organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4,6-dimeth­­oxy-2-(4-meth­­oxy­styr­yl)-3-methyl­benzaldehyde

CROSSMARK_Color_square_no_text.svg

aDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and bDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 6 September 2015; accepted 17 September 2015; online 26 September 2015)

In the title mol­ecule, C19H20O4, the central C=C double bond adopts an E configuration. The dihedral angle formed by the planes of the two benzene rings is 83.57 (12)°. The three meth­oxy groups are essentially coplanar with the benzene rings to which they are attached, with C C—O—C torsion angles of −0.2 (3), −2.3 (3) and −4.1 (3)°.

1. Related literature

For the synthesis and biological properties of resveratrol derivatives, see: Chen et al. (2015[Chen, W., Ge, X., Xu, F., Zhang, Y., Liu, Z., Pan, J., Song, J., Dai, Y., Zhou, J., Feng, J. & Liang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2998-3004.]); Chillemi et al. (2015[Chillemi, R., Cardullo, N., Greco, V., Malfa, G., Tomasello, B. & Sciuto, S. (2015). Eur. J. Med. Chem. 96, 467-481.]); Li et al. (2014[Li, S.-Y., Wang, X.-B. & Kong, L.-Y. (2014). Eur. J. Med. Chem. 71, 36-45.]); Shin et al. (2014[Shin, S. Y., Lee, J. M., Lee, M. S., Koh, D., Jung, H., Lim, Y. & Lee, Y. H. (2014). Clin. Cancer Res. 20, 4302-4313.]); Huang et al. (2007[Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263-267.]). For related structures, see: Ge et al. (2013[Ge, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). Acta Cryst. E69, o629.]); Tang et al. (2011[Tang, L., Dai, D., Gong, Y. & Zhong, J. (2011). Acta Cryst. E67, o3129.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H20O4

  • Mr = 312.35

  • Monoclinic, P 21 /c

  • a = 11.3632 (9) Å

  • b = 8.7159 (7) Å

  • c = 16.2382 (13) Å

  • β = 101.927 (2)°

  • V = 1573.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.26 × 0.20 × 0.13 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • 11266 measured reflections

  • 3904 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.222

  • S = 0.99

  • 3904 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

Resveratrol is part of a family of the stilbene polyphenols which has a general C6—C2—C6 carbon framework. Recent research has shown that resveratrol derivatives have diverse biological activities including anti-Alzheimer's disease (Li et al., 2014), anti­cancer (Chillemi et al., 2015), and anti-inflammatory (Chen et al., 2015). On our going research project of polyphenols (Shin et al., 2014), the title compound was synthesized and its crystal structure was determined.

After the methyl­ation of hydroxyl groups in resveratrol, formyl­ation of the resulting compound was performed (Fig 2). The Vilslmeier formyl­ation reaction gave two products depending on reaction conditions (Huang et al., 2007). The title compound (I) contains one formyl group and one methyl group at each ortho position of the di­meth­oxy-substituted benzene ring. Whereas compound (II) has only a formyl group at the ortho position of the benzene ring. The crystal structure of compound (II) has been published recently (Ge et al. 2013). In this report, the title compound (I) was synthesized and its crystal structure was determined. According to the literature (Ge et al. 2013), compound (II) contains two independent molecules in the asymmetric unit and the dihedral angle between the two benzene rings in each are 23.54 (12)°, and 31.11 (12)°. However, in (I), dihedral angle between the two benzene rings is 83.57 (12)° (Fig. 1). The meth­oxy groups are essentially co-planar with the attached the benzene rings [C4—C3—O1—C8 = -0.2 (3)°, C4—C5—O2—C9 = -2.3 (3)° and C17—C16—O4—C19 = -4.1 (3)°].

Experimental top

For an outline of the synthesis see Fig. 2. Resveratrol (A, 30 mmol, 6.8 g) was dissolved in 75 mL of aq. NaOH (10%) under ice-water bath conditions. To the above solution, was added DMS (50 mL) and the reaction mixture was stirred at room temperature for 24 h. After completion of this reaction, the mixture was extracted with EtOAc (50 mL x 3) and the combined organic layer was dried under MgSO4. Filtration and evaporation of the solvent gave a solid of compound B. To a solution of compound B (10 mmol, 2.7 g) in 20 mL of DMF was added 2 mL of POCl3 in an ice-water bath, and was stirred at room temperature for 4 h. The reaction mixture was poured into ice-water and stirred for 2 h. The reaction mixture was extracted with EtOAc (30 mL x 3). Evaporation of the organic solvent afforded mixture of products (I) and (II), which was purified by column chromatography. Recrystallization of solid (I) from ethanol gave single crystals which were suitable for X-ray diffraction (m.p.: 391–392 K).

Refinement top

H atoms bonded to C atoms were placed in calculated positions, with C—H distances in the range 0.95–0.98 Å, and included in the refinement in a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.5Ueq(C) otherwise.

Results and discussion top

Related literature top

For the synthesis and biological properties of resveratrol derivatives, see: Chen et al. (2015); Chillemi et al. (2015); Li et al. (2014); Shin et al. (2014); Huang et al. (2007). For related structures, see: Ge et al. (2013); Tang et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Synthetic scheme for preparation of resveratrol derivative compounds.
(E)-4,6-Dimethoxy-2-(4-methoxystyryl)-3-methylbenzaldehyde top
Crystal data top
C19H20O4F(000) = 664
Mr = 312.35Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3256 reflections
a = 11.3632 (9) Åθ = 2.7–28.2°
b = 8.7159 (7) ŵ = 0.09 mm1
c = 16.2382 (13) ÅT = 200 K
β = 101.927 (2)°Block, light yellow
V = 1573.5 (2) Å30.26 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
φ and ω scansh = 1514
11266 measured reflectionsk = 1111
3904 independent reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1179P)2]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H20O4V = 1573.5 (2) Å3
Mr = 312.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3632 (9) ŵ = 0.09 mm1
b = 8.7159 (7) ÅT = 200 K
c = 16.2382 (13) Å0.26 × 0.20 × 0.13 mm
β = 101.927 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1966 reflections with I > 2σ(I)
11266 measured reflectionsRint = 0.037
3904 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
3904 reflectionsΔρmin = 0.31 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8260 (2)0.0967 (3)0.05627 (14)0.0374 (5)
C20.7634 (2)0.0081 (3)0.01021 (15)0.0400 (6)
C30.7955 (2)0.0212 (3)0.08861 (14)0.0398 (6)
C40.8854 (2)0.1179 (3)0.10269 (15)0.0408 (6)
H40.90400.12530.15690.049*
C50.9481 (2)0.2042 (3)0.03599 (14)0.0384 (6)
C60.9196 (2)0.1962 (2)0.04419 (14)0.0368 (5)
C70.6658 (2)0.1046 (3)0.00234 (18)0.0568 (7)
H7A0.58710.05860.02480.085*
H7B0.67180.13080.05710.085*
H7C0.67520.19780.03420.085*
O10.73156 (16)0.0693 (2)0.15023 (11)0.0533 (5)
C80.7593 (3)0.0620 (3)0.23169 (15)0.0582 (8)
H8A0.74880.04350.25290.087*
H8B0.70540.13040.27000.087*
H8C0.84290.09400.22830.087*
O21.03780 (16)0.30232 (19)0.04472 (10)0.0481 (5)
C91.0693 (2)0.3103 (3)0.12493 (16)0.0516 (7)
H9A1.09580.20900.14000.077*
H9B1.13460.38460.12290.077*
H9C0.99910.34280.16720.077*
O30.97338 (18)0.3109 (2)0.18130 (11)0.0574 (5)
C100.9879 (2)0.2931 (3)0.10982 (16)0.0477 (6)
H101.05190.34970.09500.057*
C110.7965 (2)0.0880 (3)0.14099 (14)0.0404 (6)
H110.86070.06620.18710.049*
C120.6884 (2)0.1081 (3)0.15791 (15)0.0417 (6)
H120.62320.12260.11140.050*
C130.6605 (2)0.1098 (3)0.24196 (15)0.0414 (6)
C140.5693 (2)0.2034 (3)0.25915 (15)0.0464 (6)
H140.52080.25940.21450.056*
C150.5475 (2)0.2171 (3)0.33950 (16)0.0483 (6)
H150.48610.28390.34980.058*
C160.6156 (2)0.1327 (3)0.40527 (14)0.0405 (6)
C170.7041 (2)0.0355 (3)0.38910 (15)0.0441 (6)
H170.74950.02470.43320.053*
C180.7270 (2)0.0256 (3)0.30880 (14)0.0437 (6)
H180.78940.04000.29890.052*
O40.58605 (15)0.15293 (19)0.48210 (10)0.0480 (5)
C190.6468 (2)0.0587 (3)0.54938 (15)0.0524 (7)
H19A0.63890.04920.53220.079*
H19B0.61120.07390.59880.079*
H19C0.73220.08670.56330.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (12)0.0403 (12)0.0348 (12)0.0087 (10)0.0102 (10)0.0032 (10)
C20.0396 (13)0.0408 (13)0.0406 (13)0.0040 (10)0.0110 (10)0.0006 (10)
C30.0390 (13)0.0406 (12)0.0399 (13)0.0023 (10)0.0080 (10)0.0043 (11)
C40.0433 (13)0.0454 (13)0.0348 (12)0.0052 (11)0.0109 (10)0.0012 (10)
C50.0375 (12)0.0407 (12)0.0389 (13)0.0049 (10)0.0124 (10)0.0022 (10)
C60.0344 (12)0.0388 (12)0.0381 (12)0.0048 (10)0.0094 (10)0.0046 (10)
C70.0569 (17)0.0580 (16)0.0592 (18)0.0107 (13)0.0205 (14)0.0078 (14)
O10.0529 (11)0.0631 (11)0.0452 (10)0.0100 (9)0.0130 (8)0.0147 (9)
C80.0631 (18)0.0748 (19)0.0369 (14)0.0077 (15)0.0108 (12)0.0130 (13)
O20.0517 (10)0.0557 (11)0.0409 (10)0.0137 (8)0.0193 (8)0.0016 (8)
C90.0583 (16)0.0561 (15)0.0462 (15)0.0048 (13)0.0246 (13)0.0014 (12)
O30.0725 (13)0.0651 (12)0.0353 (10)0.0099 (9)0.0130 (9)0.0052 (9)
C100.0480 (15)0.0541 (15)0.0405 (14)0.0051 (12)0.0077 (12)0.0004 (12)
C110.0437 (13)0.0422 (12)0.0370 (13)0.0014 (10)0.0121 (10)0.0023 (10)
C120.0430 (14)0.0477 (14)0.0360 (12)0.0019 (11)0.0116 (10)0.0014 (11)
C130.0404 (13)0.0461 (13)0.0398 (13)0.0044 (10)0.0136 (10)0.0006 (11)
C140.0417 (14)0.0613 (16)0.0375 (13)0.0047 (11)0.0109 (11)0.0046 (12)
C150.0411 (14)0.0581 (15)0.0479 (15)0.0023 (12)0.0146 (11)0.0002 (12)
C160.0406 (13)0.0494 (13)0.0339 (12)0.0095 (11)0.0129 (10)0.0052 (11)
C170.0459 (14)0.0482 (14)0.0410 (13)0.0013 (11)0.0150 (11)0.0058 (11)
C180.0432 (13)0.0451 (13)0.0454 (14)0.0024 (11)0.0150 (11)0.0022 (11)
O40.0497 (10)0.0588 (11)0.0382 (9)0.0032 (8)0.0154 (8)0.0025 (8)
C190.0594 (16)0.0543 (15)0.0431 (14)0.0127 (13)0.0100 (12)0.0003 (12)
Geometric parameters (Å, º) top
C1—C21.396 (3)C9—H9C0.9800
C1—C61.417 (3)O3—C101.215 (3)
C1—C111.484 (3)C10—H100.9500
C2—C31.399 (3)C11—C121.325 (3)
C2—C71.506 (3)C11—H110.9500
C3—O11.360 (3)C12—C131.463 (3)
C3—C41.379 (3)C12—H120.9500
C4—C51.388 (3)C13—C141.391 (3)
C4—H40.9500C13—C181.396 (3)
C5—O21.360 (3)C14—C151.383 (3)
C5—C61.407 (3)C14—H140.9500
C6—C101.453 (3)C15—C161.393 (3)
C7—H7A0.9800C15—H150.9500
C7—H7B0.9800C16—O41.369 (3)
C7—H7C0.9800C16—C171.381 (3)
O1—C81.423 (3)C17—C181.384 (3)
C8—H8A0.9800C17—H170.9500
C8—H8B0.9800C18—H180.9500
C8—H8C0.9800O4—C191.426 (3)
O2—C91.422 (3)C19—H19A0.9800
C9—H9A0.9800C19—H19B0.9800
C9—H9B0.9800C19—H19C0.9800
C2—C1—C6120.5 (2)H9A—C9—H9C109.5
C2—C1—C11120.8 (2)H9B—C9—H9C109.5
C6—C1—C11118.6 (2)O3—C10—C6128.1 (2)
C1—C2—C3118.1 (2)O3—C10—H10115.9
C1—C2—C7124.1 (2)C6—C10—H10115.9
C3—C2—C7117.7 (2)C12—C11—C1125.6 (2)
O1—C3—C4122.2 (2)C12—C11—H11117.2
O1—C3—C2115.0 (2)C1—C11—H11117.2
C4—C3—C2122.8 (2)C11—C12—C13125.7 (2)
C3—C4—C5118.7 (2)C11—C12—H12117.1
C3—C4—H4120.7C13—C12—H12117.1
C5—C4—H4120.7C14—C13—C18117.3 (2)
O2—C5—C4122.3 (2)C14—C13—C12120.4 (2)
O2—C5—C6116.7 (2)C18—C13—C12122.2 (2)
C4—C5—C6121.1 (2)C15—C14—C13121.7 (2)
C5—C6—C1118.8 (2)C15—C14—H14119.1
C5—C6—C10117.4 (2)C13—C14—H14119.1
C1—C6—C10123.9 (2)C14—C15—C16119.9 (2)
C2—C7—H7A109.5C14—C15—H15120.1
C2—C7—H7B109.5C16—C15—H15120.1
H7A—C7—H7B109.5O4—C16—C17125.3 (2)
C2—C7—H7C109.5O4—C16—C15115.4 (2)
H7A—C7—H7C109.5C17—C16—C15119.3 (2)
H7B—C7—H7C109.5C16—C17—C18120.2 (2)
C3—O1—C8118.1 (2)C16—C17—H17119.9
O1—C8—H8A109.5C18—C17—H17119.9
O1—C8—H8B109.5C17—C18—C13121.5 (2)
H8A—C8—H8B109.5C17—C18—H18119.2
O1—C8—H8C109.5C13—C18—H18119.2
H8A—C8—H8C109.5C16—O4—C19116.92 (19)
H8B—C8—H8C109.5O4—C19—H19A109.5
C5—O2—C9117.52 (18)O4—C19—H19B109.5
O2—C9—H9A109.5H19A—C19—H19B109.5
O2—C9—H9B109.5O4—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
O2—C9—H9C109.5H19B—C19—H19C109.5
C6—C1—C2—C30.3 (3)C4—C5—O2—C92.2 (3)
C11—C1—C2—C3179.9 (2)C6—C5—O2—C9179.0 (2)
C6—C1—C2—C7177.8 (2)C5—C6—C10—O3175.2 (2)
C11—C1—C2—C71.9 (3)C1—C6—C10—O34.0 (4)
C1—C2—C3—O1179.49 (19)C2—C1—C11—C1253.9 (3)
C7—C2—C3—O11.3 (3)C6—C1—C11—C12126.4 (3)
C1—C2—C3—C40.3 (3)C1—C11—C12—C13175.6 (2)
C7—C2—C3—C4178.5 (2)C11—C12—C13—C14146.5 (3)
O1—C3—C4—C5178.7 (2)C11—C12—C13—C1829.9 (4)
C2—C3—C4—C51.0 (3)C18—C13—C14—C152.1 (4)
C3—C4—C5—O2179.9 (2)C12—C13—C14—C15174.6 (2)
C3—C4—C5—C61.2 (3)C13—C14—C15—C161.7 (4)
O2—C5—C6—C1179.4 (2)C14—C15—C16—O4179.2 (2)
C4—C5—C6—C10.7 (3)C14—C15—C16—C170.3 (4)
O2—C5—C6—C100.2 (3)O4—C16—C17—C18179.3 (2)
C4—C5—C6—C10178.6 (2)C15—C16—C17—C181.8 (4)
C2—C1—C6—C50.1 (3)C16—C17—C18—C131.4 (4)
C11—C1—C6—C5179.75 (19)C14—C13—C18—C170.5 (3)
C2—C1—C6—C10179.3 (2)C12—C13—C18—C17176.1 (2)
C11—C1—C6—C101.0 (3)C17—C16—O4—C194.1 (3)
C4—C3—O1—C80.2 (3)C15—C16—O4—C19174.8 (2)
C2—C3—O1—C8180.0 (2)

