research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1266-1269

A co-crystal of nona­hydrated disodium(II) with mixed anions from m-chloro­benzoic acid and furosemide

CROSSMARK_Color_square_no_text.svg

aEnvironmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA, bSchool of Science, Hampton University, Hampton, VA 23668, USA, and cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by S. Parkin, University of Kentucky, USA (Received 1 July 2015; accepted 17 September 2015; online 30 September 2015)

In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro­benzoic acid and furosemide exist with deprotonated carboxyl­ates, and the sodium cations and water mol­ecules exist in chains with stoichiometry [Na2(OH2)9]2+ that propagate in the [-110] direction. Each of the two independent Na+ ions is coordinated by three monodentate water mol­ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9]2+ chains and to furosemide sulfonamide and carboxyl­ate by inter­molecular O—H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra­molecular hydrogen bond to the carboxyl­ate group, and the furosemide NH2 group donates an intra­molecular hydrogen bond to the Cl atom and an inter­molecular one to the m-chloro­benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R44(24), involving two chains and two furosemide anions. The chloro­benzoate is involved in only one R22(8) ring, with two water mol­ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.

1. Chemical context

Furosemide is a widely used diuretic for the treatment of hypertension and edema (Krumlovsky & del Greco, 1976[Krumlovsky, F. A. & del Greco, F. (1976). Postgrad. Med. 59, 105-110.]; Musini et al., 2015[Musini, V. M., Rezapour, P., Wright, J. M., Bassett, K. & Jauca, C. D. (2015). Cochrane Database Syst. Rev. 8, CD003825. doi: 10.1002/14651858.CD003825.pub3.]), and to a lesser extent, hypercalcemia (Belen et al., 2014[Belen, B., Oguz, A., Okur, A. & Dalgic, B. (2014). BMJ Case Rep. pii: bcr2014203746. doi: 10.1136/bcr-2014-203746.]; Carvalhana et al., 2006[Carvalhana, V., Burry, L. & Lapinsky, S. E. (2006). J. Crit. Care, 21, 316-321.]). While this furan-containing compound is of inter­est, the toxicity elicited by these core compounds is not well understood. The free furan itself is a known hepato-carcinogen and toxicant, as studied in rats (Gill et al., 2010[Gill, S., Bondy, G., Lefebvre, D. E., Becalski, A., Kavanagh, M., Hou, Y., Turcotte, A. M., Barker, M., Weld, M., Vavasour, E. & Cooke, G. M. (2010). Toxicol. Pathol. 38, 619-630.]) and mice (Terrell et al., 2014[Terrell, A. N., Huynh, M., Grill, A. E., Kovi, R. C., O'Sullivan, M. G., Guttenplan, J. B., Ho, Y. Y. & Peterson, L. A. (2014). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 770, 46-54.]). The epoxide metabolite of furans, formed in CYP450-mediated oxidations, can isomerize to highly reactive electro­philic inter­mediates such as cis-2-butene-1,4-dial (Chen et al., 1995[Chen, L. J., Hecht, S. S. & Peterson, L. A. (1995). Chem. Res. Toxicol. 8, 903-906.]; Peterson 2015[Peterson, L. A. (2015). Drug Metab. Rev. 38, 615-626.]; Vargas et al., 1998[Vargas, F., Martinez Volkmar, I., Sequera, J., Mendez, H., Rojas, J., Fraile, G., Velasquez, M. & Medina, R. (1998). J. Photochem. Photobiol. B, 42, 219-225.]).

We have performed the oxidation of furosemide with m-chloro­perbenzoic acid (m-CPBA), and isolated various epoxide and isomerized products in support of our efforts to understand this type of toxicity mechanism, and to also identify potential biomarkers for furosemide in humans. During the separation and drying of the products of the furosemide–m-CPBA reaction, we observed the formation of crystals in the mother liquor (the organic layer). Analysis of these crystals by X-ray crystallography revealed a disodium nona­hydrate co-crystal with furosemide (starting material) and m-chloro­benzoic acid (an inadvertent contaminant or the reduced product of m-CPBA). Analogous to the known properties of co-crystals of furosemide with nicotinamide and their pharmaceutical importance (Aitipamula et al., 2012[Aitipamula, S., et al. (2012). Cryst. Growth Des. 12, 2147-2152.]; Chadha et al., 2012[Chadha, R., Saini, A., Arora, P. & Bhandari, S. (2012). Crit. Rev. Ther. Drug Carrier Syst. 29, 183-218.]; Goud et al., 2012[Goud, N. R., Gangavaram, S., Suresh, K., Pal, S., Manjunatha, S. G., Nambiar, S. & Nangia, A. (2012). J. Pharm. Sci. 101, 664-680.]; Stepanovs & Mishnev, 2012[Stepanovs, D. & Mishnev, A. (2012). Acta Cryst. C68, o488-o491.]; Ueto et al., 2012[Ueto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485-494.]), we believe that the co-crystals of furosemide with m-chloro­benzoic acid could have useful applications in drug development and may lead to formulations with improved potency, solubility, and stability. Therefore, this serendipitous finding may have important applications for improving furosemide bioavailability.

[Scheme 1]

2. Structural commentary

The asymmetric unit is illustrated in Fig. 1[link]. The furosemide moiety is present as the monoanion, with the COOH group deprotonated, N2 as NH and the primary amine nitro­gen N1 as NH2. The m-chlorobenzoic acid moiety is also deprotonated. Balancing the charge of the two types of anions are two independent sodium cations, both of which are hexa­coordinate, with Na⋯O(water) distances in the range 2.3558 (13)–2.4500 (13) Å. Each Na+ cation is coordinated by three monodentate water mol­ecules, two double-water bridge mol­ecules, and one single-water bridge mol­ecule, as shown in Fig. 2[link]. Thus, centrosymmetric Na2(OH2)8 units are linked by single water bridges, forming chains in the [[\overline{1}]10] direction.

[Figure 1]
Figure 1
The asymmetric unit with 50% ellipsoids.
[Figure 2]
Figure 2
A portion of the Na–water chain, showing the centrosymmetric Na2(OH2)2 bridges and the single water bridges.

3. Supra­molecular features

Hydrogen bonding is extensive (Table 1[link]), with all 21 hydrogen-bond donors involved. Notable features of the two-dimensional hydrogen-bonding pattern (Etter et al.. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) are sulfonamide N—H⋯O bonds to m-chloro­benzoate, secondary amine N—H⋯O hydrogen bonds to furosemide anion (carboxyl­ate), and water O—H⋯O hydrogen bonds to the sulfona­mide O atom, to both types of carboxyl­ates, and to other water mol­ecules. The direction of the normal to the hydrogen-bonding network is [001]. The furan oxygen atom O5 is not involved in the hydrogen bonding. A supramolecular layer in the ab plane is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯Cl1 0.839 (18) 2.767 (17) 3.2848 (16) 121.6 (14)
N1—H12N⋯O6 0.872 (18) 1.920 (18) 2.7905 (17) 175.3 (17)
N2—H2N⋯O4 0.860 (18) 1.906 (18) 2.6199 (16) 139.4 (16)
O8—H81⋯O3i 0.83 (2) 2.07 (2) 2.8737 (16) 162 (2)
O8—H82⋯O15ii 0.82 (2) 2.00 (2) 2.8025 (16) 168 (2)
O9—H91⋯O16iii 0.86 (2) 1.99 (2) 2.8499 (15) 172 (2)
O9—H92⋯O7 0.81 (2) 2.10 (2) 2.8867 (16) 167 (2)
O10—H101⋯O11iii 0.78 (2) 1.96 (2) 2.7444 (16) 174 (2)
O10—H102⋯O3iv 0.93 (2) 1.90 (2) 2.8271 (15) 171 (2)
O11—H111⋯O6 0.84 (2) 1.89 (2) 2.7296 (16) 176 (2)
O11—H112⋯O12 0.81 (2) 2.08 (2) 2.8641 (16) 162 (2)
O12—H121⋯O4i 0.85 (2) 1.96 (2) 2.7962 (16) 171 (2)
O12—H122⋯O2v 0.76 (2) 2.12 (2) 2.8593 (15) 165 (2)
O13—H131⋯O7i 0.81 (2) 2.01 (2) 2.8082 (15) 169 (2)
O13—H132⋯O3i 0.85 (2) 1.97 (2) 2.7939 (15) 165 (2)
O14—H141⋯O4i 0.76 (2) 1.99 (2) 2.7265 (16) 164 (2)
O14—H142⋯O1 0.74 (2) 2.31 (2) 3.0019 (17) 156 (2)
O15—H151⋯O14v 0.85 (2) 1.92 (2) 2.7766 (16) 178 (2)
O15—H152⋯O7i 0.80 (2) 2.14 (2) 2.8545 (16) 149 (2)
O16—H161⋯O10v 0.798 (19) 1.990 (19) 2.7857 (16) 175.7 (18)
O16—H162⋯O1v 0.80 (2) 2.20 (2) 2.9852 (15) 165.8 (17)
Symmetry codes: (i) x-1, y+1, z; (ii) -x-1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z.
[Figure 3]
Figure 3
A supra­molecular layer of the title compound in the ab plane.

4. Synthesis and crystallization

Furosemide (8.2 mmol; 2.71 g), dissolved in 3 ml of di­chloro­methane (DCM), was added dropwise over 5 min to a solution of 8.2 mmol of m-CPBA (1.84 g) and 10.5 mmol NaHCO3 (0.88 g) in 20 ml of DCM on ice with rapid stirring (Fig. 4[link]). After 2 h, an additional 4 mmol of m-CPBA in 10 ml of DCM was added to the reaction mixture. Upon removal from the ice bath, 4 ml of aqueous sodium sulfite solution (10%) was added with stirring for an additional 15 min. After partitioning the layers with deionized water (resistance 18.2 M Ω cm−1), the organic layer was collected and the aqueous layer was extracted with another 10 ml of DCM. The combined mixture of the organic layer was washed with 10 ml of aqueous solution of NaHCO3 (5%, w/v), dried over anhydrous Na2SO4, and then subjected to partial evaporation under low pressure (ca 4 psi) at 308 K. The partially evaporated sample was left at ambient pressure and temperature overnight. Crystals were formed with slow evaporation.

[Figure 4]
Figure 4
Proposed scheme of reactions of furosemide with m-chloro­per­oxy­benzoic acid.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on C were idealized with C—H distances of 0.95 Å for sp2 C and 0.99 Å for CH2. Those on N and O were assigned from difference maps, and their positions refined, with O—H distances restrained to be equal. Uiso(H) were assigned as 1.2 times Ueq of the attached atoms (1.5 for water). Six reflections with Fo<<Fc were omitted from the calculations.

Table 2
Experimental details

Crystal data
Chemical formula [Na2(OH2)9](C7H4ClO2)(C12H10ClN2O5S)
Mr 693.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.908 (2), 10.224 (3), 19.631 (4)
α, β, γ (°) 85.46 (2), 81.80 (2), 74.96 (2)
V3) 1515.7 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.30 × 0.25 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.893, 0.974
No. of measured, independent and observed [I > 2s(I)] reflections 17752, 10267, 7760
Rint 0.035
(sin θ/λ)max−1) 0.751
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.05
No. of reflections 10267
No. of parameters 442
No. of restraints 120
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.55
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). KappaCCD Software. Nonius BV, Delft, The Netherlands.]), HKL SCALEPACK and DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Furosemide is a widely used diuretic for the treatment of hypertension and edema (Krumlovsky & del Greco, 1976; Musini et al., 2015), and to a lesser extent, hypercalcemia (Belen et al., 2014; Carvalhana et al. (2006)). This furan-containing compound is of inter­est; however, the toxicity elicited by these core compounds is not well understood. The free furan itself is a known hepato-carcinogen and toxicant, as studied in rats (Gill et al., 2010) and mice (Terrell et al., 2014). The epoxide metabolite of furans, formed in CYP450-mediated oxidations, can isomerize to highly reactive electrophilic inter­mediates such as cis-2-butene-1,4-dial (Chen et al., 1995; Peterson 2015; Vargas et al., 1998).

We have performed the oxidation of furosemide with m-chloro­perbenzoic acid (m-CPBA), and isolated various epoxide and isomerized products in support of our efforts to understand this type of toxicity mechanism, and to also identify potential biomarkers for furosemide in humans. During the separation and drying of the products of the furosemide–m-CPBA reaction, we observed the formation of crystals in the mother liquor (the organic layer). Analysis of these crystals by X-ray crystallography revealed a nonahydrate co-crystal of furosemide (starting material) with that of m-chloro­benzoic acid (an inadvertent contaminant or the reduced product of m-CPBA). Analogous to the known properties of co-crystals of furosemide with nicotinamide and their pharmaceutical importance (Aitipamula et al., 2012; Chadha et al., 2012; Goud et al., 2012; Stepanovs & Mishnev, 2012; Ueto et al., 2012), we believe that the co-crystals of furosemide with m-chloro­benzoic acid could have useful applications in drug development and may lead to formulations with improved potency, solubility, and stability. Therefore, this serendipitous finding may have important applications for improving furosemide bioavailability.

Structural commentary top

The asymmetric unit is illustrated in Fig. 1. The furosemide moiety is present as the monoanion, with the COOH group deprotonated, N2 as NH and the primary amine nitro­gen N1 as NH2. The m-chloro­benzoate moiety is also deprotonated. Balancing the charge of the two types of anions are two independent sodium cations, both of which are hexacoordinate, with Na···O(water) distances in the range 2.3558 (13)–2.4500 (13) Å. Each Na+ cation is coordinated by three monodentate water molecules, two double-water bridge molecules, and one single-water bridge molecules, as shown in Fig. 2. Thus, centrosymmetric Na2(OH2)8 units are linked by single water bridges, forming chains in the [110] direction.

Supra­molecular features top

Hydrogen bonding is extensive (Table 1), with all 21 hydrogen-bond donors involved. Notable features of the two-dimensional hydrogen-bonding pattern (Etter et al.. 1990) are sulfonamide N—H···O bonds to m-chloro­benzoate, secondary amine N—H···O hydrogen bonds to furosemide carboxyl­ate, and water O—H···O hydrogen bonds to sulfonamide O, to both types of carboxyl­ates, and to other water molecules. The direction of the normal to the hydrogen-bonding network is [001]. The furan oxygen atom O5 is not involved in the hydrogen bonding.

Synthesis and crystallization top

Furosemide (8.2 mmol; 2.71 g), dissolved in 3 ml of di­chloro­methane (DCM), was added dropwise over 5 min to a solution of 8.2 mmol of m-CPBA (1.84 g) and 10.5 mmol NaHCO3 (0.88 g) in 20 ml of DCM on ice with rapid stirring (Fig. 3). After 2 h, an additional 4 mmol of m-CPBA in 10 ml of DCM was added to the reaction mixture. Upon removal from the ice bath, 4 ml of aqueous sodium sulfite solution (10%) was added with stirring for an additional 15 min. After partitioning the layers with deionized water (resistance ~18.2 M Ω cm-1), the organic layer was collected and the aqueous layer was extracted with another 10 ml of DCM. The combined mixture of the organic layer was washed with 10 ml of aqueous solution of NaHCO3 (5%, w/v), dried over anhydrous Na2SO4, and then subjected to partial evaporation under low pressure (ca 4 psi) at 308 K. The partially evaporated sample was left at ambient pressure and temperature overnight. Crystals were formed with slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on C were idealized with C—H distances of 0.95 Å for sp2 C and 0.99 Å for CH2. Those on N and O were assigned from difference maps, and their positions refined, with O—H distances restrained to be equal. Uiso(H) were assigned as 1.2 times Ueq of the attached atoms (1.5 for water). Six reflections with Fo<<Fc were omitted from the calculations.

Related literature top

For the origins and functions of furosemide, see: Belen et al. (2014); Carvalhana et al. (2006); Musini et al.. (2015); Krumlovsky & del Greco (1976); Vargas et al. (1998). For related structural studies, see: Aitipamula et al. (2012); Chadha et al. (2012); Goud et al. (2012); Stepanovs & Mishnev (2012); Ueto et al. (2012). For information supporting the reported structure and analogs, see: Chen et al. (1995); Gill et al. (2010); Peterson et al. (2015); Terrell et al. (2014). For graph sets of hydrogen bonding, see: Etter et al. (1990).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with 50% ellipsoids.
[Figure 2] Fig. 2. A portion of the Na–water chain, showing the centrosymmetric Na2(OH2)2 bridges and the single water bridges.
[Figure 3] Fig. 3. Proposed scheme of reactions of furosemide with m-chloroperoxybenzoic acid.
[Figure 4] Fig. 4. A supramolecular layer of the title compound in the ab plane.
catena-Poly[[[triaquasodium(I)]-di-µ-aqua-[triaquasodium(I)]-µ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate] top
Crystal data top
[Na2(OH2)9](C7H4ClO2)(C12H10ClN2O5S)Z = 2
Mr = 693.41F(000) = 720
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.908 (2) ÅCell parameters from 17752 reflections
b = 10.224 (3) Åθ = 2.5–32.6°
c = 19.631 (4) ŵ = 0.39 mm1
α = 85.46 (2)°T = 100 K
β = 81.80 (2)°Lath fragment, colorless
γ = 74.96 (2)°0.30 × 0.25 × 0.07 mm
V = 1515.7 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
10267 independent reflections
Radiation source: fine-focus sealed tube7760 reflections with I > 2s(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 32.3°, θmin = 2.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.893, Tmax = 0.974k = 1315
17752 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
10267 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.47 e Å3
120 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Na2(OH2)9](C7H4ClO2)(C12H10ClN2O5S)γ = 74.96 (2)°
Mr = 693.41V = 1515.7 (7) Å3
Triclinic, P1Z = 2
a = 7.908 (2) ÅMo Kα radiation
b = 10.224 (3) ŵ = 0.39 mm1
c = 19.631 (4) ÅT = 100 K
α = 85.46 (2)°0.30 × 0.25 × 0.07 mm
β = 81.80 (2)°
Data collection top
Nonius KappaCCD
diffractometer
10267 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
7760 reflections with I > 2s(I)
Tmin = 0.893, Tmax = 0.974Rint = 0.035
17752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043120 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
10267 reflectionsΔρmin = 0.55 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62548 (4)0.49926 (3)0.089838 (16)0.01988 (8)
S10.53103 (4)0.56412 (3)0.252718 (16)0.01360 (7)
O10.49898 (12)0.54858 (10)0.32676 (5)0.01772 (19)
O20.61708 (13)0.66762 (9)0.22345 (5)0.0186 (2)
O30.86565 (12)0.10830 (9)0.36913 (5)0.01511 (18)
O40.95416 (13)0.04844 (9)0.29000 (5)0.01778 (19)
O50.92982 (13)0.22550 (10)0.12326 (6)0.0250 (2)
N10.34022 (15)0.59988 (12)0.22586 (6)0.0171 (2)
H11N0.345 (2)0.6226 (18)0.1837 (10)0.021*
H12N0.282 (2)0.5394 (18)0.2404 (9)0.021*
N20.97465 (16)0.03032 (12)0.15946 (6)0.0191 (2)
H2N1.009 (2)0.0258 (18)0.1927 (9)0.023*
C10.65991 (16)0.40639 (13)0.22332 (6)0.0133 (2)
C20.70427 (17)0.37919 (13)0.15334 (7)0.0149 (2)
C30.81105 (18)0.25674 (13)0.13183 (7)0.0165 (2)
H30.84220.24220.08400.020*
C40.87486 (17)0.15226 (13)0.18053 (7)0.0147 (2)
C50.83234 (16)0.17957 (12)0.25209 (6)0.0128 (2)
C60.72692 (16)0.30566 (13)0.27139 (7)0.0131 (2)
H60.69960.32370.31900.016*
C70.88889 (16)0.07359 (13)0.30778 (7)0.0133 (2)
C81.0003 (2)0.01178 (14)0.08920 (7)0.0215 (3)
H8A1.09440.02490.06190.026*
H8B0.89000.02470.06820.026*
C91.05072 (18)0.16262 (14)0.08795 (7)0.0179 (3)
C101.19245 (19)0.25494 (14)0.05907 (7)0.0193 (3)
H101.29490.23720.03250.023*
C111.1573 (2)0.38525 (14)0.07659 (7)0.0211 (3)
H111.23120.47090.06340.025*
C120.9991 (2)0.36173 (15)0.11544 (9)0.0252 (3)
H120.94300.43020.13480.030*
Cl20.28737 (6)0.23829 (4)0.026181 (19)0.02904 (9)
O60.15314 (12)0.41020 (9)0.27976 (5)0.01757 (19)
O70.25838 (13)0.23500 (10)0.35073 (5)0.01731 (19)
C130.31680 (17)0.20440 (13)0.22941 (7)0.0147 (2)
C140.27177 (18)0.25472 (13)0.16425 (7)0.0162 (2)
H140.19170.34080.15890.019*
C150.34577 (19)0.17705 (14)0.10766 (7)0.0191 (3)
C160.4648 (2)0.05117 (14)0.11350 (8)0.0230 (3)
H160.51480.00020.07400.028*
C170.5091 (2)0.00209 (15)0.17849 (8)0.0243 (3)
H170.59030.08360.18360.029*
C180.43507 (18)0.07803 (14)0.23614 (7)0.0198 (3)
H180.46540.04340.28040.024*
C190.23698 (16)0.28915 (13)0.29148 (7)0.0140 (2)
Na10.01996 (6)0.65083 (5)0.45870 (3)0.01372 (11)
Na20.44798 (7)0.87445 (5)0.44265 (3)0.01394 (11)
O80.15551 (12)0.88218 (10)0.46379 (5)0.01546 (18)
H810.126 (2)0.9400 (19)0.4362 (10)0.023*
H820.175 (2)0.9155 (18)0.5017 (10)0.023*
O90.19980 (12)0.42119 (10)0.45986 (5)0.01525 (18)
H910.295 (2)0.4001 (18)0.4793 (9)0.023*
H920.217 (2)0.3797 (19)0.4253 (10)0.023*
O100.18912 (12)0.66647 (10)0.54828 (5)0.01560 (18)
H1010.169 (2)0.6053 (19)0.5718 (10)0.023*
H1020.158 (2)0.7401 (18)0.5767 (9)0.023*
O110.10007 (13)0.54861 (10)0.37594 (5)0.01550 (18)
H1110.026 (2)0.5051 (18)0.3452 (10)0.023*
H1120.161 (2)0.6123 (19)0.3560 (9)0.023*
O120.30234 (14)0.80747 (10)0.33026 (5)0.0182 (2)
H1210.221 (2)0.8455 (19)0.3142 (10)0.027*
H1220.329 (2)0.7843 (19)0.2985 (10)0.027*
O130.47562 (13)1.11930 (10)0.43409 (5)0.01560 (18)
H1310.543 (2)1.1568 (19)0.4070 (10)0.023*
H1320.380 (2)1.1303 (18)0.4114 (10)0.023*
O140.16422 (13)0.76011 (10)0.36697 (5)0.01745 (19)
H1410.108 (3)0.802 (2)0.3408 (10)0.026*
H1420.236 (3)0.713 (2)0.3462 (10)0.026*
O150.73738 (13)0.97411 (10)0.41518 (5)0.01661 (19)
H1510.770 (2)0.9090 (19)0.4010 (9)0.025*
H1520.753 (2)1.0342 (19)0.3861 (10)0.025*
O160.49332 (13)0.65364 (10)0.46360 (5)0.01549 (18)
H1610.582 (2)0.6532 (18)0.4885 (10)0.023*
H1620.494 (2)0.6123 (18)0.4305 (10)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02539 (17)0.01556 (15)0.01459 (14)0.00207 (12)0.00343 (12)0.00125 (11)
S10.01423 (14)0.01061 (14)0.01548 (15)0.00184 (11)0.00167 (11)0.00254 (11)
O10.0191 (5)0.0175 (5)0.0155 (4)0.0020 (4)0.0016 (4)0.0041 (4)
O20.0209 (5)0.0136 (4)0.0221 (5)0.0062 (4)0.0016 (4)0.0022 (4)
O30.0167 (4)0.0147 (4)0.0138 (4)0.0036 (4)0.0024 (3)0.0002 (3)
O40.0240 (5)0.0108 (4)0.0176 (5)0.0022 (4)0.0036 (4)0.0001 (3)
O50.0199 (5)0.0182 (5)0.0335 (6)0.0016 (4)0.0032 (4)0.0038 (4)
N10.0153 (5)0.0159 (5)0.0194 (6)0.0022 (4)0.0036 (4)0.0003 (4)
N20.0276 (6)0.0118 (5)0.0141 (5)0.0027 (5)0.0032 (5)0.0016 (4)
C10.0137 (5)0.0117 (6)0.0144 (6)0.0022 (4)0.0020 (4)0.0027 (4)
C20.0170 (6)0.0129 (6)0.0146 (6)0.0027 (5)0.0039 (5)0.0015 (4)
C30.0207 (6)0.0137 (6)0.0134 (6)0.0014 (5)0.0019 (5)0.0013 (4)
C40.0158 (6)0.0120 (6)0.0155 (6)0.0018 (5)0.0019 (5)0.0021 (4)
C50.0138 (5)0.0108 (5)0.0141 (6)0.0035 (5)0.0022 (4)0.0006 (4)
C60.0129 (5)0.0128 (6)0.0147 (6)0.0044 (5)0.0023 (4)0.0019 (4)
C70.0118 (5)0.0137 (6)0.0155 (6)0.0050 (5)0.0019 (4)0.0002 (4)
C80.0317 (8)0.0147 (6)0.0144 (6)0.0003 (6)0.0010 (5)0.0025 (5)
C90.0205 (6)0.0153 (6)0.0169 (6)0.0024 (5)0.0022 (5)0.0028 (5)
C100.0205 (6)0.0173 (6)0.0179 (6)0.0011 (5)0.0019 (5)0.0015 (5)
C110.0266 (7)0.0137 (6)0.0210 (7)0.0011 (5)0.0064 (5)0.0033 (5)
C120.0252 (7)0.0158 (7)0.0351 (8)0.0059 (6)0.0027 (6)0.0037 (6)
Cl20.0479 (2)0.02199 (18)0.01606 (16)0.00506 (16)0.00745 (15)0.00001 (13)
O60.0176 (4)0.0127 (4)0.0196 (5)0.0003 (4)0.0008 (4)0.0010 (4)
O70.0203 (5)0.0165 (5)0.0149 (4)0.0031 (4)0.0048 (4)0.0003 (3)
C130.0144 (6)0.0130 (6)0.0168 (6)0.0029 (5)0.0032 (5)0.0016 (4)
C140.0187 (6)0.0114 (6)0.0182 (6)0.0026 (5)0.0038 (5)0.0002 (5)
C150.0268 (7)0.0167 (6)0.0146 (6)0.0067 (5)0.0036 (5)0.0006 (5)
C160.0299 (7)0.0166 (7)0.0204 (7)0.0033 (6)0.0017 (6)0.0047 (5)
C170.0282 (7)0.0137 (6)0.0257 (7)0.0036 (6)0.0017 (6)0.0020 (5)
C180.0217 (7)0.0156 (6)0.0192 (6)0.0000 (5)0.0031 (5)0.0012 (5)
C190.0119 (5)0.0137 (6)0.0170 (6)0.0037 (5)0.0039 (4)0.0002 (4)
Na10.0119 (2)0.0117 (2)0.0173 (3)0.00179 (19)0.00343 (19)0.00038 (19)
Na20.0129 (2)0.0116 (2)0.0173 (3)0.00220 (19)0.00328 (19)0.00089 (19)
O80.0164 (4)0.0126 (4)0.0164 (5)0.0017 (4)0.0026 (4)0.0003 (4)
O90.0129 (4)0.0153 (4)0.0168 (5)0.0006 (4)0.0040 (4)0.0025 (3)
O100.0168 (4)0.0128 (4)0.0182 (5)0.0054 (4)0.0022 (4)0.0011 (4)
O110.0138 (4)0.0139 (4)0.0173 (5)0.0006 (4)0.0022 (4)0.0006 (4)
O120.0196 (5)0.0178 (5)0.0187 (5)0.0063 (4)0.0044 (4)0.0014 (4)
O130.0127 (4)0.0158 (5)0.0181 (5)0.0030 (4)0.0036 (4)0.0012 (4)
O140.0142 (5)0.0155 (5)0.0207 (5)0.0006 (4)0.0008 (4)0.0025 (4)
O150.0168 (5)0.0142 (5)0.0205 (5)0.0047 (4)0.0065 (4)0.0005 (4)
O160.0138 (4)0.0150 (5)0.0184 (5)0.0041 (4)0.0020 (4)0.0031 (4)
Geometric parameters (Å, º) top
Cl1—C21.7411 (14)C14—H140.9500
S1—O21.4418 (10)C15—C161.391 (2)
S1—O11.4427 (10)C16—C171.392 (2)
S1—N11.6120 (13)C16—H160.9500
S1—C11.7604 (14)C17—C181.393 (2)
O3—C71.2572 (16)C17—H170.9500
O4—C71.2761 (16)C18—H180.9500
O5—C91.3664 (17)Na1—O142.3558 (13)
O5—C121.3703 (18)Na1—O102.3946 (12)
N1—H11N0.839 (18)Na1—O9i2.4090 (12)
N1—H12N0.872 (18)Na1—O92.4091 (13)
N2—C41.3512 (17)Na1—O82.4134 (13)
N2—C81.4483 (18)Na1—O112.4200 (12)
N2—H2N0.860 (18)Na2—O152.3709 (13)
C1—C61.3919 (18)Na2—O162.3718 (13)
C1—C21.4001 (18)Na2—O122.4016 (13)
C2—C31.3755 (19)Na2—O13ii2.4108 (12)
C3—C41.4163 (18)Na2—O82.4294 (12)
C3—H30.9500Na2—O132.4500 (13)
C4—C51.4295 (18)O8—H810.83 (2)
C5—C61.3892 (18)O8—H820.821 (19)
C5—C71.5066 (18)O9—Na1i2.4090 (12)
C6—H60.9500O9—H910.862 (19)
C8—C91.4907 (19)O9—H920.806 (19)
C8—H8A0.9900O10—H1010.784 (19)
C8—H8B0.9900O10—H1020.932 (18)
C9—C101.3501 (19)O11—H1110.842 (19)
C10—C111.436 (2)O11—H1120.811 (19)
C10—H100.9500O12—H1210.848 (19)
C11—C121.344 (2)O12—H1220.76 (2)
C11—H110.9500O13—Na2ii2.4108 (12)
C12—H120.9500O13—H1310.807 (19)
Cl2—C151.7510 (15)O13—H1320.848 (19)
O6—C191.2637 (16)O14—H1410.76 (2)
O7—C191.2623 (16)O14—H1420.74 (2)
C13—C181.3938 (19)O15—H1510.853 (19)
C13—C141.3995 (18)O15—H1520.803 (19)
C13—C191.5158 (19)O16—H1610.798 (19)
C14—C151.3857 (19)O16—H1620.80 (2)
O2—S1—O1118.19 (6)O7—C19—O6124.65 (13)
O2—S1—N1106.89 (7)O7—C19—C13118.41 (12)
O1—S1—N1106.20 (7)O6—C19—C13116.94 (12)
O2—S1—C1108.39 (6)O14—Na1—O1099.71 (4)
O1—S1—C1106.54 (6)O14—Na1—O9i163.93 (4)
N1—S1—C1110.57 (6)O10—Na1—O9i91.71 (4)
C9—O5—C12106.30 (11)O14—Na1—O9103.75 (5)
S1—N1—H11N112.4 (11)O10—Na1—O981.57 (4)
S1—N1—H12N112.1 (11)O9i—Na1—O989.00 (4)
H11N—N1—H12N116.8 (16)O14—Na1—O877.59 (4)
C4—N2—C8124.07 (12)O10—Na1—O895.33 (4)
C4—N2—H2N113.6 (12)O9i—Na1—O890.19 (4)
C8—N2—H2N121.6 (12)O9—Na1—O8176.78 (4)
C6—C1—C2118.22 (12)O14—Na1—O1189.24 (4)
C6—C1—S1118.85 (10)O10—Na1—O11159.01 (4)
C2—C1—S1122.88 (10)O9i—Na1—O1183.87 (4)
C3—C2—C1121.58 (12)O9—Na1—O1177.85 (4)
C3—C2—Cl1117.22 (10)O8—Na1—O11105.17 (4)
C1—C2—Cl1121.21 (10)O15—Na2—O1694.41 (4)
C2—C3—C4120.46 (12)O15—Na2—O1299.60 (4)
C2—C3—H3119.8O16—Na2—O1288.32 (4)
C4—C3—H3119.8O15—Na2—O13ii96.08 (4)
N2—C4—C3120.49 (12)O16—Na2—O13ii81.69 (4)
N2—C4—C5121.12 (12)O12—Na2—O13ii162.00 (4)
C3—C4—C5118.38 (12)O15—Na2—O8153.51 (4)
C6—C5—C4119.11 (12)O16—Na2—O8111.98 (4)
C6—C5—C7118.49 (11)O12—Na2—O883.99 (4)
C4—C5—C7122.30 (11)O13ii—Na2—O885.91 (4)
C5—C6—C1122.19 (12)O15—Na2—O1374.54 (4)
C5—C6—H6118.9O16—Na2—O13166.06 (4)
C1—C6—H6118.9O12—Na2—O13101.72 (4)
O3—C7—O4123.35 (12)O13ii—Na2—O1390.90 (4)
O3—C7—C5119.00 (11)O8—Na2—O1379.02 (4)
O4—C7—C5117.62 (11)Na1—O8—Na2105.44 (4)
N2—C8—C9110.13 (12)Na1—O8—H81118.9 (13)
N2—C8—H8A109.6Na2—O8—H81106.7 (12)
C9—C8—H8A109.6Na1—O8—H82116.0 (13)
N2—C8—H8B109.6Na2—O8—H82102.7 (12)
C9—C8—H8B109.6H81—O8—H82105.7 (17)
H8A—C8—H8B108.1Na1i—O9—Na191.00 (4)
C10—C9—O5110.48 (12)Na1i—O9—H91105.6 (12)
C10—C9—C8134.27 (13)Na1—O9—H91120.6 (12)
O5—C9—C8115.26 (12)Na1i—O9—H92109.7 (13)
C9—C10—C11106.27 (13)Na1—O9—H92118.4 (13)
C9—C10—H10126.9H91—O9—H92108.7 (17)
C11—C10—H10126.9Na1—O10—H10197.5 (13)
C12—C11—C10106.22 (13)Na1—O10—H102122.0 (11)
C12—C11—H11126.9H101—O10—H102105.4 (17)
C10—C11—H11126.9Na1—O11—H111116.0 (11)
C11—C12—O5110.72 (13)Na1—O11—H112104.5 (13)
C11—C12—H12124.6H111—O11—H112105.9 (17)
O5—C12—H12124.6Na2—O12—H121115.2 (13)
C18—C13—C14119.61 (13)Na2—O12—H122135.5 (14)
C18—C13—C19121.12 (12)H121—O12—H122103.8 (19)
C14—C13—C19119.27 (12)Na2ii—O13—Na289.10 (4)
C15—C14—C13119.01 (12)Na2ii—O13—H131123.6 (13)
C15—C14—H14120.5Na2—O13—H131111.3 (13)
C13—C14—H14120.5Na2ii—O13—H132126.5 (12)
C14—C15—C16122.04 (13)Na2—O13—H132106.2 (12)
C14—C15—Cl2119.23 (11)H131—O13—H13298.4 (17)
C16—C15—Cl2118.73 (11)Na1—O14—H141117.4 (14)
C15—C16—C17118.54 (14)Na1—O14—H142113.1 (15)
C15—C16—H16120.7H141—O14—H142104 (2)
C17—C16—H16120.7Na2—O15—H151104.6 (12)
C16—C17—C18120.34 (13)Na2—O15—H152119.8 (13)
C16—C17—H17119.8H151—O15—H152106.5 (18)
C18—C17—H17119.8Na2—O16—H161112.4 (13)
C17—C18—C13120.46 (13)Na2—O16—H162117.0 (13)
C17—C18—H18119.8H161—O16—H162106.8 (18)
C13—C18—H18119.8
O2—S1—C1—C6119.77 (10)C10—C11—C12—O50.73 (17)
O1—S1—C1—C68.40 (12)C9—O5—C12—C110.22 (17)
N1—S1—C1—C6123.38 (11)C18—C13—C14—C150.23 (19)
O2—S1—C1—C257.59 (12)C19—C13—C14—C15179.71 (12)
O1—S1—C1—C2174.23 (10)C13—C14—C15—C160.7 (2)
N1—S1—C1—C259.26 (13)C13—C14—C15—Cl2179.03 (10)
C6—C1—C2—C30.01 (19)C14—C15—C16—C170.5 (2)
S1—C1—C2—C3177.37 (10)Cl2—C15—C16—C17179.18 (12)
C6—C1—C2—Cl1179.75 (10)C15—C16—C17—C180.1 (2)
S1—C1—C2—Cl12.87 (16)C16—C17—C18—C130.5 (2)
C1—C2—C3—C42.1 (2)C14—C13—C18—C170.3 (2)
Cl1—C2—C3—C4177.66 (10)C19—C13—C18—C17179.15 (13)
C8—N2—C4—C310.5 (2)C18—C13—C19—O710.56 (19)
C8—N2—C4—C5170.04 (13)C14—C13—C19—O7169.97 (11)
C2—C3—C4—N2177.67 (12)C18—C13—C19—O6169.39 (12)
C2—C3—C4—C52.87 (19)C14—C13—C19—O610.09 (18)
N2—C4—C5—C6178.95 (12)O14—Na1—O8—Na2117.64 (5)
C3—C4—C5—C61.59 (18)O10—Na1—O8—Na2143.56 (4)
N2—C4—C5—C72.64 (19)O9i—Na1—O8—Na251.83 (5)
C3—C4—C5—C7177.90 (11)O11—Na1—O8—Na231.87 (5)
C4—C5—C6—C10.48 (19)Na1i—Na1—O8—Na254.90 (7)
C7—C5—C6—C1175.97 (11)O15—Na2—O8—Na1165.17 (8)
C2—C1—C6—C51.29 (18)O16—Na2—O8—Na120.07 (6)
S1—C1—C6—C5178.78 (10)O12—Na2—O8—Na165.67 (5)
C6—C5—C7—O312.06 (17)O13ii—Na2—O8—Na199.40 (5)
C4—C5—C7—O3171.61 (11)O13—Na2—O8—Na1168.88 (5)
C6—C5—C7—O4166.10 (11)Na2ii—Na2—O8—Na1145.27 (4)
C4—C5—C7—O410.23 (18)O14—Na1—O9—Na1i170.12 (4)
C4—N2—C8—C9156.88 (13)O10—Na1—O9—Na1i91.87 (4)
C12—O5—C9—C100.43 (16)O9i—Na1—O9—Na1i0.0
C12—O5—C9—C8179.48 (12)O11—Na1—O9—Na1i83.94 (4)
N2—C8—C9—C10119.97 (17)O15—Na2—O13—Na2ii96.06 (4)
N2—C8—C9—O560.15 (16)O16—Na2—O13—Na2ii57.56 (17)
O5—C9—C10—C110.86 (16)O12—Na2—O13—Na2ii167.08 (4)
C8—C9—C10—C11179.02 (15)O13ii—Na2—O13—Na2ii0.0
C9—C10—C11—C120.96 (16)O8—Na2—O13—Na2ii85.65 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···Cl10.839 (18)2.767 (17)3.2848 (16)121.6 (14)
N1—H12N···O60.872 (18)1.920 (18)2.7905 (17)175.3 (17)
N2—H2N···O40.860 (18)1.906 (18)2.6199 (16)139.4 (16)
O8—H81···O3iii0.83 (2)2.07 (2)2.8737 (16)162 (2)
O8—H82···O15ii0.82 (2)2.00 (2)2.8025 (16)168 (2)
O9—H91···O16i0.86 (2)1.99 (2)2.8499 (15)172 (2)
O9—H92···O70.81 (2)2.10 (2)2.8867 (16)167 (2)
O10—H101···O11i0.78 (2)1.96 (2)2.7444 (16)174 (2)
O10—H102···O3iv0.93 (2)1.90 (2)2.8271 (15)171 (2)
O11—H111···O60.84 (2)1.89 (2)2.7296 (16)176 (2)
O11—H112···O120.81 (2)2.08 (2)2.8641 (16)162 (2)
O12—H121···O4iii0.85 (2)1.96 (2)2.7962 (16)171 (2)
O12—H122···O2v0.76 (2)2.12 (2)2.8593 (15)165 (2)
O13—H131···O7iii0.81 (2)2.01 (2)2.8082 (15)169 (2)
O13—H132···O3iii0.85 (2)1.97 (2)2.7939 (15)165 (2)
O14—H141···O4iii0.76 (2)1.99 (2)2.7265 (16)164 (2)
O14—H142···O10.74 (2)2.31 (2)3.0019 (17)156 (2)
O15—H151···O14v0.85 (2)1.92 (2)2.7766 (16)178 (2)
O15—H152···O7iii0.80 (2)2.14 (2)2.8545 (16)149 (2)
O16—H161···O10v0.798 (19)1.990 (19)2.7857 (16)175.7 (18)
O16—H162···O1v0.80 (2)2.20 (2)2.9852 (15)165.8 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+2, z+1; (iii) x1, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···Cl10.839 (18)2.767 (17)3.2848 (16)121.6 (14)
N1—H12N···O60.872 (18)1.920 (18)2.7905 (17)175.3 (17)
N2—H2N···O40.860 (18)1.906 (18)2.6199 (16)139.4 (16)
O8—H81···O3i0.83 (2)2.07 (2)2.8737 (16)162.4 (17)
O8—H82···O15ii0.821 (19)1.995 (19)2.8025 (16)167.6 (17)
O9—H91···O16iii0.862 (19)1.994 (19)2.8499 (15)171.8 (17)
O9—H92···O70.806 (19)2.10 (2)2.8867 (16)167.3 (18)
O10—H101···O11iii0.784 (19)1.964 (19)2.7444 (16)173.7 (18)
O10—H102···O3iv0.932 (18)1.903 (18)2.8271 (15)170.6 (15)
O11—H111···O60.842 (19)1.889 (19)2.7296 (16)175.6 (16)
O11—H112···O120.811 (19)2.082 (19)2.8641 (16)161.9 (17)
O12—H121···O4i0.848 (19)1.96 (2)2.7962 (16)170.8 (18)
O12—H122···O2v0.76 (2)2.12 (2)2.8593 (15)165 (2)
O13—H131···O7i0.807 (19)2.011 (19)2.8082 (15)169.4 (18)
O13—H132···O3i0.848 (19)1.966 (19)2.7939 (15)165.0 (17)
O14—H141···O4i0.76 (2)1.99 (2)2.7265 (16)164 (2)
O14—H142···O10.74 (2)2.31 (2)3.0019 (17)155.7 (19)
O15—H151···O14v0.853 (19)1.92 (2)2.7766 (16)177.8 (18)
O15—H152···O7i0.803 (19)2.135 (19)2.8545 (16)149.2 (17)
O16—H161···O10v0.798 (19)1.990 (19)2.7857 (16)175.7 (18)
O16—H162···O1v0.80 (2)2.20 (2)2.9852 (15)165.8 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Na2(OH2)9](C7H4ClO2)(C12H10ClN2O5S)
Mr693.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.908 (2), 10.224 (3), 19.631 (4)
α, β, γ (°)85.46 (2), 81.80 (2), 74.96 (2)
V3)1515.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.25 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.893, 0.974
No. of measured, independent and
observed [I > 2s(I)] reflections
17752, 10267, 7760
Rint0.035
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.05
No. of reflections10267
No. of parameters442
No. of restraints120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.55

Computer programs: COLLECT (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The research presented within was made possible by funding from the National Science Foundation (NSF) ACE Implementation (HRD-1043316) and CAREER (CHE-1230357) programs, and the US Department of Education (DoE) grant PO31B040030 (Title III, Part B - Strengthening Historically Black Graduate Institutions). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NSF or US DoE. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAitipamula, S., et al. (2012). Cryst. Growth Des. 12, 2147–2152.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelen, B., Oguz, A., Okur, A. & Dalgic, B. (2014). BMJ Case Rep. pii: bcr2014203746. doi: 10.1136/bcr-2014-203746.  Google Scholar
First citationCarvalhana, V., Burry, L. & Lapinsky, S. E. (2006). J. Crit. Care, 21, 316–321.  CrossRef PubMed Google Scholar
First citationChadha, R., Saini, A., Arora, P. & Bhandari, S. (2012). Crit. Rev. Ther. Drug Carrier Syst. 29, 183–218.  CrossRef CAS PubMed Google Scholar
First citationChen, L. J., Hecht, S. S. & Peterson, L. A. (1995). Chem. Res. Toxicol. 8, 903–906.  CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGill, S., Bondy, G., Lefebvre, D. E., Becalski, A., Kavanagh, M., Hou, Y., Turcotte, A. M., Barker, M., Weld, M., Vavasour, E. & Cooke, G. M. (2010). Toxicol. Pathol. 38, 619–630.  CrossRef CAS PubMed Google Scholar
First citationGoud, N. R., Gangavaram, S., Suresh, K., Pal, S., Manjunatha, S. G., Nambiar, S. & Nangia, A. (2012). J. Pharm. Sci. 101, 664–680.  CrossRef CAS PubMed Google Scholar
First citationKrumlovsky, F. A. & del Greco, F. (1976). Postgrad. Med. 59, 105–110.  PubMed CAS Google Scholar
First citationMusini, V. M., Rezapour, P., Wright, J. M., Bassett, K. & Jauca, C. D. (2015). Cochrane Database Syst. Rev. 8, CD003825. doi: 10.1002/14651858.CD003825.pub3.  Google Scholar
First citationNonius (1999). KappaCCD Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPeterson, L. A. (2015). Drug Metab. Rev. 38, 615–626.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepanovs, D. & Mishnev, A. (2012). Acta Cryst. C68, o488–o491.  CrossRef IUCr Journals Google Scholar
First citationTerrell, A. N., Huynh, M., Grill, A. E., Kovi, R. C., O'Sullivan, M. G., Guttenplan, J. B., Ho, Y. Y. & Peterson, L. A. (2014). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 770, 46–54.  CrossRef CAS PubMed Google Scholar
First citationUeto, T., Takata, N., Muroyama, N., Nedu, A., Sasaki, A., Tanida, S. & Terada, K. (2012). Cryst. Growth Des. 12, 485–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationVargas, F., Martinez Volkmar, I., Sequera, J., Mendez, H., Rojas, J., Fraile, G., Velasquez, M. & Medina, R. (1998). J. Photochem. Photobiol. B, 42, 219–225.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages 1266-1269
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds