research communications
Crystal structures of morpholinium hydrogen bromanilate at 130, 145 and 180 K
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
Crystal structures of the title compound (systematic name: morpholin-4-ium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate), C4H10NO+·C6HBr2O4−, were determined at three temperatures, viz. 130, 145 and 180 K. The comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are located on inversion centres. The conformations of the two independent bromanilate anions are different from each other with respect to the O—H orientation. In the crystal, the two different anions are linked alternately into a chain along [211] through a short O—H⋯O hydrogen bond, in which the H atom is disordered over two positions. The refined site-occupancy ratios, which are almost constant in the temperature range studied, are 0.49 (3):0.51 (3), 0.52 (3):0.48 (3) and 0.50 (3):0.50 (3), respectively, at 130, 145 and 180 K, and no significant difference in the molecular geometry and the molecular packing is observed at the three temperatures. The morpholinium cation links adjacent chains of anions via N—H⋯O hydrogen bonds, forming a sheet structure parallel to (-111).
Keywords: crystal structure; bromanilic acid; morpholine; hydrogen-bonding; proton disorder.
1. Chemical context
Anilic acid (2,5-dihydroxy-1,4-benzoquinone) derivatives, such as chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoqinone) and bromanilic acid (2,5-dibromo-3,6-dihydroxy-1,4-benzoqinone), appear particularly attractive as a versatile template for generating hydrogen-bonded self-assemblies with various organic bases (Zaman et al., 2001; Molčanov & Kojić-Prodić, 2010; Gotoh & Ishida, 2011; Thomas et al., 2013) and also as a model compound for investigating proton dynamics in hydrogen-bond systems (Ikeda et al., 2005; Seliger et al., 2009). Furthermore, salts and co-crystals of anilic acids with organic bases have attracted much interest with respect to organic (Horiuchi et al., 2008, 2009, 2013).
In our previous study, we reported the 4H10NO+·C6HCl2O4−, in which a short O—H⋯O hydrogen bond is formed between the chloranilate ions and the H atom in the hydrogen bond is disordered over two sites (Ishida & Kashino, 1999). The measurements of 35Cl NQR (nuclear quadrupole resonance) for the compound in the temperature range 4–300 K showed an anomalous temperature dependence of the NQR frequencies, which cannot be explained by the conventional Bayer-type lattice motion: one of the two frequencies exhibits an anomalous increase with increasing temperature from 4.2 K while the other frequency shows a rather fast decrease with temperature. The anomalous behavior was ascribed to a drastic temperature variation of the disordered O—H⋯O hydrogen bond, as revealed by multi-temperature X-ray diffraction (Tobu et al., 2012). In the present study, we have undertaken the structural determination of morpholinium hydrogen bromanilate, C4H10NO+·C6HBr2O4−, to extend the study of hydrogen-bonding in the amine-halohydroxybenzoquinone system.
of morpholinium hydrogen chloranilate, C2. Structural commentary
The title compound is isomorphous with morpholinium hydrogen chloranilate in the P (Ishida & Kashino, 1999; Tobu et al., 2012) and has a quite similar molecular packing to the chloranilate. The of the title compound comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are each located on an inversion centre (Fig. 1). The conformations of two bromanilate anions are different from each other with respect to the O—H orientation as shown schematically in Fig. 2.
In morpholinium hydrogen chloranilate, the bond distances of C3—O2 and C6—O4, which are involved in the disordered O—H⋯O hydrogen bond, showed slight but systematic decrease and increase, respectively, with temperature [C3—O2: from 1.2994 (10) Å at 114 K to 1.2951 (10) Å at 180 K; C6—O4: from 1.290 (10) Å at 114 K to 1.2946 (10) at 180 K], which corresponds to population changes of the two disordered proton sites in the hydrogen bond (Tobu et al., 2012). In the present compound, however, the C3—O2 and C6—O4 bond lengths are almost constant [C3—O2: 1.2953 (17), 1.2937 (17) and 1.2931 (17) Å at 130, 145 and 180 K; C6—O4: 1.3002 (18), 1.2997 (18) and 1.2997 (18) Å at 130, 145 and 180 K] and no significant difference in the molecular geometry is observed at the three temperatures.
3. Supramolecular features
In the crystal, the two independent bromanilate anions with different conformations are linked alternately by short O—H⋯O hydrogen bonds (Tables 1, 2 and 3), forming a chain along [211] (Fig. 3). The adjacent independent anions are almost perpendicular to each other, with dihedral angles of 86.57 (7)° (130 K), 86.65 (7)° (145 K) and 86.81 (7)° (180 K) between the benzoquinone rings. The morpholinium cation connects the anion chains through N—H⋯O hydrogen bonds and a weak C—H⋯O hydrogen bond into a sheet parallel to (11) (Fig. 4). Between the chains, short Br⋯O and Br⋯C contacts [Br2⋯O1i: 3.1698 (13) Å (130 K), 3.1725 (13) Å (145 K) and 3.1763 (13) Å (180 K); Br2⋯C1i: 3.2673 (15) Å (130 K), 3.2716 (15) Å (145 K) and 3.2808 (15) Å (180 K); symmetry code: (i) x- 1, y − 1, z] are observed. A weak C—H⋯Br interaction is also observed between the sheets.
|
|
4. Database survey
Although a search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) for organic salts and co-crystals with bromanilic acid gave 31 hits, no including the A form (Fig. 2) was found.
5. Synthesis and crystallization
Single crystals of the title compound suitable for X-ray diffraction were prepared by slow evaporation from an acetonitrile solution (200 ml) of bromanilic acid (200 mg) with morpholine (60 mg) at room temperature.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms of the morpholinium cation were positioned geometrically with C—H = 0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined N—H = 0.85 (3)–0.89 (3) Å]. Two disordered positions of the H atom in the O—H⋯O hydrogen bond were located in a difference Fourier map. Since site occupancy factors and isotropic displacement parameters are correlated and bonding effects also make the site-occupancy factors less reliable, the positional parameters and the occupancies of the H atom were refined, with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å.
details are summarized in Table 4
|
Supporting information
10.1107/S2056989015017272/lh5788sup1.cif
contains datablocks General, 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: 10.1107/S2056989015017272/lh57881sup2.hkl
Structure factors: contains datablock 2. DOI: 10.1107/S2056989015017272/lh57882sup3.hkl
Structure factors: contains datablock 3. DOI: 10.1107/S2056989015017272/lh57883sup4.hkl
Supporting information file. DOI: 10.1107/S2056989015017272/lh57881sup5.cml
Anilic acid (2,5-dihydroxy-1,4-benzoquinone) derivatives, such as chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoqinone) and bromanilic acid (2,5-dibromo-3,6-dihydroxy-1,4-benzoqinone), appear particularly attractive as a versatile template for generating hydrogen-bonded self-assemblies with various organic bases (Zaman et al., 2001; Molčanov & Kojić-Prodić, 2010; Gotoh & Ishida, 2011; Thomas et al., 2013) and also a model compound for investigating proton dynamics in hydrogen-bond systems (Ikeda et al., 2005; Seliger et al., 2009). Furthermore, salts and co-crystals of anilic acids with organic bases have attracted much interest with respect to organic
(Horiuchi et al., 2008, 2009, 2013).In our previous study, we reported the
of morpholinium hydrogen chloranilate, C4H10NO+.C6HCl2O4-, in which a short O—H···O hydrogen bond is formed between the chloranilate ions and the H atom in the hydrogen bond is disordered over two sites (Ishida & Kashino, 1999). The measurements of 35Cl NQR (nuclear quadrupole resonance) for the compound in the temperature range 4–300 K showed an anomalous temperature dependence of the NQR frequencies, which cannot be explained by the conventional Bayer-type lattice motion: one of the two frequencies exhibits an anomalous increase with increasing temperature from 4.2 K while the other frequency shows a rather fast decrease with temperature. The anomalous behavior was ascribed to a drastic temperature variation of the disordered O—H···O hydrogen bond, as revealed by multi-temperature X-ray diffraction (Tobu et al., 2012). In the present study, we have undertaken the structural determination morpholinium hydrogen bromanilate, C4H10NO+.C6HBr2O4-, to extend the study of hydrogen-bonding in the amine-halohydroxybenzoquinone system.The title compound is isomorphous with morpholinium hydrogen chloranilate in the 1 (Ishida & Kashino, 1999; Tobu et al., 2012) and has a quite similar molecular packing to the chloranilate. The of the title compound comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are each located on an inversion centre (Fig. 1). The conformations of two bromanilate anions are different from each other with respect to the O—H orientation as shown schematically in Fig. 2.
PIn morpholinium hydrogen chloranilate, the bond distances of C3—O2 and C6—O4, which are involved in the disordered O—H···O hydrogen bond, showed slight but systematic decrease and increase, respectively, with temperature [C3—O2: from 1.2994 (10) Å at 114 K to 1.2951 (10) Å at 180 K; C6—O4: from 1.290 (10) Å at 114 K to 1.2946 (10) at 180 K], which corresponds to population changes of the two disordered proton sites in the hydrogen bond (Tobu et al., 2012). In the present compound, however, the C3—O2 and C6—O4 bond lengths are almost constant [C3—O2: 1.2953 (17), 1.2937 (17) and 1.2931 (17) Å at 130, 145 and 180 K; C6—O4: 1.3002 (18), 1.2997 (18) and 1.2997 (18) Å at 130, 145 and 180 K] and no significant difference in the molecular geometry is observed at the three temperatures.
In the crystal, the two independent bromanilate anions with different conformations are linked alternately by short O—H···O hydrogen bonds (Tables 1, 2 and 3), forming a chain along [211] (Fig. 3). The adjacent independent anions are almost perpendicular to each other, with dihedral angles of 86.57 (7)° (130 K), 86.65 (7)° (145 K) and 86.81 (7)° (180 K) between the benzoquinone rings. The morpholinium cation connects the anion chains through N—H···O hydrogen bonds and a weak C—H···O hydrogen bond into a sheet parallel to (111) (Fig. 4). Between the chains, short Br···O and Br···C contacts [Br2···O1i: 3.1698 (13) Å (130 K), 3.1725 (13) Å (145 K) and 3.1763 (13) Å (180 K); Br2···C1i: 3.2673 (15) Å (130 K), 3.2716 (15) Å (145 K) and 3.2808 (15) Å (180 K); symmetry code: (i) x- 1, y-1, z] are observed. A weak C—H···Br interaction is also observed between the sheets.
Although a search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) for organic salts and co-crystals with bromanilic acid gave 31 hits, no
including the A form (Fig. 2) was found.Single crystals of the title compound suitable for X-ray diffraction were prepared by slow evaporation from an acetonitrile solution (200 ml) of bromanilic acid (200 mg) with morpholine (60 mg) at room temperature.
Crystal data, data collection and structure
details are summarized in Table 4. C-bound H atoms of the morpholinium cation were positioned geometrically with C—H = 0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined N—H = 0.85 (3)–0.89 (3) Å]. Two disordered positions of the H atom in the O—H···O hydrogen bond were located in a difference Fourier map. Since site occupancy factors and isotropic displacement parameters are correlated and bonding effects also make the site-occupancy factors less reliable, the positional parameters and the occupancies of the H atom were refined, with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å.For all compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (1); SHELXL2014/7 (Sheldrick, 2015) for (2), (3). For all compounds, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).Fig. 1. A view of the molecular structure of the title compound at 180 K, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The site-occupancy factors of the disordered H atom (H2 and H4) are approximately equal. The N—H···O and O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (iii) -x, -y + 1, -z; (v) -x + 2, -y + 2, -z + 1.] | |
Fig. 2. Two conformations (A and B forms) of bromanilic acid with respect to the O—H orientation. | |
Fig. 3. A partial packing diagram of the title compound at 180 K, showing the hydrogen-bonded aggregate of morpholinium and hydrogen bromanilate ions. The N—H···O and O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) x - 1, y - 1, z; (ii) -x + 1, -y + 1, -z + 1.] | |
Fig. 4. A packing diagram of the title compound at 180 K, showing the sheet structure formed through N—H···O and O—H···O hydrogen bonds (dashed lines). For the morpholinium cations, only NH2 groups are shown for clarity. |
C4H10NO+·C6HBr2O4− | Z = 2 |
Mr = 385.01 | F(000) = 376.00 |
Triclinic, P1 | Dx = 2.149 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 8.62046 (19) Å | Cell parameters from 15996 reflections |
b = 9.2129 (2) Å | θ = 3.0–30.1° |
c = 9.4257 (2) Å | µ = 6.84 mm−1 |
α = 93.5208 (7)° | T = 130 K |
β = 112.9139 (7)° | Block, brown |
γ = 115.9757 (7)° | 0.40 × 0.34 × 0.18 mm |
V = 595.05 (3) Å3 |
Rigaku R-AXIS RAPIDII diffractometer | 3183 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −12→12 |
Tmin = 0.096, Tmax = 0.292 | k = −12→12 |
18162 measured reflections | l = −13→13 |
3468 independent reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.017 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0195P)2 + 0.3723P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.002 |
3468 reflections | Δρmax = 0.50 e Å−3 |
178 parameters | Δρmin = −0.37 e Å−3 |
C4H10NO+·C6HBr2O4− | γ = 115.9757 (7)° |
Mr = 385.01 | V = 595.05 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.62046 (19) Å | Mo Kα radiation |
b = 9.2129 (2) Å | µ = 6.84 mm−1 |
c = 9.4257 (2) Å | T = 130 K |
α = 93.5208 (7)° | 0.40 × 0.34 × 0.18 mm |
β = 112.9139 (7)° |
Rigaku R-AXIS RAPIDII diffractometer | 3468 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3183 reflections with I > 2σ(I) |
Tmin = 0.096, Tmax = 0.292 | Rint = 0.026 |
18162 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 2 restraints |
wR(F2) = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.50 e Å−3 |
3468 reflections | Δρmin = −0.37 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.75783 (2) | 0.69637 (2) | 0.16055 (2) | 0.01583 (4) | |
Br2 | −0.01546 (2) | 0.16774 (2) | 0.12333 (2) | 0.01833 (4) | |
O1 | 1.18246 (16) | 0.98222 (14) | 0.33171 (13) | 0.0166 (2) | |
O2 | 0.62026 (15) | 0.76781 (13) | 0.41041 (13) | 0.0157 (2) | |
H2 | 0.548 (5) | 0.699 (4) | 0.323 (3) | 0.023* | 0.49 (3) |
O3 | −0.34652 (16) | 0.22816 (14) | −0.08651 (15) | 0.0209 (2) | |
O4 | 0.33771 (16) | 0.50578 (13) | 0.19213 (13) | 0.0164 (2) | |
H4 | 0.427 (5) | 0.603 (3) | 0.226 (5) | 0.025* | 0.51 (3) |
O5 | 0.82461 (16) | 0.26388 (15) | 0.42254 (14) | 0.0201 (2) | |
N1 | 0.48737 (19) | 0.29440 (17) | 0.32853 (17) | 0.0170 (2) | |
C1 | 1.0924 (2) | 0.98617 (17) | 0.40452 (17) | 0.0123 (2) | |
C2 | 0.8902 (2) | 0.86739 (17) | 0.35299 (17) | 0.0124 (2) | |
C3 | 0.7974 (2) | 0.87220 (17) | 0.44093 (17) | 0.0126 (2) | |
C4 | −0.1856 (2) | 0.34950 (18) | −0.04567 (18) | 0.0146 (3) | |
C5 | −0.0041 (2) | 0.35821 (17) | 0.05629 (17) | 0.0139 (3) | |
C6 | 0.1730 (2) | 0.49677 (18) | 0.10262 (17) | 0.0145 (3) | |
C7 | 0.6812 (2) | 0.42756 (19) | 0.45862 (19) | 0.0176 (3) | |
H7A | 0.6639 | 0.4841 | 0.5393 | 0.021* | |
H7B | 0.7493 | 0.5130 | 0.4132 | 0.021* | |
C8 | 0.8010 (2) | 0.3481 (2) | 0.53723 (19) | 0.0188 (3) | |
H8A | 0.9304 | 0.4362 | 0.6229 | 0.023* | |
H8B | 0.7355 | 0.2669 | 0.5872 | 0.023* | |
C9 | 0.6388 (2) | 0.1307 (2) | 0.3035 (2) | 0.0206 (3) | |
H9A | 0.5750 | 0.0516 | 0.3557 | 0.025* | |
H9B | 0.6567 | 0.0681 | 0.2277 | 0.025* | |
C10 | 0.5099 (2) | 0.1976 (2) | 0.21215 (19) | 0.0196 (3) | |
H10A | 0.5690 | 0.2717 | 0.1543 | 0.023* | |
H10B | 0.3808 | 0.1032 | 0.1324 | 0.023* | |
H1A | 0.423 (3) | 0.342 (3) | 0.277 (3) | 0.023 (5)* | |
H1B | 0.422 (3) | 0.223 (3) | 0.367 (3) | 0.027 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01430 (7) | 0.01537 (7) | 0.01367 (7) | 0.00509 (6) | 0.00595 (5) | 0.00068 (5) |
Br2 | 0.01566 (8) | 0.01334 (7) | 0.02186 (8) | 0.00595 (6) | 0.00607 (6) | 0.00785 (6) |
O1 | 0.0150 (5) | 0.0183 (5) | 0.0179 (5) | 0.0075 (4) | 0.0102 (4) | 0.0046 (4) |
O2 | 0.0100 (5) | 0.0154 (5) | 0.0166 (5) | 0.0031 (4) | 0.0059 (4) | 0.0020 (4) |
O3 | 0.0129 (5) | 0.0152 (5) | 0.0277 (6) | 0.0040 (4) | 0.0065 (4) | 0.0072 (4) |
O4 | 0.0122 (5) | 0.0129 (5) | 0.0182 (5) | 0.0048 (4) | 0.0036 (4) | 0.0037 (4) |
O5 | 0.0151 (5) | 0.0241 (6) | 0.0217 (5) | 0.0117 (5) | 0.0073 (4) | 0.0036 (4) |
N1 | 0.0139 (6) | 0.0193 (6) | 0.0223 (6) | 0.0101 (5) | 0.0096 (5) | 0.0109 (5) |
C1 | 0.0117 (6) | 0.0115 (6) | 0.0141 (6) | 0.0063 (5) | 0.0056 (5) | 0.0052 (5) |
C2 | 0.0109 (6) | 0.0119 (6) | 0.0120 (6) | 0.0047 (5) | 0.0044 (5) | 0.0022 (5) |
C3 | 0.0106 (6) | 0.0122 (6) | 0.0145 (6) | 0.0064 (5) | 0.0045 (5) | 0.0049 (5) |
C4 | 0.0152 (7) | 0.0125 (6) | 0.0155 (6) | 0.0060 (5) | 0.0080 (5) | 0.0028 (5) |
C5 | 0.0147 (6) | 0.0115 (6) | 0.0153 (6) | 0.0062 (5) | 0.0070 (5) | 0.0048 (5) |
C6 | 0.0158 (7) | 0.0129 (6) | 0.0133 (6) | 0.0058 (5) | 0.0072 (5) | 0.0023 (5) |
C7 | 0.0180 (7) | 0.0161 (7) | 0.0198 (7) | 0.0090 (6) | 0.0093 (6) | 0.0052 (6) |
C8 | 0.0170 (7) | 0.0231 (7) | 0.0167 (7) | 0.0118 (6) | 0.0064 (6) | 0.0052 (6) |
C9 | 0.0189 (7) | 0.0171 (7) | 0.0232 (8) | 0.0099 (6) | 0.0068 (6) | 0.0032 (6) |
C10 | 0.0174 (7) | 0.0182 (7) | 0.0179 (7) | 0.0086 (6) | 0.0043 (6) | 0.0019 (6) |
Br1—C2 | 1.8807 (14) | C1—C3i | 1.5265 (19) |
Br2—C5 | 1.8767 (14) | C2—C3 | 1.368 (2) |
O1—C1 | 1.2295 (18) | C4—C5 | 1.445 (2) |
O2—C3 | 1.2953 (17) | C4—C6ii | 1.520 (2) |
O2—H2 | 0.81 (3) | C5—C6 | 1.362 (2) |
O3—C4 | 1.2229 (18) | C7—C8 | 1.511 (2) |
O4—C6 | 1.3002 (18) | C7—H7A | 0.9900 |
O4—H4 | 0.82 (3) | C7—H7B | 0.9900 |
O5—C8 | 1.4212 (19) | C8—H8A | 0.9900 |
O5—C9 | 1.428 (2) | C8—H8B | 0.9900 |
N1—C7 | 1.492 (2) | C9—C10 | 1.509 (2) |
N1—C10 | 1.494 (2) | C9—H9A | 0.9900 |
N1—H1A | 0.88 (3) | C9—H9B | 0.9900 |
N1—H1B | 0.86 (3) | C10—H10A | 0.9900 |
C1—C2 | 1.4407 (19) | C10—H10B | 0.9900 |
C3—O2—H2 | 118 (3) | C5—C6—C4ii | 120.03 (13) |
C6—O4—H4 | 111 (3) | N1—C7—C8 | 109.20 (12) |
C8—O5—C9 | 109.71 (12) | N1—C7—H7A | 109.8 |
C7—N1—C10 | 110.91 (12) | C8—C7—H7A | 109.8 |
C7—N1—H1A | 109.1 (14) | N1—C7—H7B | 109.8 |
C10—N1—H1A | 108.4 (14) | C8—C7—H7B | 109.8 |
C7—N1—H1B | 111.0 (15) | H7A—C7—H7B | 108.3 |
C10—N1—H1B | 107.1 (15) | O5—C8—C7 | 110.61 (13) |
H1A—N1—H1B | 110 (2) | O5—C8—H8A | 109.5 |
O1—C1—C2 | 124.43 (13) | C7—C8—H8A | 109.5 |
O1—C1—C3i | 117.51 (13) | O5—C8—H8B | 109.5 |
C2—C1—C3i | 118.06 (12) | C7—C8—H8B | 109.5 |
C3—C2—C1 | 122.59 (13) | H8A—C8—H8B | 108.1 |
C3—C2—Br1 | 120.39 (11) | O5—C9—C10 | 111.23 (13) |
C1—C2—Br1 | 116.98 (10) | O5—C9—H9A | 109.4 |
O2—C3—C2 | 127.82 (13) | C10—C9—H9A | 109.4 |
O2—C3—C1i | 112.91 (12) | O5—C9—H9B | 109.4 |
C2—C3—C1i | 119.28 (12) | C10—C9—H9B | 109.4 |
O3—C4—C5 | 124.23 (14) | H9A—C9—H9B | 108.0 |
O3—C4—C6ii | 118.64 (13) | N1—C10—C9 | 108.70 (13) |
C5—C4—C6ii | 117.13 (12) | N1—C10—H10A | 109.9 |
C6—C5—C4 | 122.84 (13) | C9—C10—H10A | 109.9 |
C6—C5—Br2 | 119.19 (11) | N1—C10—H10B | 109.9 |
C4—C5—Br2 | 117.97 (10) | C9—C10—H10B | 109.9 |
O4—C6—C5 | 123.65 (14) | H10A—C10—H10B | 108.3 |
O4—C6—C4ii | 116.29 (13) | ||
O1—C1—C2—C3 | 177.29 (14) | C6ii—C4—C5—Br2 | −178.24 (10) |
C3i—C1—C2—C3 | −3.3 (2) | C4—C5—C6—O4 | −178.83 (14) |
O1—C1—C2—Br1 | −0.27 (19) | Br2—C5—C6—O4 | −0.1 (2) |
C3i—C1—C2—Br1 | 179.12 (9) | C4—C5—C6—C4ii | −0.5 (2) |
C1—C2—C3—O2 | −176.34 (14) | Br2—C5—C6—C4ii | 178.22 (10) |
Br1—C2—C3—O2 | 1.1 (2) | C10—N1—C7—C8 | −54.86 (16) |
C1—C2—C3—C1i | 3.4 (2) | C9—O5—C8—C7 | −62.32 (16) |
Br1—C2—C3—C1i | −179.16 (9) | N1—C7—C8—O5 | 58.54 (17) |
O3—C4—C5—C6 | −178.49 (15) | C8—O5—C9—C10 | 62.50 (17) |
C6ii—C4—C5—C6 | 0.5 (2) | C7—N1—C10—C9 | 54.40 (17) |
O3—C4—C5—Br2 | 2.7 (2) | O5—C9—C10—N1 | −58.02 (17) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.88 (3) | 2.03 (3) | 2.886 (2) | 166 (2) |
N1—H1B···O1iii | 0.86 (3) | 2.16 (3) | 2.938 (2) | 150 (2) |
N1—H1B···O2iv | 0.86 (3) | 2.27 (3) | 2.955 (2) | 137 (2) |
O2—H2···O4 | 0.81 (3) | 1.77 (3) | 2.5160 (16) | 152 (4) |
O2—H2···O3ii | 0.81 (3) | 2.57 (3) | 3.0613 (17) | 120 (3) |
O4—H4···O2 | 0.82 (3) | 1.82 (4) | 2.5160 (16) | 143 (4) |
C7—H7A···O4iv | 0.99 | 2.53 | 3.391 (2) | 145 |
C10—H10B···Br2v | 0.99 | 2.90 | 3.8892 (17) | 175 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z. |
C4H10NO+·C6HBr2O4− | Z = 2 |
Mr = 385.01 | F(000) = 376.00 |
Triclinic, P1 | Dx = 2.145 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 8.62293 (18) Å | Cell parameters from 15916 reflections |
b = 9.21849 (19) Å | θ = 3.0–30.1° |
c = 9.4354 (2) Å | µ = 6.83 mm−1 |
α = 93.5239 (7)° | T = 145 K |
β = 112.9190 (7)° | Block, brown |
γ = 115.9777 (7)° | 0.40 × 0.34 × 0.18 mm |
V = 596.13 (3) Å3 |
Rigaku R-AXIS RAPIDII diffractometer | 3181 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −12→12 |
Tmin = 0.098, Tmax = 0.292 | k = −12→12 |
18176 measured reflections | l = −13→13 |
3473 independent reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.020P)2 + 0.3611P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3473 reflections | Δρmax = 0.48 e Å−3 |
178 parameters | Δρmin = −0.44 e Å−3 |
C4H10NO+·C6HBr2O4− | γ = 115.9777 (7)° |
Mr = 385.01 | V = 596.13 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.62293 (18) Å | Mo Kα radiation |
b = 9.21849 (19) Å | µ = 6.83 mm−1 |
c = 9.4354 (2) Å | T = 145 K |
α = 93.5239 (7)° | 0.40 × 0.34 × 0.18 mm |
β = 112.9190 (7)° |
Rigaku R-AXIS RAPIDII diffractometer | 3473 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3181 reflections with I > 2σ(I) |
Tmin = 0.098, Tmax = 0.292 | Rint = 0.028 |
18176 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 2 restraints |
wR(F2) = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.48 e Å−3 |
3473 reflections | Δρmin = −0.44 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.75812 (2) | 0.69658 (2) | 0.16087 (2) | 0.01737 (4) | |
Br2 | −0.01570 (2) | 0.16791 (2) | 0.12324 (2) | 0.02003 (5) | |
O1 | 1.18243 (15) | 0.98258 (14) | 0.33190 (13) | 0.0179 (2) | |
O2 | 0.62059 (15) | 0.76777 (13) | 0.41035 (13) | 0.0172 (2) | |
H2 | 0.547 (5) | 0.698 (4) | 0.323 (3) | 0.026* | 0.52 (3) |
O3 | −0.34653 (16) | 0.22841 (14) | −0.08661 (15) | 0.0227 (2) | |
O4 | 0.33774 (15) | 0.50586 (13) | 0.19208 (13) | 0.0175 (2) | |
H4 | 0.430 (5) | 0.603 (3) | 0.231 (5) | 0.026* | 0.48 (3) |
O5 | 0.82422 (16) | 0.26379 (15) | 0.42261 (14) | 0.0219 (2) | |
N1 | 0.48734 (19) | 0.29444 (17) | 0.32852 (17) | 0.0183 (2) | |
C1 | 1.0922 (2) | 0.98623 (17) | 0.40454 (17) | 0.0131 (2) | |
C2 | 0.8905 (2) | 0.86761 (17) | 0.35306 (17) | 0.0138 (2) | |
C3 | 0.7975 (2) | 0.87207 (17) | 0.44087 (17) | 0.0133 (2) | |
C4 | −0.1856 (2) | 0.34979 (18) | −0.04558 (17) | 0.0156 (3) | |
C5 | −0.0041 (2) | 0.35843 (17) | 0.05629 (17) | 0.0149 (3) | |
C6 | 0.1731 (2) | 0.49685 (18) | 0.10257 (17) | 0.0154 (3) | |
C7 | 0.6812 (2) | 0.42735 (19) | 0.45871 (19) | 0.0191 (3) | |
H7A | 0.6639 | 0.4839 | 0.5393 | 0.023* | |
H7B | 0.7495 | 0.5128 | 0.4135 | 0.023* | |
C8 | 0.8006 (2) | 0.3479 (2) | 0.53709 (19) | 0.0204 (3) | |
H8A | 0.9300 | 0.4358 | 0.6228 | 0.025* | |
H8B | 0.7349 | 0.2667 | 0.5868 | 0.025* | |
C9 | 0.6387 (2) | 0.1307 (2) | 0.3035 (2) | 0.0227 (3) | |
H9A | 0.5748 | 0.0515 | 0.3556 | 0.027* | |
H9B | 0.6567 | 0.0683 | 0.2278 | 0.027* | |
C10 | 0.5097 (2) | 0.1977 (2) | 0.21235 (19) | 0.0212 (3) | |
H10A | 0.5687 | 0.2716 | 0.1545 | 0.025* | |
H10B | 0.3806 | 0.1034 | 0.1327 | 0.025* | |
H1A | 0.425 (3) | 0.342 (3) | 0.278 (3) | 0.024 (5)* | |
H1B | 0.422 (3) | 0.224 (3) | 0.365 (3) | 0.030 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01574 (7) | 0.01685 (7) | 0.01495 (7) | 0.00556 (6) | 0.00658 (5) | 0.00055 (5) |
Br2 | 0.01706 (8) | 0.01455 (7) | 0.02405 (8) | 0.00653 (6) | 0.00668 (6) | 0.00865 (6) |
O1 | 0.0161 (5) | 0.0199 (5) | 0.0195 (5) | 0.0081 (4) | 0.0110 (4) | 0.0050 (4) |
O2 | 0.0108 (5) | 0.0164 (5) | 0.0184 (5) | 0.0030 (4) | 0.0064 (4) | 0.0015 (4) |
O3 | 0.0136 (5) | 0.0158 (5) | 0.0308 (6) | 0.0039 (4) | 0.0068 (5) | 0.0081 (4) |
O4 | 0.0128 (5) | 0.0138 (5) | 0.0195 (5) | 0.0051 (4) | 0.0035 (4) | 0.0038 (4) |
O5 | 0.0167 (5) | 0.0258 (6) | 0.0240 (6) | 0.0130 (5) | 0.0079 (4) | 0.0038 (5) |
N1 | 0.0146 (6) | 0.0210 (6) | 0.0244 (7) | 0.0108 (5) | 0.0105 (5) | 0.0118 (5) |
C1 | 0.0124 (6) | 0.0127 (6) | 0.0150 (6) | 0.0069 (5) | 0.0061 (5) | 0.0057 (5) |
C2 | 0.0124 (6) | 0.0134 (6) | 0.0134 (6) | 0.0056 (5) | 0.0051 (5) | 0.0025 (5) |
C3 | 0.0113 (6) | 0.0125 (6) | 0.0151 (6) | 0.0064 (5) | 0.0046 (5) | 0.0049 (5) |
C4 | 0.0168 (7) | 0.0131 (6) | 0.0161 (6) | 0.0063 (5) | 0.0083 (5) | 0.0028 (5) |
C5 | 0.0156 (6) | 0.0123 (6) | 0.0161 (6) | 0.0067 (5) | 0.0071 (5) | 0.0047 (5) |
C6 | 0.0166 (7) | 0.0139 (6) | 0.0139 (6) | 0.0060 (5) | 0.0076 (5) | 0.0021 (5) |
C7 | 0.0195 (7) | 0.0172 (7) | 0.0223 (7) | 0.0095 (6) | 0.0107 (6) | 0.0059 (6) |
C8 | 0.0187 (7) | 0.0251 (7) | 0.0177 (7) | 0.0129 (6) | 0.0066 (6) | 0.0051 (6) |
C9 | 0.0209 (7) | 0.0185 (7) | 0.0255 (8) | 0.0108 (6) | 0.0073 (6) | 0.0028 (6) |
C10 | 0.0185 (7) | 0.0206 (7) | 0.0189 (7) | 0.0093 (6) | 0.0047 (6) | 0.0022 (6) |
Br1—C2 | 1.8807 (14) | C1—C3i | 1.5282 (19) |
Br2—C5 | 1.8775 (14) | C2—C3 | 1.3684 (19) |
O1—C1 | 1.2298 (17) | C4—C5 | 1.446 (2) |
O2—C3 | 1.2937 (17) | C4—C6ii | 1.518 (2) |
O2—H2 | 0.82 (3) | C5—C6 | 1.363 (2) |
O3—C4 | 1.2231 (18) | C7—C8 | 1.509 (2) |
O4—C6 | 1.2997 (18) | C7—H7A | 0.9900 |
O4—H4 | 0.82 (3) | C7—H7B | 0.9900 |
O5—C8 | 1.4201 (19) | C8—H8A | 0.9900 |
O5—C9 | 1.428 (2) | C8—H8B | 0.9900 |
N1—C7 | 1.492 (2) | C9—C10 | 1.510 (2) |
N1—C10 | 1.493 (2) | C9—H9A | 0.9900 |
N1—H1A | 0.86 (3) | C9—H9B | 0.9900 |
N1—H1B | 0.85 (3) | C10—H10A | 0.9900 |
C1—C2 | 1.4377 (19) | C10—H10B | 0.9900 |
C3—O2—H2 | 118 (3) | C5—C6—C4ii | 119.95 (13) |
C6—O4—H4 | 113 (3) | N1—C7—C8 | 109.23 (12) |
C8—O5—C9 | 109.77 (12) | N1—C7—H7A | 109.8 |
C7—N1—C10 | 110.93 (12) | C8—C7—H7A | 109.8 |
C7—N1—H1A | 108.5 (14) | N1—C7—H7B | 109.8 |
C10—N1—H1A | 108.6 (14) | C8—C7—H7B | 109.8 |
C7—N1—H1B | 111.9 (16) | H7A—C7—H7B | 108.3 |
C10—N1—H1B | 106.6 (15) | O5—C8—C7 | 110.62 (13) |
H1A—N1—H1B | 110 (2) | O5—C8—H8A | 109.5 |
O1—C1—C2 | 124.48 (13) | C7—C8—H8A | 109.5 |
O1—C1—C3i | 117.39 (12) | O5—C8—H8B | 109.5 |
C2—C1—C3i | 118.13 (12) | C7—C8—H8B | 109.5 |
C3—C2—C1 | 122.62 (13) | H8A—C8—H8B | 108.1 |
C3—C2—Br1 | 120.30 (11) | O5—C9—C10 | 111.19 (13) |
C1—C2—Br1 | 117.03 (10) | O5—C9—H9A | 109.4 |
O2—C3—C2 | 127.87 (13) | C10—C9—H9A | 109.4 |
O2—C3—C1i | 112.96 (12) | O5—C9—H9B | 109.4 |
C2—C3—C1i | 119.17 (12) | C10—C9—H9B | 109.4 |
O3—C4—C5 | 124.23 (13) | H9A—C9—H9B | 108.0 |
O3—C4—C6ii | 118.58 (13) | N1—C10—C9 | 108.74 (13) |
C5—C4—C6ii | 117.19 (12) | N1—C10—H10A | 109.9 |
C6—C5—C4 | 122.86 (13) | C9—C10—H10A | 109.9 |
C6—C5—Br2 | 119.20 (11) | N1—C10—H10B | 109.9 |
C4—C5—Br2 | 117.92 (10) | C9—C10—H10B | 109.9 |
O4—C6—C5 | 123.68 (13) | H10A—C10—H10B | 108.3 |
O4—C6—C4ii | 116.36 (12) | ||
O1—C1—C2—C3 | 177.25 (14) | C6ii—C4—C5—Br2 | −178.23 (10) |
C3i—C1—C2—C3 | −3.4 (2) | C4—C5—C6—O4 | −178.92 (13) |
O1—C1—C2—Br1 | −0.21 (19) | Br2—C5—C6—O4 | −0.2 (2) |
C3i—C1—C2—Br1 | 179.18 (9) | C4—C5—C6—C4ii | −0.6 (2) |
C1—C2—C3—O2 | −176.36 (13) | Br2—C5—C6—C4ii | 178.19 (10) |
Br1—C2—C3—O2 | 1.0 (2) | C10—N1—C7—C8 | −54.81 (16) |
C1—C2—C3—C1i | 3.4 (2) | C9—O5—C8—C7 | −62.38 (16) |
Br1—C2—C3—C1i | −179.22 (9) | N1—C7—C8—O5 | 58.53 (17) |
O3—C4—C5—C6 | −178.65 (15) | C8—O5—C9—C10 | 62.43 (17) |
C6ii—C4—C5—C6 | 0.5 (2) | C7—N1—C10—C9 | 54.27 (17) |
O3—C4—C5—Br2 | 2.6 (2) | O5—C9—C10—N1 | −57.89 (18) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.86 (3) | 2.04 (3) | 2.888 (2) | 166 (2) |
N1—H1B···O1iii | 0.85 (3) | 2.17 (3) | 2.938 (2) | 151 (2) |
N1—H1B···O2iv | 0.85 (3) | 2.29 (3) | 2.959 (2) | 136 (2) |
O2—H2···O4 | 0.82 (3) | 1.77 (3) | 2.5174 (16) | 153 (4) |
O2—H2···O3ii | 0.82 (3) | 2.58 (3) | 3.0628 (17) | 120 (3) |
O4—H4···O2 | 0.82 (3) | 1.79 (4) | 2.5174 (16) | 147 (4) |
C7—H7A···O4iv | 0.99 | 2.54 | 3.394 (2) | 145 |
C10—H10B···Br2v | 0.99 | 2.90 | 3.8905 (17) | 175 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z. |
C4H10NO+·C6HBr2O4− | Z = 2 |
Mr = 385.01 | F(000) = 376.00 |
Triclinic, P1 | Dx = 2.136 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 8.62824 (17) Å | Cell parameters from 15838 reflections |
b = 9.23087 (18) Å | θ = 3.0–30.1° |
c = 9.46007 (19) Å | µ = 6.80 mm−1 |
α = 93.5321 (7)° | T = 180 K |
β = 112.9738 (7)° | Block, brown |
γ = 115.9508 (7)° | 0.40 × 0.34 × 0.18 mm |
V = 598.67 (3) Å3 |
Rigaku R-AXIS RAPIDII diffractometer | 3188 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 30.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −12→12 |
Tmin = 0.098, Tmax = 0.294 | k = −12→12 |
18199 measured reflections | l = −13→13 |
3487 independent reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0216P)2 + 0.3489P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3487 reflections | Δρmax = 0.59 e Å−3 |
178 parameters | Δρmin = −0.45 e Å−3 |
C4H10NO+·C6HBr2O4− | γ = 115.9508 (7)° |
Mr = 385.01 | V = 598.67 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.62824 (17) Å | Mo Kα radiation |
b = 9.23087 (18) Å | µ = 6.80 mm−1 |
c = 9.46007 (19) Å | T = 180 K |
α = 93.5321 (7)° | 0.40 × 0.34 × 0.18 mm |
β = 112.9738 (7)° |
Rigaku R-AXIS RAPIDII diffractometer | 3487 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3188 reflections with I > 2σ(I) |
Tmin = 0.098, Tmax = 0.294 | Rint = 0.026 |
18199 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 2 restraints |
wR(F2) = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.59 e Å−3 |
3487 reflections | Δρmin = −0.45 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.75874 (2) | 0.69709 (2) | 0.16160 (2) | 0.02126 (5) | |
Br2 | −0.01629 (2) | 0.16834 (2) | 0.12298 (2) | 0.02440 (5) | |
O1 | 1.18225 (16) | 0.98340 (14) | 0.33207 (13) | 0.0212 (2) | |
O2 | 0.62107 (15) | 0.76749 (14) | 0.41043 (13) | 0.0205 (2) | |
H2 | 0.550 (6) | 0.702 (5) | 0.321 (3) | 0.031* | 0.50 (3) |
O3 | −0.34638 (16) | 0.22923 (14) | −0.08655 (16) | 0.0275 (2) | |
O4 | 0.33726 (16) | 0.50565 (14) | 0.19202 (13) | 0.0209 (2) | |
H4 | 0.426 (5) | 0.604 (3) | 0.231 (5) | 0.031* | 0.50 (3) |
O5 | 0.82325 (17) | 0.26349 (16) | 0.42251 (15) | 0.0266 (2) | |
N1 | 0.48719 (19) | 0.29464 (18) | 0.32897 (17) | 0.0216 (3) | |
C1 | 1.0921 (2) | 0.98669 (17) | 0.40464 (17) | 0.0155 (2) | |
C2 | 0.8904 (2) | 0.86771 (17) | 0.35338 (17) | 0.0158 (2) | |
C3 | 0.7977 (2) | 0.87190 (17) | 0.44099 (17) | 0.0157 (2) | |
C4 | −0.1853 (2) | 0.35010 (18) | −0.04556 (18) | 0.0185 (3) | |
C5 | −0.0045 (2) | 0.35849 (17) | 0.05607 (17) | 0.0175 (3) | |
C6 | 0.1728 (2) | 0.49667 (18) | 0.10245 (17) | 0.0180 (3) | |
C7 | 0.6809 (2) | 0.42714 (19) | 0.4585 (2) | 0.0227 (3) | |
H7A | 0.6639 | 0.4840 | 0.5389 | 0.027* | |
H7B | 0.7492 | 0.5122 | 0.4133 | 0.027* | |
C8 | 0.7997 (2) | 0.3474 (2) | 0.53683 (19) | 0.0250 (3) | |
H8A | 0.9291 | 0.4350 | 0.6226 | 0.030* | |
H8B | 0.7337 | 0.2662 | 0.5861 | 0.030* | |
C9 | 0.6381 (2) | 0.1310 (2) | 0.3036 (2) | 0.0272 (3) | |
H9A | 0.5742 | 0.0517 | 0.3552 | 0.033* | |
H9B | 0.6562 | 0.0690 | 0.2279 | 0.033* | |
C10 | 0.5094 (2) | 0.1980 (2) | 0.21303 (19) | 0.0252 (3) | |
H10A | 0.5683 | 0.2719 | 0.1554 | 0.030* | |
H10B | 0.3803 | 0.1040 | 0.1335 | 0.030* | |
H1A | 0.424 (3) | 0.344 (3) | 0.277 (2) | 0.025 (5)* | |
H1B | 0.422 (3) | 0.223 (3) | 0.367 (3) | 0.026 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01905 (8) | 0.02063 (8) | 0.01805 (7) | 0.00654 (6) | 0.00783 (6) | 0.00043 (5) |
Br2 | 0.02061 (8) | 0.01771 (7) | 0.02936 (9) | 0.00800 (6) | 0.00791 (6) | 0.01079 (6) |
O1 | 0.0192 (5) | 0.0234 (5) | 0.0227 (5) | 0.0093 (4) | 0.0131 (4) | 0.0057 (4) |
O2 | 0.0128 (5) | 0.0201 (5) | 0.0215 (5) | 0.0035 (4) | 0.0076 (4) | 0.0019 (4) |
O3 | 0.0161 (5) | 0.0194 (5) | 0.0374 (7) | 0.0049 (4) | 0.0080 (5) | 0.0101 (5) |
O4 | 0.0151 (5) | 0.0166 (5) | 0.0230 (5) | 0.0061 (4) | 0.0039 (4) | 0.0046 (4) |
O5 | 0.0192 (5) | 0.0314 (6) | 0.0295 (6) | 0.0151 (5) | 0.0094 (5) | 0.0045 (5) |
N1 | 0.0171 (6) | 0.0245 (6) | 0.0290 (7) | 0.0129 (5) | 0.0123 (5) | 0.0141 (6) |
C1 | 0.0148 (6) | 0.0147 (6) | 0.0180 (6) | 0.0076 (5) | 0.0079 (5) | 0.0069 (5) |
C2 | 0.0141 (6) | 0.0144 (6) | 0.0159 (6) | 0.0057 (5) | 0.0062 (5) | 0.0027 (5) |
C3 | 0.0133 (6) | 0.0155 (6) | 0.0180 (6) | 0.0076 (5) | 0.0064 (5) | 0.0061 (5) |
C4 | 0.0181 (7) | 0.0155 (6) | 0.0197 (6) | 0.0065 (5) | 0.0092 (5) | 0.0034 (5) |
C5 | 0.0175 (6) | 0.0141 (6) | 0.0192 (6) | 0.0073 (5) | 0.0078 (5) | 0.0053 (5) |
C6 | 0.0188 (7) | 0.0164 (6) | 0.0166 (6) | 0.0071 (5) | 0.0086 (5) | 0.0030 (5) |
C7 | 0.0231 (7) | 0.0208 (7) | 0.0259 (7) | 0.0111 (6) | 0.0129 (6) | 0.0066 (6) |
C8 | 0.0219 (7) | 0.0308 (8) | 0.0218 (7) | 0.0150 (7) | 0.0080 (6) | 0.0061 (6) |
C9 | 0.0250 (8) | 0.0217 (7) | 0.0317 (8) | 0.0129 (7) | 0.0095 (7) | 0.0036 (6) |
C10 | 0.0218 (7) | 0.0243 (7) | 0.0220 (7) | 0.0108 (6) | 0.0051 (6) | 0.0025 (6) |
Br1—C2 | 1.8803 (14) | C1—C3i | 1.5283 (19) |
Br2—C5 | 1.8769 (14) | C2—C3 | 1.367 (2) |
O1—C1 | 1.2299 (17) | C4—C5 | 1.442 (2) |
O2—C3 | 1.2931 (17) | C4—C6ii | 1.519 (2) |
O2—H2 | 0.82 (3) | C5—C6 | 1.363 (2) |
O3—C4 | 1.2229 (18) | C7—C8 | 1.509 (2) |
O4—C6 | 1.2997 (18) | C7—H7A | 0.9900 |
O4—H4 | 0.82 (3) | C7—H7B | 0.9900 |
O5—C8 | 1.420 (2) | C8—H8A | 0.9900 |
O5—C9 | 1.425 (2) | C8—H8B | 0.9900 |
N1—C7 | 1.490 (2) | C9—C10 | 1.508 (2) |
N1—C10 | 1.493 (2) | C9—H9A | 0.9900 |
N1—H1A | 0.89 (3) | C9—H9B | 0.9900 |
N1—H1B | 0.86 (3) | C10—H10A | 0.9900 |
C1—C2 | 1.4394 (19) | C10—H10B | 0.9900 |
C3—O2—H2 | 117 (3) | C5—C6—C4ii | 119.94 (13) |
C6—O4—H4 | 111 (3) | N1—C7—C8 | 109.14 (13) |
C8—O5—C9 | 109.83 (12) | N1—C7—H7A | 109.9 |
C7—N1—C10 | 110.85 (12) | C8—C7—H7A | 109.9 |
C7—N1—H1A | 108.4 (14) | N1—C7—H7B | 109.9 |
C10—N1—H1A | 108.2 (14) | C8—C7—H7B | 109.9 |
C7—N1—H1B | 111.2 (14) | H7A—C7—H7B | 108.3 |
C10—N1—H1B | 106.4 (14) | O5—C8—C7 | 110.51 (13) |
H1A—N1—H1B | 112 (2) | O5—C8—H8A | 109.5 |
O1—C1—C2 | 124.51 (13) | C7—C8—H8A | 109.5 |
O1—C1—C3i | 117.41 (12) | O5—C8—H8B | 109.5 |
C2—C1—C3i | 118.08 (12) | C7—C8—H8B | 109.5 |
C3—C2—C1 | 122.63 (13) | H8A—C8—H8B | 108.1 |
C3—C2—Br1 | 120.43 (11) | O5—C9—C10 | 111.18 (13) |
C1—C2—Br1 | 116.90 (10) | O5—C9—H9A | 109.4 |
O2—C3—C2 | 127.81 (13) | C10—C9—H9A | 109.4 |
O2—C3—C1i | 112.98 (12) | O5—C9—H9B | 109.4 |
C2—C3—C1i | 119.21 (12) | C10—C9—H9B | 109.4 |
O3—C4—C5 | 124.27 (14) | H9A—C9—H9B | 108.0 |
O3—C4—C6ii | 118.48 (14) | N1—C10—C9 | 108.84 (13) |
C5—C4—C6ii | 117.24 (12) | N1—C10—H10A | 109.9 |
C6—C5—C4 | 122.82 (13) | C9—C10—H10A | 109.9 |
C6—C5—Br2 | 119.20 (11) | N1—C10—H10B | 109.9 |
C4—C5—Br2 | 117.98 (10) | C9—C10—H10B | 109.9 |
O4—C6—C5 | 123.69 (14) | H10A—C10—H10B | 108.3 |
O4—C6—C4ii | 116.35 (13) | ||
O1—C1—C2—C3 | 177.30 (14) | C6ii—C4—C5—Br2 | −178.27 (10) |
C3i—C1—C2—C3 | −3.3 (2) | C4—C5—C6—O4 | −178.95 (14) |
O1—C1—C2—Br1 | −0.20 (19) | Br2—C5—C6—O4 | −0.2 (2) |
C3i—C1—C2—Br1 | 179.24 (9) | C4—C5—C6—C4ii | −0.5 (2) |
C1—C2—C3—O2 | −176.48 (14) | Br2—C5—C6—C4ii | 178.25 (10) |
Br1—C2—C3—O2 | 0.9 (2) | C10—N1—C7—C8 | −55.03 (17) |
C1—C2—C3—C1i | 3.3 (2) | C9—O5—C8—C7 | −62.46 (17) |
Br1—C2—C3—C1i | −179.29 (9) | N1—C7—C8—O5 | 58.77 (17) |
O3—C4—C5—C6 | −178.51 (15) | C8—O5—C9—C10 | 62.31 (18) |
C6ii—C4—C5—C6 | 0.5 (2) | C7—N1—C10—C9 | 54.35 (17) |
O3—C4—C5—Br2 | 2.7 (2) | O5—C9—C10—N1 | −57.76 (19) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.89 (3) | 2.02 (3) | 2.890 (2) | 167 (2) |
N1—H1B···O1iii | 0.86 (3) | 2.16 (3) | 2.938 (2) | 150 (2) |
N1—H1B···O2iv | 0.86 (3) | 2.28 (3) | 2.964 (2) | 136 (2) |
O2—H2···O4 | 0.82 (3) | 1.79 (4) | 2.5224 (16) | 148 (5) |
O2—H2···O3ii | 0.82 (3) | 2.55 (4) | 3.0678 (18) | 122 (4) |
O4—H4···O2 | 0.82 (3) | 1.80 (4) | 2.5224 (16) | 147 (4) |
C7—H7A···O4iv | 0.99 | 2.55 | 3.402 (2) | 145 |
C10—H10B···Br2v | 0.99 | 2.91 | 3.8946 (17) | 174 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.88 (3) | 2.03 (3) | 2.886 (2) | 166 (2) |
N1—H1B···O1i | 0.86 (3) | 2.16 (3) | 2.938 (2) | 150 (2) |
N1—H1B···O2ii | 0.86 (3) | 2.27 (3) | 2.955 (2) | 137 (2) |
O2—H2···O4 | 0.81 (3) | 1.77 (3) | 2.5160 (16) | 152 (4) |
O2—H2···O3iii | 0.81 (3) | 2.57 (3) | 3.0613 (17) | 120 (3) |
O4—H4···O2 | 0.82 (3) | 1.82 (4) | 2.5160 (16) | 143 (4) |
C7—H7A···O4ii | 0.99 | 2.53 | 3.391 (2) | 145 |
C10—H10B···Br2iv | 0.99 | 2.90 | 3.8892 (17) | 175 |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.86 (3) | 2.04 (3) | 2.888 (2) | 166 (2) |
N1—H1B···O1i | 0.85 (3) | 2.17 (3) | 2.938 (2) | 151 (2) |
N1—H1B···O2ii | 0.85 (3) | 2.29 (3) | 2.959 (2) | 136 (2) |
O2—H2···O4 | 0.82 (3) | 1.77 (3) | 2.5174 (16) | 153 (4) |
O2—H2···O3iii | 0.82 (3) | 2.58 (3) | 3.0628 (17) | 120 (3) |
O4—H4···O2 | 0.82 (3) | 1.79 (4) | 2.5174 (16) | 147 (4) |
C7—H7A···O4ii | 0.99 | 2.54 | 3.394 (2) | 145 |
C10—H10B···Br2iv | 0.99 | 2.90 | 3.8905 (17) | 175 |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.89 (3) | 2.02 (3) | 2.890 (2) | 167 (2) |
N1—H1B···O1i | 0.86 (3) | 2.16 (3) | 2.938 (2) | 150 (2) |
N1—H1B···O2ii | 0.86 (3) | 2.28 (3) | 2.964 (2) | 136 (2) |
O2—H2···O4 | 0.82 (3) | 1.79 (4) | 2.5224 (16) | 148 (5) |
O2—H2···O3iii | 0.82 (3) | 2.55 (4) | 3.0678 (18) | 122 (4) |
O4—H4···O2 | 0.82 (3) | 1.80 (4) | 2.5224 (16) | 147 (4) |
C7—H7A···O4ii | 0.99 | 2.55 | 3.402 (2) | 145 |
C10—H10B···Br2iv | 0.99 | 2.91 | 3.8946 (17) | 174 |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, −y, −z. |
Experimental details
130 K | 145 K | 180 K | |
Crystal data | |||
Chemical formula | C4H10NO+·C6HBr2O4− | C4H10NO+·C6HBr2O4− | C4H10NO+·C6HBr2O4− |
Mr | 385.01 | 385.01 | 385.01 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 |
a, b, c (Å) | 8.62046 (19), 9.2129 (2), 9.4257 (2) | 8.62293 (18), 9.21849 (19), 9.4354 (2) | 8.62824 (17), 9.23087 (18), 9.46007 (19) |
α, β, γ (°) | 93.5208 (7), 112.9139 (7), 115.9757 (7) | 93.5239 (7), 112.9190 (7), 115.9777 (7) | 93.5321 (7), 112.9738 (7), 115.9508 (7) |
V (Å3) | 595.05 (3) | 596.13 (3) | 598.67 (3) |
Z | 2 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 6.84 | 6.83 | 6.80 |
Crystal size (mm) | 0.40 × 0.34 × 0.18 | 0.40 × 0.34 × 0.18 | 0.40 × 0.34 × 0.18 |
Data collection | |||
Diffractometer | Rigaku R-AXIS RAPIDII diffractometer | Rigaku R-AXIS RAPIDII diffractometer | Rigaku R-AXIS RAPIDII diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) | Numerical (NUMABS; Higashi, 1999) | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.096, 0.292 | 0.098, 0.292 | 0.098, 0.294 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18162, 3468, 3183 | 18176, 3473, 3181 | 18199, 3487, 3188 |
Rint | 0.026 | 0.028 | 0.026 |
(sin θ/λ)max (Å−1) | 0.704 | 0.704 | 0.703 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.046, 1.14 | 0.018, 0.046, 1.10 | 0.019, 0.048, 1.09 |
No. of reflections | 3468 | 3473 | 3487 |
No. of parameters | 178 | 178 | 178 |
No. of restraints | 2 | 2 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.37 | 0.48, −0.44 | 0.59, −0.45 |
Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Horiuchi, S., Kumai, R., Tokunaga, Y. & Tokura, Y. (2008). J. Am. Chem. Soc. 130, 13382–13391. Web of Science CSD CrossRef PubMed CAS Google Scholar
Horiuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421–4434. Web of Science CSD CrossRef CAS Google Scholar
Horiuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492–4500. CSD CrossRef CAS PubMed Google Scholar
Ikeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241–1245. Web of Science CrossRef CAS Google Scholar
Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939. Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, L. H., Adam, M. S., O'Neill, A. & Wilson, C. C. (2013). Acta Cryst. C69, 1279–1288. CSD CrossRef IUCr Journals Google Scholar
Tobu, Y., Ikeda, R., Nihei, T., Gotoh, K., Ishida, H. & Asaji, T. (2012). Phys. Chem. Chem. Phys. 14, 12347–12354. CrossRef CAS PubMed Google Scholar
Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem. 66, 5987–5995. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.