Experimental details

Crystal data
Chemical formulaC19H20O4
Mr312.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.3632 (9), 8.7159 (7), 16.2382 (13)
β (°) 101.927 (2)
V3)1573.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11266, 3904, 1966
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.222, 0.99
No. of reflections3904
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Ge, X., Xu, F., Zhang, Y., Liu, Z., Pan, J., Song, J., Dai, Y., Zhou, J., Feng, J. & Liang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2998–3004.  CrossRef CAS PubMed Google Scholar
First citationChillemi, R., Cardullo, N., Greco, V., Malfa, G., Tomasello, B. & Sciuto, S. (2015). Eur. J. Med. Chem. 96, 467–481.  CrossRef CAS PubMed Google Scholar
First citationGe, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). Acta Cryst. E69, o629.  CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, S.-Y., Wang, X.-B. & Kong, L.-Y. (2014). Eur. J. Med. Chem. 71, 36–45.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, S. Y., Lee, J. M., Lee, M. S., Koh, D., Jung, H., Lim, Y. & Lee, Y. H. (2014). Clin. Cancer Res. 20, 4302–4313.  CrossRef CAS PubMed Google Scholar
First citationTang, L., Dai, D., Gong, Y. & Zhong, J. (2011). Acta Cryst. E67, o3129.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds