metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m177-m178

Crystal structure of tris­­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) tetra­bromido­cobaltate(II) bromide chloro­form hexa­solvate

CROSSMARK_Color_square_no_text.svg

aDepartment Chemie, Universität Paderborn, Warburgerstrasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de, rene.wilhelm@upb.de

Edited by M. Nieger, University of Helsinki, Finland (Received 13 August 2015; accepted 31 August 2015; online 12 September 2015)

In the unit cell of the title compound, (C21H27N2)3[CoBr4]Br·6CHCl3, the tetrabromidocobaltate(II) anion and the bromide anion are located on a crystallographic threefold rotation axis. For the [CoBr4]2− group, the axis runs through one of the Br ligands and the CoII atom. All other structure moieties lie on general sites. Various tris­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) structures with different counter-ions have been reported. In the title compound, the N—C—N angle is 113.7 (5)°, with short C—N bond lengths of 1.297 (7) and 1.307 (7) Å. The two mesityl planes make a dihedral angle of 34.6 (1)° and the dihedral angles between the mesityl and N–C–N planes are 82.0 (1) and 88.5 (1)°, respectively. The imidazoline ring is almost planar, with atom deviations in the range 0.003 (5)–0.017 (5) Å from the best plane; the mean deviation is 0.012 (5) Å. In the crystal, non-covalent inter­actions of the C—H⋯Br type occur between the Br anion and the cation, as well as between the [CoBr4]2− anion and both the chloro­form solvent mol­ecules. These H⋯A distances are slightly shorter than the sum of van der Waals radii.

1. Related literature

For similar tris­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) structures, see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.]); Hagos et al. (2008[Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.]); Santoro et al. (2013[Santoro, O., Collado, A., Slawin, A. M. Z., Nolan, S. P. & Cazin, C. S. J. (2013). Chem. Commun. 49, 10483-10485.]); Buchalski et al. (2015[Buchalski, P., Pacholski, R., Chodkiewicz, K., Buchowicz, W., Suwińska, K. & Shkurenko, A. (2015). Dalton Trans. 44, 7169-7176.]). For synthesis of 2-bromo-1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium bromide, see: Wiggins et al. (2012[Wiggins, K. M., Moerdyk, J. P. & Bielawski, C. W. (2012). Chem. Sci. 3, 2986-2992.]). For the application of 1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium cation as a carbene precursor, see: Díez-González et al. (2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]). For catalytic application of imidazolium based [CoCl4]2− salts, see: Bica & Gärtner (2008[Bica, K. & Gärtner, P. (2008). Eur. J. Org. Chem. 2008, 3453-3456.]); Wang et al. (2015[Wang, Q., Geng, Y., Lu, X. & Zhang, S. (2015). ACS Sustainable Chem. Eng. 3, 340-348.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C21H27N2)3[CoBr4]Br·6CHCl3

  • Mr = 2097.02

  • Trigonal, R 3c :H

  • a = 16.0535 (14) Å

  • c = 61.790 (12) Å

  • V = 13791 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 130 K

  • 0.22 × 0.21 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.279, Tmax = 1.0

  • 41734 measured reflections

  • 7309 independent reflections

  • 4427 reflections with I > 2σ(I)

  • Rint = 0.077

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.078

  • S = 0.79

  • 7309 reflections

  • 306 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.65 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1821 Friedel pairs

  • Absolute structure parameter: 0.020 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br3ii 0.95 2.58 3.373 (4) 141
C100—H10⋯Br1i 1.00 2.71 3.668 (5) 161
C200—H20⋯Br2iii 1.00 2.54 3.454 (6) 152
Symmetry codes: (i) -x+y+1, -x+1, z; (ii) x, y-1, z; (iii) [-y+{\script{1\over 3}}, -x+{\script{5\over 3}}, z-{\script{5\over 6}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Synthesis and crystallization top

All manipulations were carried out under nitro­gen atmosphere using standard Schlenk techniques. MeCN was dried with an MBRAUN MB SPS-800 solvent purification system under nitro­gen. CHCl3 was dried over activated molecular sieve with 3 Å pore diameter. 2-Bromo-1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium bromide (0.080 g, 0.172 mmol, 1 eq) and Cobalt powder (0.227 g, 3.852 mmol, 22 eq, grain size < 150 µm) were filled into a sealed schlenk tube equipped with a stirring bar. MeCN (3 mL) was added and the mixture was stirred and heated at 100 °C for 40 h under inert gas. The cooled down mixture was filtrated and the solvent was then removed under vacuum. The residual brown oil was separated by decantation and was dissolved in CHCl3 (0.7 mL). Crystal growth could be observed after one day. The NMR spectra are not suitable because of the paramagnetic properties of the [CoBr4]2- anion.

Refinement top

Hydrogen atom positions were clearly derived from difference Fourier maps and then refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(-CH3) and C–H 0.95-1.00 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip. It was not possible to refine a satisfactory split model for the C100–chloro­form.

Chemical Context top

The cation is a common precursor for the synthesis of 1,3-dimesityl-4,5-di­hydro­imidazol-2-yl­idene, which is used as a ligand in various catalytic applications (Díez-González et al., 2009). Alkyl-substituted imidazolium cations with [CoX4]2- anions (X = Cl, Br) are used as metal-containing ionic liquids (Bica & Gaertner, 2008; Wang et al., 2015).

Related literature top

For similar tris(1,3-dimesityl-4,5-dihydro-1H-imidazol-3-ium) structures, see: Arduengo et al. (1995); Hagos et al. (2008); Santoro et al. (2013); Buchalski et al. (2015). For synthesis of 2-bromo-1,3-dimesityl-4,5-dihydro-1H-imidazol-3-ium bromide, see: Wiggins et al. (2012). For the application of 1,3-dimesityl-4,5-dihydro-1H-imidazol-3-ium cation as a carbene precursor, see: Díez-González et al. (2009). For catalytic application of imidazolium based [CoCl4]2- salts, see: Bica & Gaertner (2008); Wang et al. (2015).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. Non-stoichiometric representation.
[Figure 2] Fig. 2. Crystal packing approximately viewed along a axis with intermolecular hydrogen bonding pattern drawn as dotted lines. H-atoms not involved are omitted.
Tris(1,3-dimesityl-4,5-dihydro-1H-imidazol-3-ium) tetrabromidocobaltate(II) bromide chloroform hexasolvate top
Crystal data top
(C21H27N2)3[CoBr4]Br·6CHCl3Dx = 1.515 Mg m3
Mr = 2097.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 4234 reflections
a = 16.0535 (14) Åθ = 2.5–19.7°
c = 61.790 (12) ŵ = 2.92 mm1
V = 13791 (4) Å3T = 130 K
Z = 6Prism, pale-green
F(000) = 63060.22 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
7309 independent reflections
Radiation source: sealed tube4427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
φ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2121
Tmin = 0.279, Tmax = 1.0k = 2119
41734 measured reflectionsl = 8181
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max = 0.001
7309 reflectionsΔρmax = 0.65 e Å3
306 parametersΔρmin = 0.64 e Å3
1 restraintAbsolute structure: Flack (1983), 1821 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (11)
Crystal data top
(C21H27N2)3[CoBr4]Br·6CHCl3Z = 6
Mr = 2097.02Mo Kα radiation
Trigonal, R3c:Hµ = 2.92 mm1
a = 16.0535 (14) ÅT = 130 K
c = 61.790 (12) Å0.22 × 0.21 × 0.20 mm
V = 13791 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
7309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4427 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 1.0Rint = 0.077
41734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.65 e Å3
S = 0.79Δρmin = 0.64 e Å3
7309 reflectionsAbsolute structure: Flack (1983), 1821 Friedel pairs
306 parametersAbsolute structure parameter: 0.020 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.66670.33330.91225 (2)0.0290 (3)
Br10.77035 (4)0.49648 (5)0.92389 (2)0.04336 (19)
Br20.66670.33330.87362 (2)0.0630 (4)
Br30.33330.66670.91594 (3)0.0524 (4)
N10.4682 (3)0.0461 (3)0.90279 (8)0.0296 (12)
N20.4612 (3)0.0455 (3)0.93802 (8)0.0281 (12)
C10.4610 (4)0.0918 (4)0.92081 (10)0.0292 (14)
H1A0.45610.15330.92130.035*
C20.4754 (4)0.0476 (4)0.90750 (10)0.0338 (16)
H2A0.42250.05260.90050.041*
H2B0.53780.10170.90260.041*
C30.4669 (4)0.0462 (4)0.93224 (9)0.0270 (14)
H3A0.52390.10150.93890.032*
H3B0.40820.04720.93680.032*
C40.4725 (4)0.0782 (4)0.88091 (10)0.0319 (15)
C50.5614 (5)0.0511 (5)0.87196 (13)0.049 (2)
C60.5625 (6)0.0800 (5)0.85046 (12)0.055 (2)
H6A0.62220.06210.84370.065*
C70.4769 (7)0.1346 (6)0.83901 (12)0.054 (2)
C80.3921 (6)0.1592 (5)0.84898 (11)0.0464 (18)
H8A0.33400.19640.84120.056*
C90.3867 (5)0.1327 (4)0.86980 (11)0.0375 (16)
C100.6534 (5)0.0048 (6)0.88517 (16)0.087 (3)
H10A0.65250.03460.89740.130*
H10B0.65770.06410.89070.130*
H10C0.70920.02100.87600.130*
C110.4845 (7)0.1602 (6)0.81586 (12)0.080 (3)
H11A0.54140.16730.81430.120*
H11B0.49020.10900.80620.120*
H11C0.42680.22090.81200.120*
C120.2910 (5)0.1610 (5)0.87956 (12)0.0503 (19)
H12A0.24050.19470.86870.075*
H12B0.29020.10320.88440.075*
H12C0.27950.20350.89190.075*
C130.4495 (4)0.0797 (4)0.96013 (10)0.0293 (14)
C140.5308 (4)0.0439 (4)0.97348 (11)0.0356 (16)
C150.5164 (5)0.0718 (4)0.99472 (11)0.0395 (17)
H15A0.57070.04791.00400.047*
C160.4255 (5)0.1339 (4)1.00332 (11)0.0403 (17)
C170.3468 (5)0.1667 (5)0.98966 (12)0.0454 (19)
H17A0.28450.20910.99530.055*
C180.3559 (5)0.1394 (4)0.96770 (12)0.0378 (16)
C190.6300 (4)0.0195 (5)0.96462 (11)0.0487 (19)
H19A0.63320.07600.95770.073*
H19B0.64470.01630.95390.073*
H19C0.67690.04030.97640.073*
C200.4143 (6)0.1603 (5)1.02691 (12)0.059 (2)
H20A0.42420.21531.02900.089*
H20B0.34950.17741.03170.089*
H20C0.46200.10541.03540.089*
C210.2699 (4)0.1763 (5)0.95317 (12)0.0503 (19)
H21A0.27250.21950.94230.076*
H21B0.26980.12210.94590.076*
H21C0.21110.21160.96180.076*
C1000.8893 (6)0.1327 (6)0.92865 (13)0.070 (3)
H100.83620.14550.92480.084*
Cl110.91290 (19)0.1546 (2)0.95548 (4)0.0938 (8)
Cl120.8521 (2)0.0149 (2)0.92250 (7)0.1562 (18)
Cl130.9911 (3)0.2121 (2)0.91398 (5)0.1293 (12)
C2000.0704 (6)0.8507 (6)0.01629 (18)0.091 (3)
H200.07490.90660.02450.109*
Cl210.1365 (2)0.8900 (2)0.00698 (6)0.1410 (14)
Cl220.11836 (19)0.7912 (2)0.03238 (5)0.1032 (9)
Cl230.05036 (16)0.76626 (15)0.01124 (4)0.0790 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0214 (5)0.0214 (5)0.0440 (10)0.0107 (2)0.0000.000
Br10.0253 (3)0.0267 (3)0.0769 (5)0.0121 (3)0.0062 (4)0.0129 (3)
Br20.0687 (6)0.0687 (6)0.0515 (9)0.0344 (3)0.0000.000
Br30.0263 (4)0.0263 (4)0.1045 (11)0.01314 (19)0.0000.000
N10.030 (3)0.027 (3)0.033 (3)0.015 (2)0.001 (2)0.004 (2)
N20.032 (3)0.026 (3)0.028 (3)0.016 (2)0.003 (2)0.000 (2)
C10.023 (3)0.024 (3)0.034 (4)0.007 (3)0.002 (3)0.002 (3)
C20.032 (4)0.025 (3)0.046 (5)0.015 (3)0.004 (3)0.004 (3)
C30.031 (3)0.027 (3)0.027 (4)0.017 (3)0.001 (3)0.005 (3)
C40.041 (4)0.024 (3)0.031 (4)0.016 (3)0.004 (3)0.004 (3)
C50.051 (5)0.034 (4)0.065 (6)0.023 (4)0.013 (4)0.001 (4)
C60.072 (6)0.049 (5)0.056 (6)0.041 (4)0.036 (5)0.017 (4)
C70.092 (6)0.056 (5)0.037 (5)0.055 (5)0.005 (5)0.002 (4)
C80.062 (5)0.056 (5)0.029 (4)0.034 (4)0.001 (4)0.007 (4)
C90.052 (4)0.032 (4)0.031 (4)0.023 (3)0.005 (3)0.003 (3)
C100.029 (4)0.098 (7)0.125 (9)0.026 (5)0.007 (5)0.044 (6)
C110.149 (9)0.094 (7)0.044 (6)0.095 (7)0.010 (5)0.005 (5)
C120.043 (4)0.047 (4)0.050 (5)0.014 (4)0.009 (4)0.015 (4)
C130.037 (4)0.020 (3)0.032 (4)0.015 (3)0.004 (3)0.002 (3)
C140.039 (4)0.027 (3)0.039 (5)0.015 (3)0.001 (3)0.010 (3)
C150.047 (4)0.040 (4)0.035 (5)0.024 (4)0.000 (3)0.007 (3)
C160.060 (5)0.034 (4)0.034 (4)0.030 (4)0.005 (4)0.004 (3)
C170.052 (5)0.036 (4)0.045 (5)0.021 (4)0.028 (4)0.011 (4)
C180.041 (4)0.027 (4)0.046 (5)0.017 (3)0.005 (3)0.005 (3)
C190.034 (4)0.050 (4)0.050 (5)0.012 (4)0.001 (3)0.007 (4)
C200.073 (6)0.052 (5)0.052 (5)0.030 (4)0.019 (4)0.021 (4)
C210.035 (4)0.050 (4)0.058 (5)0.015 (4)0.011 (4)0.000 (4)
C1000.076 (6)0.086 (6)0.074 (7)0.061 (6)0.032 (5)0.030 (5)
Cl110.106 (2)0.119 (2)0.0673 (17)0.0651 (18)0.0027 (14)0.0048 (15)
Cl120.159 (3)0.107 (2)0.248 (5)0.101 (2)0.115 (3)0.096 (3)
Cl130.192 (3)0.165 (3)0.115 (2)0.153 (3)0.073 (2)0.067 (2)
C2000.061 (6)0.049 (5)0.147 (10)0.016 (5)0.028 (6)0.021 (6)
Cl210.128 (3)0.114 (2)0.181 (4)0.060 (2)0.098 (3)0.067 (2)
Cl220.096 (2)0.0933 (19)0.107 (2)0.0379 (16)0.0029 (17)0.0331 (17)
Cl230.0694 (15)0.0597 (14)0.0825 (17)0.0131 (12)0.0122 (13)0.0093 (12)
Geometric parameters (Å, º) top
Co1—Br22.387 (2)C11—H11C0.9800
Co1—Br12.4057 (8)C12—H12A0.9800
Co1—Br1i2.4057 (8)C12—H12B0.9800
Co1—Br1ii2.4057 (8)C12—H12C0.9800
N1—C11.307 (7)C13—C181.397 (8)
N1—C41.460 (7)C13—C141.402 (8)
N1—C21.479 (7)C14—C151.368 (8)
N2—C11.297 (7)C14—C191.500 (8)
N2—C131.449 (7)C15—C161.397 (9)
N2—C31.472 (7)C15—H15A0.9500
C1—H1A0.9500C16—C171.386 (10)
C2—C31.534 (8)C16—C201.504 (9)
C2—H2A0.9900C17—C181.411 (9)
C2—H2B0.9900C17—H17A0.9500
C3—H3A0.9900C18—C211.499 (9)
C3—H3B0.9900C19—H19A0.9800
C4—C51.383 (9)C19—H19B0.9800
C4—C91.389 (8)C19—H19C0.9800
C5—C61.410 (10)C20—H20A0.9800
C5—C101.525 (10)C20—H20B0.9800
C6—C71.397 (10)C20—H20C0.9800
C6—H6A0.9500C21—H21A0.9800
C7—C81.360 (10)C21—H21B0.9800
C7—C111.510 (10)C21—H21C0.9800
C8—C91.371 (9)C100—Cl111.698 (8)
C8—H8A0.9500C100—Cl121.716 (8)
C9—C121.494 (9)C100—Cl131.741 (9)
C10—H10A0.9800C100—H101.0000
C10—H10B0.9800C200—Cl211.709 (10)
C10—H10C0.9800C200—Cl231.751 (9)
C11—H11A0.9800C200—Cl221.797 (11)
C11—H11B0.9800C200—H201.0000
Br2—Co1—Br1107.39 (4)H11B—C11—H11C109.5
Br2—Co1—Br1i107.39 (4)C9—C12—H12A109.5
Br1—Co1—Br1i111.47 (4)C9—C12—H12B109.5
Br2—Co1—Br1ii107.39 (4)H12A—C12—H12B109.5
Br1—Co1—Br1ii111.47 (4)C9—C12—H12C109.5
Br1i—Co1—Br1ii111.47 (4)H12A—C12—H12C109.5
C1—N1—C4126.6 (5)H12B—C12—H12C109.5
C1—N1—C2110.1 (5)C18—C13—C14123.0 (6)
C4—N1—C2123.2 (5)C18—C13—N2117.9 (5)
C1—N2—C13126.4 (5)C14—C13—N2118.8 (5)
C1—N2—C3110.8 (5)C15—C14—C13117.4 (6)
C13—N2—C3122.6 (5)C15—C14—C19121.4 (6)
N2—C1—N1113.7 (5)C13—C14—C19121.2 (6)
N2—C1—H1A123.1C14—C15—C16123.0 (6)
N1—C1—H1A123.1C14—C15—H15A118.5
N1—C2—C3102.7 (5)C16—C15—H15A118.5
N1—C2—H2A111.2C17—C16—C15117.9 (6)
C3—C2—H2A111.2C17—C16—C20121.7 (6)
N1—C2—H2B111.2C15—C16—C20120.3 (7)
C3—C2—H2B111.2C16—C17—C18122.3 (6)
H2A—C2—H2B109.1C16—C17—H17A118.9
N2—C3—C2102.5 (4)C18—C17—H17A118.9
N2—C3—H3A111.3C13—C18—C17116.4 (6)
C2—C3—H3A111.3C13—C18—C21122.2 (6)
N2—C3—H3B111.3C17—C18—C21121.4 (6)
C2—C3—H3B111.3C14—C19—H19A109.5
H3A—C3—H3B109.2C14—C19—H19B109.5
C5—C4—C9122.9 (6)H19A—C19—H19B109.5
C5—C4—N1118.9 (6)C14—C19—H19C109.5
C9—C4—N1118.2 (5)H19A—C19—H19C109.5
C4—C5—C6117.0 (7)H19B—C19—H19C109.5
C4—C5—C10121.0 (7)C16—C20—H20A109.5
C6—C5—C10122.0 (7)C16—C20—H20B109.5
C7—C6—C5120.9 (7)H20A—C20—H20B109.5
C7—C6—H6A119.5C16—C20—H20C109.5
C5—C6—H6A119.5H20A—C20—H20C109.5
C8—C7—C6118.7 (7)H20B—C20—H20C109.5
C8—C7—C11123.7 (8)C18—C21—H21A109.5
C6—C7—C11117.5 (8)C18—C21—H21B109.5
C7—C8—C9123.0 (7)H21A—C21—H21B109.5
C7—C8—H8A118.5C18—C21—H21C109.5
C9—C8—H8A118.5H21A—C21—H21C109.5
C8—C9—C4117.6 (6)H21B—C21—H21C109.5
C8—C9—C12119.9 (6)Cl11—C100—Cl12111.3 (5)
C4—C9—C12122.5 (6)Cl11—C100—Cl13109.0 (5)
C5—C10—H10A109.5Cl12—C100—Cl13112.0 (5)
C5—C10—H10B109.5Cl11—C100—H10108.1
H10A—C10—H10B109.5Cl12—C100—H10108.1
C5—C10—H10C109.5Cl13—C100—H10108.1
H10A—C10—H10C109.5Cl21—C200—Cl23112.2 (6)
H10B—C10—H10C109.5Cl21—C200—Cl22108.1 (5)
C7—C11—H11A109.5Cl23—C200—Cl22106.8 (5)
C7—C11—H11B109.5Cl21—C200—H20109.9
H11A—C11—H11B109.5Cl23—C200—H20109.9
C7—C11—H11C109.5Cl22—C200—H20109.9
H11A—C11—H11C109.5
C13—N2—C1—N1176.7 (5)C5—C4—C9—C80.7 (9)
C3—N2—C1—N11.7 (7)N1—C4—C9—C8177.6 (5)
C4—N1—C1—N2178.3 (5)C5—C4—C9—C12179.5 (6)
C2—N1—C1—N20.4 (7)N1—C4—C9—C121.2 (9)
C1—N1—C2—C32.2 (6)C1—N2—C13—C1882.7 (7)
C4—N1—C2—C3179.9 (5)C3—N2—C13—C1891.8 (7)
C1—N2—C3—C22.9 (6)C1—N2—C13—C14103.6 (7)
C13—N2—C3—C2178.1 (5)C3—N2—C13—C1481.9 (7)
N1—C2—C3—N22.8 (5)C18—C13—C14—C151.8 (9)
C1—N1—C4—C591.4 (7)N2—C13—C14—C15175.0 (5)
C2—N1—C4—C586.2 (7)C18—C13—C14—C19179.6 (6)
C1—N1—C4—C990.3 (7)N2—C13—C14—C197.1 (9)
C2—N1—C4—C992.1 (7)C13—C14—C15—C160.5 (9)
C9—C4—C5—C61.1 (9)C19—C14—C15—C16177.3 (6)
N1—C4—C5—C6177.2 (5)C14—C15—C16—C171.3 (10)
C9—C4—C5—C10177.1 (7)C14—C15—C16—C20178.8 (6)
N1—C4—C5—C104.6 (10)C15—C16—C17—C180.1 (9)
C4—C5—C6—C70.8 (10)C20—C16—C17—C18177.3 (6)
C10—C5—C6—C7177.3 (7)C14—C13—C18—C173.0 (9)
C5—C6—C7—C80.3 (10)N2—C13—C18—C17176.4 (5)
C5—C6—C7—C11178.3 (6)C14—C13—C18—C21179.7 (6)
C6—C7—C8—C90.1 (11)N2—C13—C18—C216.3 (9)
C11—C7—C8—C9177.8 (6)C16—C17—C18—C132.2 (9)
C7—C8—C9—C40.1 (10)C16—C17—C18—C21179.5 (6)
C7—C8—C9—C12178.9 (6)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br3iii0.952.583.373 (4)141
C100—H10···Br1i1.002.713.668 (5)161
C200—H20···Br2iv1.002.543.454 (6)152
Symmetry codes: (i) x+y+1, x+1, z; (iii) x, y1, z; (iv) y+1/3, x+5/3, z5/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br3ii0.952.583.373 (4)141.3
C100—H10···Br1i1.002.713.668 (5)160.7
C200—H20···Br2iii1.002.543.454 (6)151.7
Symmetry codes: (i) x+y+1, x+1, z; (ii) x, y1, z; (iii) y+1/3, x+5/3, z5/6.
 

References

First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationBica, K. & Gärtner, P. (2008). Eur. J. Org. Chem. 2008, 3453–3456.  CrossRef Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchalski, P., Pacholski, R., Chodkiewicz, K., Buchowicz, W., Suwińska, K. & Shkurenko, A. (2015). Dalton Trans. 44, 7169–7176.  CSD CrossRef CAS PubMed Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantoro, O., Collado, A., Slawin, A. M. Z., Nolan, S. P. & Cazin, C. S. J. (2013). Chem. Commun. 49, 10483–10485.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Q., Geng, Y., Lu, X. & Zhang, S. (2015). ACS Sustainable Chem. Eng. 3, 340–348.  CrossRef CAS Google Scholar
First citationWiggins, K. M., Moerdyk, J. P. & Bielawski, C. W. (2012). Chem. Sci. 3, 2986–2992.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m177-m178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds