research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1226-1229

Crystal structures of morpholinium hydrogen bromanilate at 130, 145 and 180 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 12 September 2015; accepted 16 September 2015; online 26 September 2015)

Crystal structures of the title compound (systematic name: morpholin-4-ium 2,5-di­bromo-4-hy­droxy-3,6-dioxo­cyclo­hexa-1,4-dien-1-olate), C4H10NO+·C6HBr2O4, were determined at three temperatures, viz. 130, 145 and 180 K. The asymmetric unit comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are located on inversion centres. The conformations of the two independent bromanilate anions are different from each other with respect to the O—H orientation. In the crystal, the two different anions are linked alternately into a chain along [211] through a short O—H⋯O hydrogen bond, in which the H atom is disordered over two positions. The refined site-occupancy ratios, which are almost constant in the temperature range studied, are 0.49 (3):0.51 (3), 0.52 (3):0.48 (3) and 0.50 (3):0.50 (3), respectively, at 130, 145 and 180 K, and no significant difference in the mol­ecular geometry and the mol­ecular packing is observed at the three temperatures. The morpholinium cation links adjacent chains of anions via N—H⋯O hydrogen bonds, forming a sheet structure parallel to (-111).

1. Chemical context

Anilic acid (2,5-dihy­droxy-1,4-benzo­quinone) derivatives, such as chloranilic acid (2,5-di­chloro-3,6-dihy­droxy-1,4-benzoqinone) and bromanilic acid (2,5-di­bromo-3,6-dihy­droxy-1,4-benzoqinone), appear particularly attractive as a versatile template for generating hydrogen-bonded self-assemblies with various organic bases (Zaman et al., 2001[Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem. 66, 5987-5995.]; Molčanov & Kojić-Prodić, 2010[Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925-939.]; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500-o504.]; Thomas et al., 2013[Thomas, L. H., Adam, M. S., O'Neill, A. & Wilson, C. C. (2013). Acta Cryst. C69, 1279-1288.]) and also as a model compound for investigating proton dynamics in hydrogen-bond systems (Ikeda et al., 2005[Ikeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241-1245.]; Seliger et al., 2009[Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281-2286.]). Furthermore, salts and co-crystals of anilic acids with organic bases have attracted much inter­est with respect to organic ferroelectrics (Horiuchi et al., 2008[Horiuchi, S., Kumai, R., Tokunaga, Y. & Tokura, Y. (2008). J. Am. Chem. Soc. 130, 13382-13391.], 2009[Horiuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421-4434.], 2013[Horiuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492-4500.]).

In our previous study, we reported the crystal structure of morpholinium hydrogen chloranilate, C4H10NO+·C6HCl2O4, in which a short O—H⋯O hydrogen bond is formed between the chloranilate ions and the H atom in the hydrogen bond is disordered over two sites (Ishida & Kashino, 1999[Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923-1926.]). The measurements of 35Cl NQR (nuclear quadrupole resonance) for the compound in the temperature range 4–300 K showed an anomalous temperature dependence of the NQR frequencies, which cannot be explained by the conventional Bayer-type lattice motion: one of the two frequencies exhibits an anomalous increase with increasing temperature from 4.2 K while the other frequency shows a rather fast decrease with temperature. The anomalous behavior was ascribed to a drastic temperature variation of the disordered O—H⋯O hydrogen bond, as revealed by multi-temperature X-ray diffraction (Tobu et al., 2012[Tobu, Y., Ikeda, R., Nihei, T., Gotoh, K., Ishida, H. & Asaji, T. (2012). Phys. Chem. Chem. Phys. 14, 12347-12354.]). In the present study, we have undertaken the structural determination of morpholinium hydrogen bromanilate, C4H10NO+·C6HBr2O4, to extend the study of hydrogen-bonding in the amine-halo­hydroxy­benzo­quinone system.

[Scheme 1]

2. Structural commentary

The title compound is isomorphous with morpholinium hydrogen chloranilate in the space group P[\overline{1}] (Ishida & Kashino, 1999[Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923-1926.]; Tobu et al., 2012[Tobu, Y., Ikeda, R., Nihei, T., Gotoh, K., Ishida, H. & Asaji, T. (2012). Phys. Chem. Chem. Phys. 14, 12347-12354.]) and has a quite similar mol­ecular packing to the chloranilate. The asymmetric unit of the title compound comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are each located on an inversion centre (Fig. 1[link]). The conformations of two bromanilate anions are different from each other with respect to the O—H orientation as shown schematically in Fig. 2[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound at 180 K, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The site-occupancy factors of the disordered H atom (H2 and H4) are approximately equal. The N—H⋯O and O—H⋯O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (iii) −x, −y + 1, −z; (v) −x + 2, −y + 2, −z + 1.]
[Figure 2]
Figure 2
Two conformations (A and B forms) of bromanilic acid with respect to the O—H orientation.

In morpholinium hydrogen chloranilate, the bond distances of C3—O2 and C6—O4, which are involved in the disordered O—H⋯O hydrogen bond, showed slight but systematic decrease and increase, respectively, with temperature [C3—O2: from 1.2994 (10) Å at 114 K to 1.2951 (10) Å at 180 K; C6—O4: from 1.290 (10) Å at 114 K to 1.2946 (10) at 180 K], which corresponds to population changes of the two disordered proton sites in the hydrogen bond (Tobu et al., 2012[Tobu, Y., Ikeda, R., Nihei, T., Gotoh, K., Ishida, H. & Asaji, T. (2012). Phys. Chem. Chem. Phys. 14, 12347-12354.]). In the present compound, however, the C3—O2 and C6—O4 bond lengths are almost constant [C3—O2: 1.2953 (17), 1.2937 (17) and 1.2931 (17) Å at 130, 145 and 180 K; C6—O4: 1.3002 (18), 1.2997 (18) and 1.2997 (18) Å at 130, 145 and 180 K] and no significant difference in the mol­ecular geometry is observed at the three temperatures.

3. Supra­molecular features

In the crystal, the two independent bromanilate anions with different conformations are linked alternately by short O—H⋯O hydrogen bonds (Tables 1[link], 2[link] and 3[link]), forming a chain along [211] (Fig. 3[link]). The adjacent independent anions are almost perpendicular to each other, with dihedral angles of 86.57 (7)° (130 K), 86.65 (7)° (145 K) and 86.81 (7)° (180 K) between the benzo­quinone rings. The morpholinium cation connects the anion chains through N—H⋯O hydrogen bonds and a weak C—H⋯O hydrogen bond into a sheet parallel to ([\overline{1}]11) (Fig. 4[link]). Between the chains, short Br⋯O and Br⋯C contacts [Br2⋯O1i: 3.1698 (13) Å (130 K), 3.1725 (13) Å (145 K) and 3.1763 (13) Å (180 K); Br2⋯C1i: 3.2673 (15) Å (130 K), 3.2716 (15) Å (145 K) and 3.2808 (15) Å (180 K); symmetry code: (i) x- 1, y − 1, z] are observed. A weak C—H⋯Br inter­action is also observed between the sheets.

Table 1
Hydrogen-bond geometry (Å, °) at 130 K[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 (3) 2.03 (3) 2.886 (2) 166 (2)
N1—H1B⋯O1i 0.86 (3) 2.16 (3) 2.938 (2) 150 (2)
N1—H1B⋯O2ii 0.86 (3) 2.27 (3) 2.955 (2) 137 (2)
O2—H2⋯O4 0.81 (3) 1.77 (3) 2.5160 (16) 152 (4)
O2—H2⋯O3iii 0.81 (3) 2.57 (3) 3.0613 (17) 120 (3)
O4—H4⋯O2 0.82 (3) 1.82 (4) 2.5160 (16) 143 (4)
C7—H7A⋯O4ii 0.99 2.53 3.391 (2) 145
C10—H10B⋯Br2iv 0.99 2.90 3.8892 (17) 175
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °) at 145 K[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.86 (3) 2.04 (3) 2.888 (2) 166 (2)
N1—H1B⋯O1i 0.85 (3) 2.17 (3) 2.938 (2) 151 (2)
N1—H1B⋯O2ii 0.85 (3) 2.29 (3) 2.959 (2) 136 (2)
O2—H2⋯O4 0.82 (3) 1.77 (3) 2.5174 (16) 153 (4)
O2—H2⋯O3iii 0.82 (3) 2.58 (3) 3.0628 (17) 120 (3)
O4—H4⋯O2 0.82 (3) 1.79 (4) 2.5174 (16) 147 (4)
C7—H7A⋯O4ii 0.99 2.54 3.394 (2) 145
C10—H10B⋯Br2iv 0.99 2.90 3.8905 (17) 175
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x, -y, -z.

Table 3
Hydrogen-bond geometry (Å, °) at 180 K[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 (3) 2.02 (3) 2.890 (2) 167 (2)
N1—H1B⋯O1i 0.86 (3) 2.16 (3) 2.938 (2) 150 (2)
N1—H1B⋯O2ii 0.86 (3) 2.28 (3) 2.964 (2) 136 (2)
O2—H2⋯O4 0.82 (3) 1.79 (4) 2.5224 (16) 148 (5)
O2—H2⋯O3iii 0.82 (3) 2.55 (4) 3.0678 (18) 122 (4)
O4—H4⋯O2 0.82 (3) 1.80 (4) 2.5224 (16) 147 (4)
C7—H7A⋯O4ii 0.99 2.55 3.402 (2) 145
C10—H10B⋯Br2iv 0.99 2.91 3.8946 (17) 174
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x, -y, -z.
[Figure 3]
Figure 3
A partial packing diagram of the title compound at 180 K, showing the hydrogen-bonded aggregate of morpholinium and hydrogen bromanilate ions. The N—H⋯O and O—H⋯O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) x − 1, y − 1, z; (ii) −x + 1, −y + 1, −z + 1.]
[Figure 4]
Figure 4
A packing diagram of the title compound at 180 K, showing the sheet structure formed through N—H⋯O and O—H⋯O hydrogen bonds (dashed lines). For the morpholinium cations, only NH2 groups are shown for clarity.

4. Database survey

Although a search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for organic salts and co-crystals with bromanilic acid gave 31 hits, no crystal structure including the A form (Fig. 2[link]) was found.

5. Synthesis and crystallization

Single crystals of the title compound suitable for X-ray diffraction were prepared by slow evaporation from an aceto­nitrile solution (200 ml) of bromanilic acid (200 mg) with morpholine (60 mg) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C-bound H atoms of the morpholinium cation were positioned geometrically with C—H = 0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined N—H = 0.85 (3)–0.89 (3) Å]. Two disordered positions of the H atom in the O—H⋯O hydrogen bond were located in a difference Fourier map. Since site occupancy factors and isotropic displacement parameters are correlated and bonding effects also make the site-occupancy factors less reliable, the positional parameters and the occupancies of the H atom were refined, with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å.

Table 4
Experimental details

  130 K 145 K 180 K
Crystal data
Chemical formula C4H10NO+·C6HBr2O4 C4H10NO+·C6HBr2O4 C4H10NO+·C6HBr2O4
Mr 385.01 385.01 385.01
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
a, b, c (Å) 8.62046 (19), 9.2129 (2), 9.4257 (2) 8.62293 (18), 9.21849 (19), 9.4354 (2) 8.62824 (17), 9.23087 (18), 9.46007 (19)
α, β, γ (°) 93.5208 (7), 112.9139 (7), 115.9757 (7) 93.5239 (7), 112.9190 (7), 115.9777 (7) 93.5321 (7), 112.9738 (7), 115.9508 (7)
V3) 595.05 (3) 596.13 (3) 598.67 (3)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 6.84 6.83 6.80
Crystal size (mm) 0.40 × 0.34 × 0.18 0.40 × 0.34 × 0.18 0.40 × 0.34 × 0.18
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.096, 0.292 0.098, 0.292 0.098, 0.294
No. of measured, independent and observed [I > 2σ(I)] reflections 18162, 3468, 3183 18176, 3473, 3181 18199, 3487, 3188
Rint 0.026 0.028 0.026
(sin θ/λ)max−1) 0.704 0.704 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.14 0.018, 0.046, 1.10 0.019, 0.048, 1.09
No. of reflections 3468 3473 3487
No. of parameters 178 178 178
No. of restraints 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.37 0.48, −0.44 0.59, −0.45
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Anilic acid (2,5-di­hydroxy-1,4-benzo­quinone) derivatives, such as chloranilic acid (2,5-di­chloro-3,6-di­hydroxy-1,4-benzoqinone) and bromanilic acid (2,5-di­bromo-3,6-di­hydroxy-1,4-benzoqinone), appear particularly attractive as a versatile template for generating hydrogen-bonded self-assemblies with various organic bases (Zaman et al., 2001; Molčanov & Kojić-Prodić, 2010; Gotoh & Ishida, 2011; Thomas et al., 2013) and also a model compound for investigating proton dynamics in hydrogen-bond systems (Ikeda et al., 2005; Seliger et al., 2009). Furthermore, salts and co-crystals of anilic acids with organic bases have attracted much inter­est with respect to organic ferroelectrics (Horiuchi et al., 2008, 2009, 2013).

In our previous study, we reported the crystal structure of morpholinium hydrogen chloranilate, C4H10NO+.C6HCl2O4-, in which a short O—H···O hydrogen bond is formed between the chloranilate ions and the H atom in the hydrogen bond is disordered over two sites (Ishida & Kashino, 1999). The measurements of 35Cl NQR (nuclear quadrupole resonance) for the compound in the temperature range 4–300 K showed an anomalous temperature dependence of the NQR frequencies, which cannot be explained by the conventional Bayer-type lattice motion: one of the two frequencies exhibits an anomalous increase with increasing temperature from 4.2 K while the other frequency shows a rather fast decrease with temperature. The anomalous behavior was ascribed to a drastic temperature variation of the disordered O—H···O hydrogen bond, as revealed by multi-temperature X-ray diffraction (Tobu et al., 2012). In the present study, we have undertaken the structural determination morpholinium hydrogen bromanilate, C4H10NO+.C6HBr2O4-, to extend the study of hydrogen-bonding in the amine-halo­hydroxy­benzo­quinone system.

Structural commentary top

The title compound is isomorphous with morpholinium hydrogen chloranilate in the space group P1 (Ishida & Kashino, 1999; Tobu et al., 2012) and has a quite similar molecular packing to the chloranilate. The asymmetric unit of the title compound comprises one morpholinium cation and two halves of crystallographically independent bromanilate monoanions, which are each located on an inversion centre (Fig. 1). The conformations of two bromanilate anions are different from each other with respect to the O—H orientation as shown schematically in Fig. 2.

In morpholinium hydrogen chloranilate, the bond distances of C3—O2 and C6—O4, which are involved in the disordered O—H···O hydrogen bond, showed slight but systematic decrease and increase, respectively, with temperature [C3—O2: from 1.2994 (10) Å at 114 K to 1.2951 (10) Å at 180 K; C6—O4: from 1.290 (10) Å at 114 K to 1.2946 (10) at 180 K], which corresponds to population changes of the two disordered proton sites in the hydrogen bond (Tobu et al., 2012). In the present compound, however, the C3—O2 and C6—O4 bond lengths are almost constant [C3—O2: 1.2953 (17), 1.2937 (17) and 1.2931 (17) Å at 130, 145 and 180 K; C6—O4: 1.3002 (18), 1.2997 (18) and 1.2997 (18) Å at 130, 145 and 180 K] and no significant difference in the molecular geometry is observed at the three temperatures.

Supra­molecular features top

In the crystal, the two independent bromanilate anions with different conformations are linked alternately by short O—H···O hydrogen bonds (Tables 1, 2 and 3), forming a chain along [211] (Fig. 3). The adjacent independent anions are almost perpendicular to each other, with dihedral angles of 86.57 (7)° (130 K), 86.65 (7)° (145 K) and 86.81 (7)° (180 K) between the benzo­quinone rings. The morpholinium cation connects the anion chains through N—H···O hydrogen bonds and a weak C—H···O hydrogen bond into a sheet parallel to (111) (Fig. 4). Between the chains, short Br···O and Br···C contacts [Br2···O1i: 3.1698 (13) Å (130 K), 3.1725 (13) Å (145 K) and 3.1763 (13) Å (180 K); Br2···C1i: 3.2673 (15) Å (130 K), 3.2716 (15) Å (145 K) and 3.2808 (15) Å (180 K); symmetry code: (i) x- 1, y-1, z] are observed. A weak C—H···Br inter­action is also observed between the sheets.

Database survey top

Although a search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) for organic salts and co-crystals with bromanilic acid gave 31 hits, no crystal structure including the A form (Fig. 2) was found.

Synthesis and crystallization top

Single crystals of the title compound suitable for X-ray diffraction were prepared by slow evaporation from an aceto­nitrile solution (200 ml) of bromanilic acid (200 mg) with morpholine (60 mg) at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. C-bound H atoms of the morpholinium cation were positioned geometrically with C—H = 0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined N—H = 0.85 (3)–0.89 (3) Å]. Two disordered positions of the H atom in the O—H···O hydrogen bond were located in a difference Fourier map. Since site occupancy factors and isotropic displacement parameters are correlated and bonding effects also make the site-occupancy factors less reliable, the positional parameters and the occupancies of the H atom were refined, with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å.

Related literature top

For related literature, see: Gotoh & Ishida (2011); Groom & Allen (2014); Horiuchi et al. (2008, 2009, 2013); Ikeda et al. (2005); Ishida & Kashino (1999): Molčanov et al. (2010); Seliger et al. (2009); Thomas et al. (2013); Tobu et al. (2012); Zaman et al. (2001).

Computing details top

For all compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (1); SHELXL2014/7 (Sheldrick, 2015) for (2), (3). For all compounds, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound at 180 K, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The site-occupancy factors of the disordered H atom (H2 and H4) are approximately equal. The N—H···O and O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (iii) -x, -y + 1, -z; (v) -x + 2, -y + 2, -z + 1.]
[Figure 2] Fig. 2. Two conformations (A and B forms) of bromanilic acid with respect to the O—H orientation.
[Figure 3] Fig. 3. A partial packing diagram of the title compound at 180 K, showing the hydrogen-bonded aggregate of morpholinium and hydrogen bromanilate ions. The N—H···O and O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) x - 1, y - 1, z; (ii) -x + 1, -y + 1, -z + 1.]
[Figure 4] Fig. 4. A packing diagram of the title compound at 180 K, showing the sheet structure formed through N—H···O and O—H···O hydrogen bonds (dashed lines). For the morpholinium cations, only NH2 groups are shown for clarity.
(1) Morpholin-4-ium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate top
Crystal data top
C4H10NO+·C6HBr2O4Z = 2
Mr = 385.01F(000) = 376.00
Triclinic, P1Dx = 2.149 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.62046 (19) ÅCell parameters from 15996 reflections
b = 9.2129 (2) Åθ = 3.0–30.1°
c = 9.4257 (2) ŵ = 6.84 mm1
α = 93.5208 (7)°T = 130 K
β = 112.9139 (7)°Block, brown
γ = 115.9757 (7)°0.40 × 0.34 × 0.18 mm
V = 595.05 (3) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3183 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.026
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1212
Tmin = 0.096, Tmax = 0.292k = 1212
18162 measured reflectionsl = 1313
3468 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0195P)2 + 0.3723P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.002
3468 reflectionsΔρmax = 0.50 e Å3
178 parametersΔρmin = 0.37 e Å3
Crystal data top
C4H10NO+·C6HBr2O4γ = 115.9757 (7)°
Mr = 385.01V = 595.05 (3) Å3
Triclinic, P1Z = 2
a = 8.62046 (19) ÅMo Kα radiation
b = 9.2129 (2) ŵ = 6.84 mm1
c = 9.4257 (2) ÅT = 130 K
α = 93.5208 (7)°0.40 × 0.34 × 0.18 mm
β = 112.9139 (7)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3468 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3183 reflections with I > 2σ(I)
Tmin = 0.096, Tmax = 0.292Rint = 0.026
18162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0172 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.50 e Å3
3468 reflectionsΔρmin = 0.37 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.75783 (2)0.69637 (2)0.16055 (2)0.01583 (4)
Br20.01546 (2)0.16774 (2)0.12333 (2)0.01833 (4)
O11.18246 (16)0.98222 (14)0.33171 (13)0.0166 (2)
O20.62026 (15)0.76781 (13)0.41041 (13)0.0157 (2)
H20.548 (5)0.699 (4)0.323 (3)0.023*0.49 (3)
O30.34652 (16)0.22816 (14)0.08651 (15)0.0209 (2)
O40.33771 (16)0.50578 (13)0.19213 (13)0.0164 (2)
H40.427 (5)0.603 (3)0.226 (5)0.025*0.51 (3)
O50.82461 (16)0.26388 (15)0.42254 (14)0.0201 (2)
N10.48737 (19)0.29440 (17)0.32853 (17)0.0170 (2)
C11.0924 (2)0.98617 (17)0.40452 (17)0.0123 (2)
C20.8902 (2)0.86739 (17)0.35299 (17)0.0124 (2)
C30.7974 (2)0.87220 (17)0.44093 (17)0.0126 (2)
C40.1856 (2)0.34950 (18)0.04567 (18)0.0146 (3)
C50.0041 (2)0.35821 (17)0.05629 (17)0.0139 (3)
C60.1730 (2)0.49677 (18)0.10262 (17)0.0145 (3)
C70.6812 (2)0.42756 (19)0.45862 (19)0.0176 (3)
H7A0.66390.48410.53930.021*
H7B0.74930.51300.41320.021*
C80.8010 (2)0.3481 (2)0.53723 (19)0.0188 (3)
H8A0.93040.43620.62290.023*
H8B0.73550.26690.58720.023*
C90.6388 (2)0.1307 (2)0.3035 (2)0.0206 (3)
H9A0.57500.05160.35570.025*
H9B0.65670.06810.22770.025*
C100.5099 (2)0.1976 (2)0.21215 (19)0.0196 (3)
H10A0.56900.27170.15430.023*
H10B0.38080.10320.13240.023*
H1A0.423 (3)0.342 (3)0.277 (3)0.023 (5)*
H1B0.422 (3)0.223 (3)0.367 (3)0.027 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01430 (7)0.01537 (7)0.01367 (7)0.00509 (6)0.00595 (5)0.00068 (5)
Br20.01566 (8)0.01334 (7)0.02186 (8)0.00595 (6)0.00607 (6)0.00785 (6)
O10.0150 (5)0.0183 (5)0.0179 (5)0.0075 (4)0.0102 (4)0.0046 (4)
O20.0100 (5)0.0154 (5)0.0166 (5)0.0031 (4)0.0059 (4)0.0020 (4)
O30.0129 (5)0.0152 (5)0.0277 (6)0.0040 (4)0.0065 (4)0.0072 (4)
O40.0122 (5)0.0129 (5)0.0182 (5)0.0048 (4)0.0036 (4)0.0037 (4)
O50.0151 (5)0.0241 (6)0.0217 (5)0.0117 (5)0.0073 (4)0.0036 (4)
N10.0139 (6)0.0193 (6)0.0223 (6)0.0101 (5)0.0096 (5)0.0109 (5)
C10.0117 (6)0.0115 (6)0.0141 (6)0.0063 (5)0.0056 (5)0.0052 (5)
C20.0109 (6)0.0119 (6)0.0120 (6)0.0047 (5)0.0044 (5)0.0022 (5)
C30.0106 (6)0.0122 (6)0.0145 (6)0.0064 (5)0.0045 (5)0.0049 (5)
C40.0152 (7)0.0125 (6)0.0155 (6)0.0060 (5)0.0080 (5)0.0028 (5)
C50.0147 (6)0.0115 (6)0.0153 (6)0.0062 (5)0.0070 (5)0.0048 (5)
C60.0158 (7)0.0129 (6)0.0133 (6)0.0058 (5)0.0072 (5)0.0023 (5)
C70.0180 (7)0.0161 (7)0.0198 (7)0.0090 (6)0.0093 (6)0.0052 (6)
C80.0170 (7)0.0231 (7)0.0167 (7)0.0118 (6)0.0064 (6)0.0052 (6)
C90.0189 (7)0.0171 (7)0.0232 (8)0.0099 (6)0.0068 (6)0.0032 (6)
C100.0174 (7)0.0182 (7)0.0179 (7)0.0086 (6)0.0043 (6)0.0019 (6)
Geometric parameters (Å, º) top
Br1—C21.8807 (14)C1—C3i1.5265 (19)
Br2—C51.8767 (14)C2—C31.368 (2)
O1—C11.2295 (18)C4—C51.445 (2)
O2—C31.2953 (17)C4—C6ii1.520 (2)
O2—H20.81 (3)C5—C61.362 (2)
O3—C41.2229 (18)C7—C81.511 (2)
O4—C61.3002 (18)C7—H7A0.9900
O4—H40.82 (3)C7—H7B0.9900
O5—C81.4212 (19)C8—H8A0.9900
O5—C91.428 (2)C8—H8B0.9900
N1—C71.492 (2)C9—C101.509 (2)
N1—C101.494 (2)C9—H9A0.9900
N1—H1A0.88 (3)C9—H9B0.9900
N1—H1B0.86 (3)C10—H10A0.9900
C1—C21.4407 (19)C10—H10B0.9900
C3—O2—H2118 (3)C5—C6—C4ii120.03 (13)
C6—O4—H4111 (3)N1—C7—C8109.20 (12)
C8—O5—C9109.71 (12)N1—C7—H7A109.8
C7—N1—C10110.91 (12)C8—C7—H7A109.8
C7—N1—H1A109.1 (14)N1—C7—H7B109.8
C10—N1—H1A108.4 (14)C8—C7—H7B109.8
C7—N1—H1B111.0 (15)H7A—C7—H7B108.3
C10—N1—H1B107.1 (15)O5—C8—C7110.61 (13)
H1A—N1—H1B110 (2)O5—C8—H8A109.5
O1—C1—C2124.43 (13)C7—C8—H8A109.5
O1—C1—C3i117.51 (13)O5—C8—H8B109.5
C2—C1—C3i118.06 (12)C7—C8—H8B109.5
C3—C2—C1122.59 (13)H8A—C8—H8B108.1
C3—C2—Br1120.39 (11)O5—C9—C10111.23 (13)
C1—C2—Br1116.98 (10)O5—C9—H9A109.4
O2—C3—C2127.82 (13)C10—C9—H9A109.4
O2—C3—C1i112.91 (12)O5—C9—H9B109.4
C2—C3—C1i119.28 (12)C10—C9—H9B109.4
O3—C4—C5124.23 (14)H9A—C9—H9B108.0
O3—C4—C6ii118.64 (13)N1—C10—C9108.70 (13)
C5—C4—C6ii117.13 (12)N1—C10—H10A109.9
C6—C5—C4122.84 (13)C9—C10—H10A109.9
C6—C5—Br2119.19 (11)N1—C10—H10B109.9
C4—C5—Br2117.97 (10)C9—C10—H10B109.9
O4—C6—C5123.65 (14)H10A—C10—H10B108.3
O4—C6—C4ii116.29 (13)
O1—C1—C2—C3177.29 (14)C6ii—C4—C5—Br2178.24 (10)
C3i—C1—C2—C33.3 (2)C4—C5—C6—O4178.83 (14)
O1—C1—C2—Br10.27 (19)Br2—C5—C6—O40.1 (2)
C3i—C1—C2—Br1179.12 (9)C4—C5—C6—C4ii0.5 (2)
C1—C2—C3—O2176.34 (14)Br2—C5—C6—C4ii178.22 (10)
Br1—C2—C3—O21.1 (2)C10—N1—C7—C854.86 (16)
C1—C2—C3—C1i3.4 (2)C9—O5—C8—C762.32 (16)
Br1—C2—C3—C1i179.16 (9)N1—C7—C8—O558.54 (17)
O3—C4—C5—C6178.49 (15)C8—O5—C9—C1062.50 (17)
C6ii—C4—C5—C60.5 (2)C7—N1—C10—C954.40 (17)
O3—C4—C5—Br22.7 (2)O5—C9—C10—N158.02 (17)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.88 (3)2.03 (3)2.886 (2)166 (2)
N1—H1B···O1iii0.86 (3)2.16 (3)2.938 (2)150 (2)
N1—H1B···O2iv0.86 (3)2.27 (3)2.955 (2)137 (2)
O2—H2···O40.81 (3)1.77 (3)2.5160 (16)152 (4)
O2—H2···O3ii0.81 (3)2.57 (3)3.0613 (17)120 (3)
O4—H4···O20.82 (3)1.82 (4)2.5160 (16)143 (4)
C7—H7A···O4iv0.992.533.391 (2)145
C10—H10B···Br2v0.992.903.8892 (17)175
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1; (v) x, y, z.
(2) top
Crystal data top
C4H10NO+·C6HBr2O4Z = 2
Mr = 385.01F(000) = 376.00
Triclinic, P1Dx = 2.145 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.62293 (18) ÅCell parameters from 15916 reflections
b = 9.21849 (19) Åθ = 3.0–30.1°
c = 9.4354 (2) ŵ = 6.83 mm1
α = 93.5239 (7)°T = 145 K
β = 112.9190 (7)°Block, brown
γ = 115.9777 (7)°0.40 × 0.34 × 0.18 mm
V = 596.13 (3) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3181 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.028
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1212
Tmin = 0.098, Tmax = 0.292k = 1212
18176 measured reflectionsl = 1313
3473 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.020P)2 + 0.3611P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3473 reflectionsΔρmax = 0.48 e Å3
178 parametersΔρmin = 0.44 e Å3
Crystal data top
C4H10NO+·C6HBr2O4γ = 115.9777 (7)°
Mr = 385.01V = 596.13 (3) Å3
Triclinic, P1Z = 2
a = 8.62293 (18) ÅMo Kα radiation
b = 9.21849 (19) ŵ = 6.83 mm1
c = 9.4354 (2) ÅT = 145 K
α = 93.5239 (7)°0.40 × 0.34 × 0.18 mm
β = 112.9190 (7)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3473 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3181 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.292Rint = 0.028
18176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0182 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.48 e Å3
3473 reflectionsΔρmin = 0.44 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.75812 (2)0.69658 (2)0.16087 (2)0.01737 (4)
Br20.01570 (2)0.16791 (2)0.12324 (2)0.02003 (5)
O11.18243 (15)0.98258 (14)0.33190 (13)0.0179 (2)
O20.62059 (15)0.76777 (13)0.41035 (13)0.0172 (2)
H20.547 (5)0.698 (4)0.323 (3)0.026*0.52 (3)
O30.34653 (16)0.22841 (14)0.08661 (15)0.0227 (2)
O40.33774 (15)0.50586 (13)0.19208 (13)0.0175 (2)
H40.430 (5)0.603 (3)0.231 (5)0.026*0.48 (3)
O50.82422 (16)0.26379 (15)0.42261 (14)0.0219 (2)
N10.48734 (19)0.29444 (17)0.32852 (17)0.0183 (2)
C11.0922 (2)0.98623 (17)0.40454 (17)0.0131 (2)
C20.8905 (2)0.86761 (17)0.35306 (17)0.0138 (2)
C30.7975 (2)0.87207 (17)0.44087 (17)0.0133 (2)
C40.1856 (2)0.34979 (18)0.04558 (17)0.0156 (3)
C50.0041 (2)0.35843 (17)0.05629 (17)0.0149 (3)
C60.1731 (2)0.49685 (18)0.10257 (17)0.0154 (3)
C70.6812 (2)0.42735 (19)0.45871 (19)0.0191 (3)
H7A0.66390.48390.53930.023*
H7B0.74950.51280.41350.023*
C80.8006 (2)0.3479 (2)0.53709 (19)0.0204 (3)
H8A0.93000.43580.62280.025*
H8B0.73490.26670.58680.025*
C90.6387 (2)0.1307 (2)0.3035 (2)0.0227 (3)
H9A0.57480.05150.35560.027*
H9B0.65670.06830.22780.027*
C100.5097 (2)0.1977 (2)0.21235 (19)0.0212 (3)
H10A0.56870.27160.15450.025*
H10B0.38060.10340.13270.025*
H1A0.425 (3)0.342 (3)0.278 (3)0.024 (5)*
H1B0.422 (3)0.224 (3)0.365 (3)0.030 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01574 (7)0.01685 (7)0.01495 (7)0.00556 (6)0.00658 (5)0.00055 (5)
Br20.01706 (8)0.01455 (7)0.02405 (8)0.00653 (6)0.00668 (6)0.00865 (6)
O10.0161 (5)0.0199 (5)0.0195 (5)0.0081 (4)0.0110 (4)0.0050 (4)
O20.0108 (5)0.0164 (5)0.0184 (5)0.0030 (4)0.0064 (4)0.0015 (4)
O30.0136 (5)0.0158 (5)0.0308 (6)0.0039 (4)0.0068 (5)0.0081 (4)
O40.0128 (5)0.0138 (5)0.0195 (5)0.0051 (4)0.0035 (4)0.0038 (4)
O50.0167 (5)0.0258 (6)0.0240 (6)0.0130 (5)0.0079 (4)0.0038 (5)
N10.0146 (6)0.0210 (6)0.0244 (7)0.0108 (5)0.0105 (5)0.0118 (5)
C10.0124 (6)0.0127 (6)0.0150 (6)0.0069 (5)0.0061 (5)0.0057 (5)
C20.0124 (6)0.0134 (6)0.0134 (6)0.0056 (5)0.0051 (5)0.0025 (5)
C30.0113 (6)0.0125 (6)0.0151 (6)0.0064 (5)0.0046 (5)0.0049 (5)
C40.0168 (7)0.0131 (6)0.0161 (6)0.0063 (5)0.0083 (5)0.0028 (5)
C50.0156 (6)0.0123 (6)0.0161 (6)0.0067 (5)0.0071 (5)0.0047 (5)
C60.0166 (7)0.0139 (6)0.0139 (6)0.0060 (5)0.0076 (5)0.0021 (5)
C70.0195 (7)0.0172 (7)0.0223 (7)0.0095 (6)0.0107 (6)0.0059 (6)
C80.0187 (7)0.0251 (7)0.0177 (7)0.0129 (6)0.0066 (6)0.0051 (6)
C90.0209 (7)0.0185 (7)0.0255 (8)0.0108 (6)0.0073 (6)0.0028 (6)
C100.0185 (7)0.0206 (7)0.0189 (7)0.0093 (6)0.0047 (6)0.0022 (6)
Geometric parameters (Å, º) top
Br1—C21.8807 (14)C1—C3i1.5282 (19)
Br2—C51.8775 (14)C2—C31.3684 (19)
O1—C11.2298 (17)C4—C51.446 (2)
O2—C31.2937 (17)C4—C6ii1.518 (2)
O2—H20.82 (3)C5—C61.363 (2)
O3—C41.2231 (18)C7—C81.509 (2)
O4—C61.2997 (18)C7—H7A0.9900
O4—H40.82 (3)C7—H7B0.9900
O5—C81.4201 (19)C8—H8A0.9900
O5—C91.428 (2)C8—H8B0.9900
N1—C71.492 (2)C9—C101.510 (2)
N1—C101.493 (2)C9—H9A0.9900
N1—H1A0.86 (3)C9—H9B0.9900
N1—H1B0.85 (3)C10—H10A0.9900
C1—C21.4377 (19)C10—H10B0.9900
C3—O2—H2118 (3)C5—C6—C4ii119.95 (13)
C6—O4—H4113 (3)N1—C7—C8109.23 (12)
C8—O5—C9109.77 (12)N1—C7—H7A109.8
C7—N1—C10110.93 (12)C8—C7—H7A109.8
C7—N1—H1A108.5 (14)N1—C7—H7B109.8
C10—N1—H1A108.6 (14)C8—C7—H7B109.8
C7—N1—H1B111.9 (16)H7A—C7—H7B108.3
C10—N1—H1B106.6 (15)O5—C8—C7110.62 (13)
H1A—N1—H1B110 (2)O5—C8—H8A109.5
O1—C1—C2124.48 (13)C7—C8—H8A109.5
O1—C1—C3i117.39 (12)O5—C8—H8B109.5
C2—C1—C3i118.13 (12)C7—C8—H8B109.5
C3—C2—C1122.62 (13)H8A—C8—H8B108.1
C3—C2—Br1120.30 (11)O5—C9—C10111.19 (13)
C1—C2—Br1117.03 (10)O5—C9—H9A109.4
O2—C3—C2127.87 (13)C10—C9—H9A109.4
O2—C3—C1i112.96 (12)O5—C9—H9B109.4
C2—C3—C1i119.17 (12)C10—C9—H9B109.4
O3—C4—C5124.23 (13)H9A—C9—H9B108.0
O3—C4—C6ii118.58 (13)N1—C10—C9108.74 (13)
C5—C4—C6ii117.19 (12)N1—C10—H10A109.9
C6—C5—C4122.86 (13)C9—C10—H10A109.9
C6—C5—Br2119.20 (11)N1—C10—H10B109.9
C4—C5—Br2117.92 (10)C9—C10—H10B109.9
O4—C6—C5123.68 (13)H10A—C10—H10B108.3
O4—C6—C4ii116.36 (12)
O1—C1—C2—C3177.25 (14)C6ii—C4—C5—Br2178.23 (10)
C3i—C1—C2—C33.4 (2)C4—C5—C6—O4178.92 (13)
O1—C1—C2—Br10.21 (19)Br2—C5—C6—O40.2 (2)
C3i—C1—C2—Br1179.18 (9)C4—C5—C6—C4ii0.6 (2)
C1—C2—C3—O2176.36 (13)Br2—C5—C6—C4ii178.19 (10)
Br1—C2—C3—O21.0 (2)C10—N1—C7—C854.81 (16)
C1—C2—C3—C1i3.4 (2)C9—O5—C8—C762.38 (16)
Br1—C2—C3—C1i179.22 (9)N1—C7—C8—O558.53 (17)
O3—C4—C5—C6178.65 (15)C8—O5—C9—C1062.43 (17)
C6ii—C4—C5—C60.5 (2)C7—N1—C10—C954.27 (17)
O3—C4—C5—Br22.6 (2)O5—C9—C10—N157.89 (18)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.86 (3)2.04 (3)2.888 (2)166 (2)
N1—H1B···O1iii0.85 (3)2.17 (3)2.938 (2)151 (2)
N1—H1B···O2iv0.85 (3)2.29 (3)2.959 (2)136 (2)
O2—H2···O40.82 (3)1.77 (3)2.5174 (16)153 (4)
O2—H2···O3ii0.82 (3)2.58 (3)3.0628 (17)120 (3)
O4—H4···O20.82 (3)1.79 (4)2.5174 (16)147 (4)
C7—H7A···O4iv0.992.543.394 (2)145
C10—H10B···Br2v0.992.903.8905 (17)175
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1; (v) x, y, z.
(3) top
Crystal data top
C4H10NO+·C6HBr2O4Z = 2
Mr = 385.01F(000) = 376.00
Triclinic, P1Dx = 2.136 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.62824 (17) ÅCell parameters from 15838 reflections
b = 9.23087 (18) Åθ = 3.0–30.1°
c = 9.46007 (19) ŵ = 6.80 mm1
α = 93.5321 (7)°T = 180 K
β = 112.9738 (7)°Block, brown
γ = 115.9508 (7)°0.40 × 0.34 × 0.18 mm
V = 598.67 (3) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3188 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.026
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1212
Tmin = 0.098, Tmax = 0.294k = 1212
18199 measured reflectionsl = 1313
3487 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.3489P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3487 reflectionsΔρmax = 0.59 e Å3
178 parametersΔρmin = 0.45 e Å3
Crystal data top
C4H10NO+·C6HBr2O4γ = 115.9508 (7)°
Mr = 385.01V = 598.67 (3) Å3
Triclinic, P1Z = 2
a = 8.62824 (17) ÅMo Kα radiation
b = 9.23087 (18) ŵ = 6.80 mm1
c = 9.46007 (19) ÅT = 180 K
α = 93.5321 (7)°0.40 × 0.34 × 0.18 mm
β = 112.9738 (7)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3487 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3188 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.294Rint = 0.026
18199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0192 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.59 e Å3
3487 reflectionsΔρmin = 0.45 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.75874 (2)0.69709 (2)0.16160 (2)0.02126 (5)
Br20.01629 (2)0.16834 (2)0.12298 (2)0.02440 (5)
O11.18225 (16)0.98340 (14)0.33207 (13)0.0212 (2)
O20.62107 (15)0.76749 (14)0.41043 (13)0.0205 (2)
H20.550 (6)0.702 (5)0.321 (3)0.031*0.50 (3)
O30.34638 (16)0.22923 (14)0.08655 (16)0.0275 (2)
O40.33726 (16)0.50565 (14)0.19202 (13)0.0209 (2)
H40.426 (5)0.604 (3)0.231 (5)0.031*0.50 (3)
O50.82325 (17)0.26349 (16)0.42251 (15)0.0266 (2)
N10.48719 (19)0.29464 (18)0.32897 (17)0.0216 (3)
C11.0921 (2)0.98669 (17)0.40464 (17)0.0155 (2)
C20.8904 (2)0.86771 (17)0.35338 (17)0.0158 (2)
C30.7977 (2)0.87190 (17)0.44099 (17)0.0157 (2)
C40.1853 (2)0.35010 (18)0.04556 (18)0.0185 (3)
C50.0045 (2)0.35849 (17)0.05607 (17)0.0175 (3)
C60.1728 (2)0.49667 (18)0.10245 (17)0.0180 (3)
C70.6809 (2)0.42714 (19)0.4585 (2)0.0227 (3)
H7A0.66390.48400.53890.027*
H7B0.74920.51220.41330.027*
C80.7997 (2)0.3474 (2)0.53683 (19)0.0250 (3)
H8A0.92910.43500.62260.030*
H8B0.73370.26620.58610.030*
C90.6381 (2)0.1310 (2)0.3036 (2)0.0272 (3)
H9A0.57420.05170.35520.033*
H9B0.65620.06900.22790.033*
C100.5094 (2)0.1980 (2)0.21303 (19)0.0252 (3)
H10A0.56830.27190.15540.030*
H10B0.38030.10400.13350.030*
H1A0.424 (3)0.344 (3)0.277 (2)0.025 (5)*
H1B0.422 (3)0.223 (3)0.367 (3)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01905 (8)0.02063 (8)0.01805 (7)0.00654 (6)0.00783 (6)0.00043 (5)
Br20.02061 (8)0.01771 (7)0.02936 (9)0.00800 (6)0.00791 (6)0.01079 (6)
O10.0192 (5)0.0234 (5)0.0227 (5)0.0093 (4)0.0131 (4)0.0057 (4)
O20.0128 (5)0.0201 (5)0.0215 (5)0.0035 (4)0.0076 (4)0.0019 (4)
O30.0161 (5)0.0194 (5)0.0374 (7)0.0049 (4)0.0080 (5)0.0101 (5)
O40.0151 (5)0.0166 (5)0.0230 (5)0.0061 (4)0.0039 (4)0.0046 (4)
O50.0192 (5)0.0314 (6)0.0295 (6)0.0151 (5)0.0094 (5)0.0045 (5)
N10.0171 (6)0.0245 (6)0.0290 (7)0.0129 (5)0.0123 (5)0.0141 (6)
C10.0148 (6)0.0147 (6)0.0180 (6)0.0076 (5)0.0079 (5)0.0069 (5)
C20.0141 (6)0.0144 (6)0.0159 (6)0.0057 (5)0.0062 (5)0.0027 (5)
C30.0133 (6)0.0155 (6)0.0180 (6)0.0076 (5)0.0064 (5)0.0061 (5)
C40.0181 (7)0.0155 (6)0.0197 (6)0.0065 (5)0.0092 (5)0.0034 (5)
C50.0175 (6)0.0141 (6)0.0192 (6)0.0073 (5)0.0078 (5)0.0053 (5)
C60.0188 (7)0.0164 (6)0.0166 (6)0.0071 (5)0.0086 (5)0.0030 (5)
C70.0231 (7)0.0208 (7)0.0259 (7)0.0111 (6)0.0129 (6)0.0066 (6)
C80.0219 (7)0.0308 (8)0.0218 (7)0.0150 (7)0.0080 (6)0.0061 (6)
C90.0250 (8)0.0217 (7)0.0317 (8)0.0129 (7)0.0095 (7)0.0036 (6)
C100.0218 (7)0.0243 (7)0.0220 (7)0.0108 (6)0.0051 (6)0.0025 (6)
Geometric parameters (Å, º) top
Br1—C21.8803 (14)C1—C3i1.5283 (19)
Br2—C51.8769 (14)C2—C31.367 (2)
O1—C11.2299 (17)C4—C51.442 (2)
O2—C31.2931 (17)C4—C6ii1.519 (2)
O2—H20.82 (3)C5—C61.363 (2)
O3—C41.2229 (18)C7—C81.509 (2)
O4—C61.2997 (18)C7—H7A0.9900
O4—H40.82 (3)C7—H7B0.9900
O5—C81.420 (2)C8—H8A0.9900
O5—C91.425 (2)C8—H8B0.9900
N1—C71.490 (2)C9—C101.508 (2)
N1—C101.493 (2)C9—H9A0.9900
N1—H1A0.89 (3)C9—H9B0.9900
N1—H1B0.86 (3)C10—H10A0.9900
C1—C21.4394 (19)C10—H10B0.9900
C3—O2—H2117 (3)C5—C6—C4ii119.94 (13)
C6—O4—H4111 (3)N1—C7—C8109.14 (13)
C8—O5—C9109.83 (12)N1—C7—H7A109.9
C7—N1—C10110.85 (12)C8—C7—H7A109.9
C7—N1—H1A108.4 (14)N1—C7—H7B109.9
C10—N1—H1A108.2 (14)C8—C7—H7B109.9
C7—N1—H1B111.2 (14)H7A—C7—H7B108.3
C10—N1—H1B106.4 (14)O5—C8—C7110.51 (13)
H1A—N1—H1B112 (2)O5—C8—H8A109.5
O1—C1—C2124.51 (13)C7—C8—H8A109.5
O1—C1—C3i117.41 (12)O5—C8—H8B109.5
C2—C1—C3i118.08 (12)C7—C8—H8B109.5
C3—C2—C1122.63 (13)H8A—C8—H8B108.1
C3—C2—Br1120.43 (11)O5—C9—C10111.18 (13)
C1—C2—Br1116.90 (10)O5—C9—H9A109.4
O2—C3—C2127.81 (13)C10—C9—H9A109.4
O2—C3—C1i112.98 (12)O5—C9—H9B109.4
C2—C3—C1i119.21 (12)C10—C9—H9B109.4
O3—C4—C5124.27 (14)H9A—C9—H9B108.0
O3—C4—C6ii118.48 (14)N1—C10—C9108.84 (13)
C5—C4—C6ii117.24 (12)N1—C10—H10A109.9
C6—C5—C4122.82 (13)C9—C10—H10A109.9
C6—C5—Br2119.20 (11)N1—C10—H10B109.9
C4—C5—Br2117.98 (10)C9—C10—H10B109.9
O4—C6—C5123.69 (14)H10A—C10—H10B108.3
O4—C6—C4ii116.35 (13)
O1—C1—C2—C3177.30 (14)C6ii—C4—C5—Br2178.27 (10)
C3i—C1—C2—C33.3 (2)C4—C5—C6—O4178.95 (14)
O1—C1—C2—Br10.20 (19)Br2—C5—C6—O40.2 (2)
C3i—C1—C2—Br1179.24 (9)C4—C5—C6—C4ii0.5 (2)
C1—C2—C3—O2176.48 (14)Br2—C5—C6—C4ii178.25 (10)
Br1—C2—C3—O20.9 (2)C10—N1—C7—C855.03 (17)
C1—C2—C3—C1i3.3 (2)C9—O5—C8—C762.46 (17)
Br1—C2—C3—C1i179.29 (9)N1—C7—C8—O558.77 (17)
O3—C4—C5—C6178.51 (15)C8—O5—C9—C1062.31 (18)
C6ii—C4—C5—C60.5 (2)C7—N1—C10—C954.35 (17)
O3—C4—C5—Br22.7 (2)O5—C9—C10—N157.76 (19)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.89 (3)2.02 (3)2.890 (2)167 (2)
N1—H1B···O1iii0.86 (3)2.16 (3)2.938 (2)150 (2)
N1—H1B···O2iv0.86 (3)2.28 (3)2.964 (2)136 (2)
O2—H2···O40.82 (3)1.79 (4)2.5224 (16)148 (5)
O2—H2···O3ii0.82 (3)2.55 (4)3.0678 (18)122 (4)
O4—H4···O20.82 (3)1.80 (4)2.5224 (16)147 (4)
C7—H7A···O4iv0.992.553.402 (2)145
C10—H10B···Br2v0.992.913.8946 (17)174
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1; (v) x, y, z.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.88 (3)2.03 (3)2.886 (2)166 (2)
N1—H1B···O1i0.86 (3)2.16 (3)2.938 (2)150 (2)
N1—H1B···O2ii0.86 (3)2.27 (3)2.955 (2)137 (2)
O2—H2···O40.81 (3)1.77 (3)2.5160 (16)152 (4)
O2—H2···O3iii0.81 (3)2.57 (3)3.0613 (17)120 (3)
O4—H4···O20.82 (3)1.82 (4)2.5160 (16)143 (4)
C7—H7A···O4ii0.992.533.391 (2)145
C10—H10B···Br2iv0.992.903.8892 (17)175
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.86 (3)2.04 (3)2.888 (2)166 (2)
N1—H1B···O1i0.85 (3)2.17 (3)2.938 (2)151 (2)
N1—H1B···O2ii0.85 (3)2.29 (3)2.959 (2)136 (2)
O2—H2···O40.82 (3)1.77 (3)2.5174 (16)153 (4)
O2—H2···O3iii0.82 (3)2.58 (3)3.0628 (17)120 (3)
O4—H4···O20.82 (3)1.79 (4)2.5174 (16)147 (4)
C7—H7A···O4ii0.992.543.394 (2)145
C10—H10B···Br2iv0.992.903.8905 (17)175
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.89 (3)2.02 (3)2.890 (2)167 (2)
N1—H1B···O1i0.86 (3)2.16 (3)2.938 (2)150 (2)
N1—H1B···O2ii0.86 (3)2.28 (3)2.964 (2)136 (2)
O2—H2···O40.82 (3)1.79 (4)2.5224 (16)148 (5)
O2—H2···O3iii0.82 (3)2.55 (4)3.0678 (18)122 (4)
O4—H4···O20.82 (3)1.80 (4)2.5224 (16)147 (4)
C7—H7A···O4ii0.992.553.402 (2)145
C10—H10B···Br2iv0.992.913.8946 (17)174
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z.

Experimental details

130 K145 K180 K
Crystal data
Chemical formulaC4H10NO+·C6HBr2O4C4H10NO+·C6HBr2O4C4H10NO+·C6HBr2O4
Mr385.01385.01385.01
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
a, b, c (Å)8.62046 (19), 9.2129 (2), 9.4257 (2)8.62293 (18), 9.21849 (19), 9.4354 (2)8.62824 (17), 9.23087 (18), 9.46007 (19)
α, β, γ (°)93.5208 (7), 112.9139 (7), 115.9757 (7)93.5239 (7), 112.9190 (7), 115.9777 (7)93.5321 (7), 112.9738 (7), 115.9508 (7)
V3)595.05 (3)596.13 (3)598.67 (3)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)6.846.836.80
Crystal size (mm)0.40 × 0.34 × 0.180.40 × 0.34 × 0.180.40 × 0.34 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Rigaku R-AXIS RAPIDII
diffractometer
Rigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Numerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.096, 0.2920.098, 0.2920.098, 0.294
No. of measured, independent and
observed [I > 2σ(I)] reflections
18162, 3468, 3183 18176, 3473, 3181 18199, 3487, 3188
Rint0.0260.0280.026
(sin θ/λ)max1)0.7040.7040.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.14 0.018, 0.046, 1.10 0.019, 0.048, 1.09
No. of reflections346834733487
No. of parameters178178178
No. of restraints222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.370.48, 0.440.59, 0.45

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHoriuchi, S., Kumai, R., Tokunaga, Y. & Tokura, Y. (2008). J. Am. Chem. Soc. 130, 13382–13391.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421–4434.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2013). J. Am. Chem. Soc. 135, 4492–4500.  CSD CrossRef CAS PubMed Google Scholar
First citationIkeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241–1245.  Web of Science CrossRef CAS Google Scholar
First citationIshida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, L. H., Adam, M. S., O'Neill, A. & Wilson, C. C. (2013). Acta Cryst. C69, 1279–1288.  CSD CrossRef IUCr Journals Google Scholar
First citationTobu, Y., Ikeda, R., Nihei, T., Gotoh, K., Ishida, H. & Asaji, T. (2012). Phys. Chem. Chem. Phys. 14, 12347–12354.  CrossRef CAS PubMed Google Scholar
First citationZaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem. 66, 5987–5995.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1226-1229
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds