.104*
C2'0.3619 (5)0.9103 (3)0.1028 (3)0.0428 (9)
C3'0.4889 (6)1.0926 (4)0.3814 (3)0.0603 (12)
C4'0.2823 (5)0.9565 (4)0.2428 (3)0.0448 (10)
H4'0.20941.01050.25670.054*
C5'0.4504 (5)1.0246 (3)0.2879 (3)0.0454 (10)
C6'0.5595 (5)1.0163 (4)0.2430 (3)0.0475 (10)
C7'0.3799 (8)1.1522 (5)0.5011 (4)0.0890 (18)
H7'10.41791.23930.50960.107*
H7'20.45911.12190.54310.107*
C8'0.2281 (11)1.1309 (9)0.5198 (5)0.144 (3)
H8'10.15391.16930.48280.217*
H8'20.24231.16470.58390.217*
H8'30.18621.04430.50520.217*
C9'0.2458 (5)0.8451 (4)0.2768 (3)0.0467 (10)
C10'0.3336 (6)0.7567 (4)0.2711 (3)0.0623 (13)
H10'0.41940.76660.24600.075*
C11'0.2998 (8)0.6546 (5)0.3007 (4)0.0861 (18)
H11'0.36020.59390.29460.103*
C12'0.1789 (9)0.6404 (6)0.3392 (4)0.091 (2)
H12'0.15610.57040.36040.109*
C13'0.0928 (8)0.7260 (7)0.3468 (4)0.0926 (19)
H13'0.01030.71760.37450.111*
C14'0.1248 (6)0.8256 (5)0.3142 (3)0.0675 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (6)0.0611 (7)0.0453 (6)0.0011 (5)0.0124 (5)0.0006 (5)
O10.076 (2)0.100 (3)0.0456 (18)0.012 (2)0.0265 (18)0.0051 (17)
O20.053 (2)0.103 (3)0.0393 (17)0.0082 (18)0.0078 (14)0.0048 (16)
N10.0334 (18)0.065 (2)0.044 (2)0.0023 (16)0.0144 (15)0.0047 (17)
N20.0351 (18)0.0450 (18)0.0419 (18)0.0053 (15)0.0147 (15)0.0024 (15)
F10.057 (2)0.161 (4)0.132 (3)0.004 (2)0.017 (2)0.025 (3)
C10.057 (3)0.099 (4)0.063 (3)0.001 (3)0.034 (3)0.003 (3)
C20.039 (2)0.037 (2)0.047 (2)0.0044 (17)0.0133 (19)0.0094 (18)
C30.057 (3)0.049 (2)0.045 (2)0.005 (2)0.016 (2)0.017 (2)
C40.034 (2)0.041 (2)0.039 (2)0.0074 (17)0.0101 (17)0.0083 (17)
C50.048 (2)0.040 (2)0.038 (2)0.0046 (18)0.0154 (18)0.0136 (17)
C60.047 (2)0.046 (2)0.046 (2)0.0057 (19)0.020 (2)0.0094 (19)
C70.076 (4)0.117 (5)0.044 (3)0.023 (3)0.001 (3)0.001 (3)
C80.102 (6)0.268 (12)0.072 (5)0.073 (7)0.008 (4)0.030 (6)
C90.052 (2)0.045 (2)0.037 (2)0.000 (2)0.0194 (19)0.0025 (18)
C100.097 (4)0.047 (3)0.059 (3)0.016 (3)0.037 (3)0.016 (2)
C110.158 (7)0.054 (3)0.086 (4)0.026 (4)0.068 (4)0.027 (3)
C120.216 (10)0.057 (4)0.095 (5)0.029 (5)0.098 (6)0.001 (4)
C130.107 (5)0.087 (5)0.096 (5)0.045 (4)0.051 (4)0.003 (4)
C140.055 (3)0.075 (3)0.063 (3)0.008 (3)0.022 (3)0.006 (3)
S1'0.0444 (6)0.0736 (8)0.0449 (6)0.0117 (5)0.0137 (5)0.0122 (5)
O1'0.076 (3)0.107 (3)0.067 (2)0.007 (2)0.008 (2)0.017 (2)
O2'0.077 (2)0.071 (2)0.0534 (19)0.0092 (18)0.0289 (17)0.0019 (16)
N1'0.0341 (18)0.062 (2)0.049 (2)0.0068 (16)0.0149 (16)0.0067 (17)
N2'0.0359 (18)0.066 (2)0.0409 (19)0.0151 (16)0.0118 (15)0.0167 (16)
F1'0.083 (2)0.135 (3)0.138 (3)0.034 (2)0.074 (2)0.047 (2)
C1'0.042 (3)0.084 (3)0.070 (3)0.003 (2)0.014 (2)0.005 (3)
C2'0.038 (2)0.045 (2)0.050 (2)0.0109 (18)0.0160 (19)0.0165 (19)
C3'0.069 (3)0.050 (3)0.060 (3)0.010 (2)0.018 (3)0.011 (2)
C4'0.041 (2)0.051 (2)0.046 (2)0.0133 (19)0.0185 (19)0.0086 (19)
C5'0.048 (2)0.042 (2)0.045 (2)0.0080 (19)0.012 (2)0.0090 (18)
C6'0.042 (2)0.046 (2)0.051 (3)0.0055 (19)0.012 (2)0.010 (2)
C7'0.134 (6)0.077 (4)0.057 (3)0.021 (4)0.039 (4)0.004 (3)
C8'0.153 (7)0.189 (8)0.105 (6)0.029 (6)0.092 (6)0.004 (5)
C9'0.045 (2)0.052 (2)0.038 (2)0.003 (2)0.0100 (19)0.0067 (19)
C10'0.082 (3)0.049 (3)0.057 (3)0.007 (2)0.025 (3)0.012 (2)
C11'0.126 (5)0.054 (3)0.069 (4)0.016 (3)0.014 (4)0.013 (3)
C12'0.121 (5)0.074 (4)0.065 (4)0.022 (4)0.022 (4)0.024 (3)
C13'0.094 (5)0.102 (5)0.083 (4)0.014 (4)0.040 (4)0.031 (4)
C14'0.061 (3)0.076 (3)0.064 (3)0.000 (3)0.027 (3)0.012 (3)
Geometric parameters (Å, º) top
S1—C21.679 (4)S1'—C2'1.679 (4)
O1—C31.216 (5)O1'—C3'1.218 (6)
O2—C31.316 (5)O2'—C3'1.330 (6)
O2—C71.450 (5)O2'—C7'1.443 (6)
N1—C21.360 (5)N1'—C2'1.354 (5)
N1—C61.382 (5)N1'—C6'1.383 (5)
N1—H10.8800N1'—H1'0.8800
N2—C21.311 (5)N2'—C2'1.321 (5)
N2—C41.463 (5)N2'—C4'1.452 (5)
N2—H20.8800N2'—H2'0.8800
F1—C141.355 (6)F1'—C14'1.354 (6)
C1—C61.490 (6)C1'—C6'1.496 (6)
C1—H1A0.9800C1'—H1'10.9800
C1—H1B0.9800C1'—H1'20.9800
C1—H1C0.9800C1'—H1'30.9800
C3—C51.469 (6)C3'—C5'1.459 (6)
C4—C91.506 (5)C4'—C5'1.512 (6)
C4—C51.518 (5)C4'—C9'1.513 (6)
C4—H41.0000C4'—H4'1.0000
C5—C61.340 (6)C5'—C6'1.346 (6)
C7—C81.378 (9)C7'—C8'1.456 (9)
C7—H7A0.9900C7'—H7'10.9900
C7—H7B0.9900C7'—H7'20.9900
C8—H8A0.9800C8'—H8'10.9800
C8—H8B0.9800C8'—H8'20.9800
C8—H8C0.9800C8'—H8'30.9800
C9—C141.368 (6)C9'—C14'1.368 (6)
C9—C101.394 (6)C9'—C10'1.378 (6)
C10—C111.391 (7)C10'—C11'1.375 (7)
C10—H100.9500C10'—H10'0.9500
C11—C121.359 (11)C11'—C12'1.371 (9)
C11—H110.9500C11'—H11'0.9500
C12—C131.366 (11)C12'—C13'1.345 (9)
C12—H120.9500C12'—H12'0.9500
C13—C141.365 (8)C13'—C14'1.373 (8)
C13—H130.9500C13'—H13'0.9500
C3—O2—C7117.6 (4)C3'—O2'—C7'117.2 (4)
C2—N1—C6124.0 (3)C2'—N1'—C6'124.3 (3)
C2—N1—H1118.0C2'—N1'—H1'117.8
C6—N1—H1118.0C6'—N1'—H1'117.8
C2—N2—C4127.1 (3)C2'—N2'—C4'126.1 (3)
C2—N2—H2116.5C2'—N2'—H2'117.0
C4—N2—H2116.5C4'—N2'—H2'117.0
C6—C1—H1A109.5C6'—C1'—H1'1109.5
C6—C1—H1B109.5C6'—C1'—H1'2109.5
H1A—C1—H1B109.5H1'1—C1'—H1'2109.5
C6—C1—H1C109.5C6'—C1'—H1'3109.5
H1A—C1—H1C109.5H1'1—C1'—H1'3109.5
H1B—C1—H1C109.5H1'2—C1'—H1'3109.5
N2—C2—N1115.6 (3)N2'—C2'—N1'115.6 (4)
N2—C2—S1122.9 (3)N2'—C2'—S1'122.6 (3)
N1—C2—S1121.5 (3)N1'—C2'—S1'121.8 (3)
O1—C3—O2122.7 (4)O1'—C3'—O2'122.5 (5)
O1—C3—C5126.7 (4)O1'—C3'—C5'126.7 (5)
O2—C3—C5110.6 (4)O2'—C3'—C5'110.8 (4)
N2—C4—C9110.5 (3)N2'—C4'—C5'109.6 (3)
N2—C4—C5108.9 (3)N2'—C4'—C9'110.5 (3)
C9—C4—C5112.3 (3)C5'—C4'—C9'112.3 (3)
N2—C4—H4108.3N2'—C4'—H4'108.1
C9—C4—H4108.3C5'—C4'—H4'108.1
C5—C4—H4108.3C9'—C4'—H4'108.1
C6—C5—C3122.6 (4)C6'—C5'—C3'122.6 (4)
C6—C5—C4120.3 (3)C6'—C5'—C4'119.7 (4)
C3—C5—C4117.0 (3)C3'—C5'—C4'117.7 (4)
C5—C6—N1120.0 (4)C5'—C6'—N1'119.4 (4)
C5—C6—C1126.9 (4)C5'—C6'—C1'127.2 (4)
N1—C6—C1113.1 (4)N1'—C6'—C1'113.4 (4)
C8—C7—O2110.1 (5)O2'—C7'—C8'108.5 (6)
C8—C7—H7A109.6O2'—C7'—H7'1110.0
O2—C7—H7A109.6C8'—C7'—H7'1110.0
C8—C7—H7B109.6O2'—C7'—H7'2110.0
O2—C7—H7B109.6C8'—C7'—H7'2110.0
H7A—C7—H7B108.2H7'1—C7'—H7'2108.4
C7—C8—H8A109.5C7'—C8'—H8'1109.5
C7—C8—H8B109.5C7'—C8'—H8'2109.5
H8A—C8—H8B109.5H8'1—C8'—H8'2109.5
C7—C8—H8C109.5C7'—C8'—H8'3109.5
H8A—C8—H8C109.5H8'1—C8'—H8'3109.5
H8B—C8—H8C109.5H8'2—C8'—H8'3109.5
C14—C9—C10116.4 (4)C14'—C9'—C10'116.2 (4)
C14—C9—C4122.6 (4)C14'—C9'—C4'122.6 (4)
C10—C9—C4120.9 (4)C10'—C9'—C4'121.2 (4)
C11—C10—C9120.6 (6)C11'—C10'—C9'121.6 (5)
C11—C10—H10119.7C11'—C10'—H10'119.2
C9—C10—H10119.7C9'—C10'—H10'119.2
C12—C11—C10119.6 (7)C12'—C11'—C10'119.9 (6)
C12—C11—H11120.2C12'—C11'—H11'120.1
C10—C11—H11120.2C10'—C11'—H11'120.1
C11—C12—C13121.3 (6)C13'—C12'—C11'119.8 (5)
C11—C12—H12119.3C13'—C12'—H12'120.1
C13—C12—H12119.3C11'—C12'—H12'120.1
C14—C13—C12117.8 (7)C12'—C13'—C14'119.5 (6)
C14—C13—H13121.1C12'—C13'—H13'120.2
C12—C13—H13121.1C14'—C13'—H13'120.2
F1—C14—C13118.1 (6)F1'—C14'—C9'118.4 (4)
F1—C14—C9117.7 (4)F1'—C14'—C13'118.6 (5)
C13—C14—C9124.2 (6)C9'—C14'—C13'123.0 (6)
C4—N2—C2—N115.5 (6)C4'—N2'—C2'—N1'14.4 (6)
C4—N2—C2—S1164.9 (3)C4'—N2'—C2'—S1'166.1 (3)
C6—N1—C2—N23.0 (6)C6'—N1'—C2'—N2'6.2 (6)
C6—N1—C2—S1176.6 (3)C6'—N1'—C2'—S1'173.3 (3)
C7—O2—C3—O12.2 (7)C7'—O2'—C3'—O1'0.1 (7)
C7—O2—C3—C5176.0 (4)C7'—O2'—C3'—C5'178.7 (4)
C2—N2—C4—C999.7 (4)C2'—N2'—C4'—C5'26.5 (5)
C2—N2—C4—C524.1 (5)C2'—N2'—C4'—C9'97.8 (4)
O1—C3—C5—C64.1 (7)O1'—C3'—C5'—C6'3.7 (7)
O2—C3—C5—C6177.8 (4)O2'—C3'—C5'—C6'177.5 (4)
O1—C3—C5—C4172.3 (4)O1'—C3'—C5'—C4'173.1 (5)
O2—C3—C5—C45.9 (5)O2'—C3'—C5'—C4'5.6 (5)
N2—C4—C5—C616.0 (5)N2'—C4'—C5'—C6'20.0 (5)
C9—C4—C5—C6106.7 (4)C9'—C4'—C5'—C6'103.1 (4)
N2—C4—C5—C3167.6 (3)N2'—C4'—C5'—C3'163.0 (3)
C9—C4—C5—C369.7 (4)C9'—C4'—C5'—C3'73.8 (5)
C3—C5—C6—N1178.2 (4)C3'—C5'—C6'—N1'179.1 (4)
C4—C5—C6—N12.0 (6)C4'—C5'—C6'—N1'4.1 (6)
C3—C5—C6—C11.9 (7)C3'—C5'—C6'—C1'1.1 (7)
C4—C5—C6—C1178.1 (4)C4'—C5'—C6'—C1'175.7 (4)
C2—N1—C6—C59.2 (6)C2'—N1'—C6'—C5'10.9 (6)
C2—N1—C6—C1170.7 (4)C2'—N1'—C6'—C1'169.3 (4)
C3—O2—C7—C8164.9 (7)C3'—O2'—C7'—C8'175.2 (5)
N2—C4—C9—C14114.6 (4)N2'—C4'—C9'—C14'114.4 (4)
C5—C4—C9—C14123.6 (4)C5'—C4'—C9'—C14'123.0 (4)
N2—C4—C9—C1063.1 (5)N2'—C4'—C9'—C10'65.2 (5)
C5—C4—C9—C1058.8 (5)C5'—C4'—C9'—C10'57.5 (5)
C14—C9—C10—C111.1 (6)C14'—C9'—C10'—C11'0.5 (7)
C4—C9—C10—C11179.0 (4)C4'—C9'—C10'—C11'179.1 (4)
C9—C10—C11—C120.9 (8)C9'—C10'—C11'—C12'1.7 (8)
C10—C11—C12—C131.0 (10)C10'—C11'—C12'—C13'0.7 (9)
C11—C12—C13—C141.4 (10)C11'—C12'—C13'—C14'1.4 (9)
C12—C13—C14—F1177.6 (6)C10'—C9'—C14'—F1'179.5 (4)
C12—C13—C14—C91.7 (9)C4'—C9'—C14'—F1'0.1 (7)
C10—C9—C14—F1177.8 (4)C10'—C9'—C14'—C13'1.7 (7)
C4—C9—C14—F10.0 (6)C4'—C9'—C14'—C13'178.7 (5)
C10—C9—C14—C131.6 (7)C12'—C13'—C14'—F1'178.5 (5)
C4—C9—C14—C13179.3 (5)C12'—C13'—C14'—C9'2.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.833.703 (4)170
N1—H1···S10.882.843.711 (4)171
N2—H2···S10.882.523.337 (4)155
N2—H2···S1ii0.882.503.335 (5)158
C1—H11···O10.982.142.861 (6)129
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1'i0.882.833.703 (4)170
N1'—H1'···S10.882.843.711 (4)171
N2—H2···S1'0.882.523.337 (4)155
N2'—H2'···S1ii0.882.503.335 (5)158
C1'—H1'1···O1'0.982.142.861 (6)129
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

MSK thanks for the University Grants Commission (UGC), India, for the UGC–BSR Meritorious fellowship.

References

First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2003 176 284.  Google Scholar
First citationHurst, E. W. & Hull, R. (1961). J. Med. Pharm. Chem. 3, 215–229.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (1998). Molecules, 3, 1–20.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrishnamurthy, M. S. & Begum, N. S. (2015). Acta Cryst. E71, o268–o269.  CSD CrossRef IUCr Journals Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215–o5216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o699-o700
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds